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1 Introduction

KASKADET7 is a general-purpose finite element toolbox for solving systems of el-
liptic and parabolic PDEs. Design targets for the KASKADE7 code have been
flexibility, efficiency, and correctness. One possibility to achieve these, to some
extent competing, goals is to use C++ with a great deal of template metaprogram-
ming [14]. This generative programming technique uses the C++ template system
to let the compiler perform code generation. The resulting code is, due to static
polymorphism, at the same time type and const correct and, due to code generation,
adapted to the problem to be solved. Since all information relevant to code opti-
mization is directly available to the compiler, the resulting code is highly efficient,
of course depending on the capabilities of the compiler. In contrast to explicit code
generation, as used, e.g., by the FENICS project [[12]], no external toolchain besides
the C++ compiler/linker is required. Drawbacks of the template metaprogramming
approach are longer compile times, somewhat cumbersome template notation, and
hard to digest compiler diagnostics. Therefore, code on higher abstraction levels,
where the performance gains of inlining and avoiding virtual function calls are
negligible, uses dynamic polymorphism as well.

The KASKADE7 code is heavily based on the DUNE libraries [6} 5,7, 2], which
are used in particular for grid management, numerical quadrature, and linear alge-
bra.

TODO In Sectionwe describe the design and structure of KASKADE7 , also
presenting some details of the implementation. The next section presents more
practical advices to use the code. In particular, we give hints how to install the
code and a set of third-party software needed in KASKADE7 .

Following the guideline of the sections 3] @] and [5]the user can provide all the
technical requirements necessary to start his’her own programming. This should
be accompanied by the tutorial including a set of examples in Section [6]

Subsequent to that Getting started chapter we bring more and more details
about programming of certain classes and modules helping the user of KASKADE7
to extend his knowledge and get familiar to all the topics interesting for developers.
We close with a gallery of projects dealt with KASKADE7 , some notes on the his-
tory of development of the code, and finally a list of publications using simulation
results provided by KASKADE7 .

2 Structure and Implementation

As a guiding example at which to illustrate features of KASKADE7 we will use
in this section the all-at-once approach to the following simple optimal control



problem. For a desired state y; defined over a domain Q C R?, d € {1,2,3}, and
o > 0 we consider the tracking type problem
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The solution is characterized by the Lagrange multiplier A € HJ (Q) satisfying the
Karush-Kuhn-Tucker system
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For illustration purposes, we will discretize the system using piecewise polyno-
mial finite elements for y and A and piecewise constant functions for u, even though
this is not the best way to approach this particular type of problems [11} [15].

The foundation of all finite element computation is the approximation of so-
lutions in finite dimensional function spaces. In this section, we will discuss the
representation of functions in KASKADE7 before addressing the problem formula-
tion.

2.1 Finite Element Spaces

On each reference element Ty there is a set of possibly vector-valued shape func-
tions ¢; : To — R*, i = 1,...,m defined. Finite element functions are built from
these shape functions by linear combination and transformation. More precisely,
finite element functions defined by their coefficient vectors a € R" are given as

u(x)|r = yr(x)(P(S)Krar, ),

where a;, € R is the subvector of a containing the coefficients of all finite element
ansatz functions which do not vanish on the element T, K € R”*¥ is a matrix
describing the linear combination of shape functions ¢; to ansatz functions @,
P (&) € R*™ is the matrix consisting of the shape functions’ values at the reference
coordinate & corresponding to the global coordinate x as columns, and yr(x) €
R*** is a linear transformation from the values on the reference element to the
actual element 7.

The indices I and efficient application of the matrices K7 and yr(x) are pro-
vided by local-to-global-mappers, in terms of which the finite element spaces are
defined. The mappers do also provide references to the suitable shape function set,
which is, however, defined independently. For the computation of the index set I



the mappers rely on the DUNE index sets provided by the grid views on which the
function spaces are defined.

For Lagrange ansatz functions, the combiner K is just a permutation matrix,
and the converter y(x) is just 1. For hierarchical ansatz functions in 2D and
3D, nontrivial linear combinations of shape functions are necessary. The imple-
mented over-complete hierarchical FE spaces require just signed permutation ma-
trices [16]. Vectorial ansatz functions, e.g. edge elements, require nontrivial con-
verters y(x) depending on the transformation from reference element to actual ele-
ment. The structure in principle allows to use heterogeneous meshes with different
element topology, but the currently implemented mappers require homogeneous
meshes of either simplicial or quadrilateral type.

In KASKADE7 , finite element spaces are template classes parameterized with
a mapper, defining the type of corresponding finite element functions and support-
ing their evaluation as well as prolongation during grid refinement, see Sec. 2.4]
Assuming that View is a suitable DUNE grid view type, FE spaces for the guiding
example can be defined as:

using H1Space = FEFunctionSpace<ContinuousLagrangeMapper<double ,
View>>;

using L2Space = FEFunctionSpace<DiscontinuousLagrangeMapper<double
, View >>;

H1Space hlSpace(gridManager ,view, order) ;

L2Space 12Space(gridManager ,view ,0) ;

The type aliases for common FE spaces as above are predefined in fem/spaces.hh
for convenience. They are parametrized over the grid type (and scalar type, with
double as default). The space definition above could thus be written as follows.

#include “fem/spaces.hh”

H1Space<Grid> hlSpace(gridManager ,view , order) ;
L2Space<Grid> 12Space (gridManager , view ,0) ;

Multi-component FE functions are supported, which gives the possibility to
have vector-valued variables defined in terms of scalar shape functions. E.g., dis-
placements in elastomechanics and temperatures in the heat equation share the
same FE space. FE functions as elements of a FE space can be constructed using
the type provided by that space:

H1Space:: Element <1>::type y(hlSpace), lambda(hlSpace);
L2Space:: Element <1>::type u(l2Space);




FE functions provide a limited set of linear algebra operations. Having differ-
ent types for different numbers of components detects the mixing of incompatible
operands at compile time.

During assembly, the ansatz functions have to be evaluated repeatedly. In
order not to do this separately for each involved FE function, FE spaces define
Evaluators doing this once for each involved space. When several FE functions
need to be evaluated at a certain point, the evaluator caches the ansatz functions’
values and gradients, such that the remaining work is just a small scalar product
for each FE function.

2.2 Problem Formulation

For stationary variational problems, the KASKADE7 core addresses variational
functionals of the type

minJ (u) :/F(x,ul,...,un,Vul,...,Vun) dx—i—/ G(x,uy,...,uy)dS. (1)
u;€V; Q IQ

with u = (u1,...,u,)". In general, this problem is nonlinear. Therefore we formu-
late the Newton iteration in order to find the solution u:

J"()ou= -7 W), =k + 8 2)

Hence, starting with an initial guess u° for u we compute the Newton update
ou by

/F” 3uvdx+/ G" (u®)[8u,v] dS
/F Jvdx— /G’ wdS YweV (3)

with the Fréchet derivatives (directional derivatives in direction of v and éu) of F
and G of first and second order. The approximation after one step is

ul = u® + 8u.

The problem definition consists of providing F, G, and their first and second direc-
tional derivatives in a certain fashion. First, the number of variables, their number
of components, and the FE space they belong to have to be specified. This par-
tially static information is stored in heterogeneous, statically polymorphic contain-
ers from the BOOST FUSION [1]] library. Variable descriptions are parameterized
over their space index in the associated container of FE spaces, their number of
components, and their unique, contiguous id in arbitrary order.



typedef boost::fusion ::vector<HlSpacex*,L2Spacex> Spaces;
Spaces spaces(&hlSpace.&12Space);
typedef boost::fusion ::vector<
Variable <Spacelndex <0>,Components <1>,Variableld <0> >,
Variable <Spacelndex <0>,Components <1>,Variableld <I> >,
Variable <Spacelndex <1>,Components <1>,Variableld <2> > >
VarDesc;

Besides this data, a problem class defines, apart from some static meta infor-
mation, two mandatory member classes, the DomainCache defining F and the
BoundaryCache defining G. The domain cache provides member functions dO0,
d1, and d2 evaluating F(-), F'(-)v;, and F”(-)[v;,w;], respectively. For the guiding
example with

o

> u? +VATVy — du,

1
F= i(y—ycz)2+

the corresponding code looks like

double dO() const {
return (y—yd)*(y—yd)/2 + uxuxalpha/2 + dlambdaxdy — lambdaxu;
}

template <int i, int d>

double dl(VariationalArg<double ,d> const& vi) const {
if (i==0) return (y—yd)xvi.value + dlambdaxvi.derivative;
if (i==1) return alphaxuxvi.value — lambdaxvi.value;
if (i==2) return dy*vi.derivative — uxvi.value;

}

template <int i, int j, int d>

double d2(VariationalArg<double ,d> const& vi,

VariationalArg <double ,d> const& wj) const {

if (i==0 && j==0) return vi.valuexwj.value;
if (i==0 && j==2) return vi.derivativexwj.derivative;
if (i==1 && j==1) return alphaxvi.valuexwj. value;
if (i==1 && j==2) return —vi.valuexwj.value;
if (i==2 && j==0) return vi.derivative*wj.derivative;
if (i==2 && j==1) return —vi.valuexwj.value;

}

A static member template class D2 defines which Hessian blocks are available.
Symmetry is auto-detected, such that in d2 only j < i needs to be defined.

template <int row, int col>
class D2 {
static int present = (row==2) || (row==col);

T
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The boundary cache is defined analogously.

The functions for y, u, and A are specified (for nonlinear or instationary prob-
lems in form of FE functions) on construction of the caches, and can be evaluated
for each quadrature point using the appropriate one among the evaluators provided
by the assembler:

template <class Pos, class Evaluators>
void evaluateAt(Pos const& x, Evaluators const& evaluators) {
y = yFunc.value (at_c <O>(evaluators));
u = uFunc.value(at_c <l>(evaluators));
lambda = lambdaFunc. value (at_c <O>(evaluators));
dy = yFunc.derivative (at_-c <O>(evaluators));
dlambda = lambdaFunc. derivative (at_c <O>(evaluators));

Hint. Usage of at_c<int>

The function at_c<int> () allows one to access the elements of a heteroge-
neous array, that is an array, with possibly different data types (as opposed to the
std: :array, where the data type is fixed at initialisation to one type). An exam-
ple for this is above in the method evaluateAt (). The data type evaluators
contains evaluators of different type for the continuous H1 space used for state y
and the discontinuous L2 space used for the control u. Having different types,
the evaluators cannot be stored in a homogeneous array such as std: :vector
or std: :array. Hence the at_c method allows to access both evaluators. The
call at_c<0> (evaluators) reaches the first element of evaluators, while
at_c<1l> (evaluators) accesses the second and so forth.

2.3 Assembly

Assembly of matrices and right-hand sides for variational functionals is provided
by the template class VariationalFunctionalAssembler, parameterized
with a (linearized) variational functional. The elements of the grid are traversed.
For each cell, the functional is evaluated at the integration points provided by a
suitable quadrature rule, assembling local matrices and right-hand sides. If applica-
ble, boundary conditions are integrated. Finally, local data is scattered into global
data structures. Matrices are stored as sparse block matrices with compressed row
storage, as provided by the DUNE BCRSMat rix<BlockType> class. For eval-
uation of FE functions and management of degrees of freedom, the involved spaces
have to be provided to the assembler. User code for assembling a given functional
will look like the following:
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boost:: fusion :: vector <HlSpacex,L2Spacex> spaces(&hlspace, &l2space
)

VariationalFunctionalAssembler <Functional> as(spaces);

as.assemble(linearization (f,x));

For the solution of the resulting linear systems, several direct and iterative
solvers can be used through an interface to DUNE-ISTL. For instance, the DUNE
AssembledLinearOperator interface is provided by the KASKADE7 class
AssembledGalerkinOperator. After the assembly, and some more initial-
izations (rhs, solution), e.g. a direct solver directType can be applied:

AssembledGalerkinOperator A(as);
directInverseOperator (A, directType).applyscaleadd(—1.,rhs, solution

DE

2.4 Adaptivity

KASKADE7 provides several means of error estimation.

Embedded error estimator. Given a FE function u, an approximation of the
error can be obtained by projecting u onto the ansatz space with polynomials of
order one less. The method embeddedErrorEstimator () then constructs
(scaled) error indicators, marks cells for refinement and adapts the grid with aid of
the GridManager class, which will be described later.

error = u;

projectHierarchically (variableSet, u);

error —= u;

accurate = embeddedErrorEstimator (variableSet ,error ,u,scaling , tol,
gridManager) ;

Hierarchic error estimator. After discretization using a FE space S, the min-
imizer of the variational functional satisfies a system of linear equations, A;x; =
—b;. For error estimation, the ansatz space is extended by a second, higher order
ansatz space, S; ® V,. The solution in this enriched space satisfies

IMERH
Ag Agq] [Xq by
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Of course the solution of this system is quite expensive. As x; is essentially
known, just the reduced system diag(A,q)x, = —(bg+Agx;) is solved [9]]. A global
error estimate can be obtained by evaluating the scalar product (x,, bg).

In KASKADE7 , the template class HierarchicErrorEstimator is avail-
able. It is parameterized by the type of the variational functional, and the descrip-
tion of the hierarchic extension space. The latter can be defined using e.g. the
ContinuousHierarchicExtensionMapper. The error estimator then can
be assembled and solved, analogously to the assembly and solution of the original
variational functional.

Grid transfer. Grid transfer makes heavy use of the signal-slot concept, as im-
plemented in the BOOST.SIGNALS library [[1]. Signals can be seen as callback
functions with multiple targets. They are connected to so-called slots, which are
functions to be executed when the signal is sent. This paradigm allows to handle
grid modifications automatically, ensuring that all grid functions stay consistent.

All mesh modifications are done via the GridManager<Grid> class, which
takes ownership of a grid once it is constructed. Before adaptation, the grid man-
ager triggers the affected FE spaces to collect necessary datain a class Transfer—
Data. For all cells, a local restriction matrix is stored, mapping global degrees
of freedom to local shape function coefficients of the respective father cell. Af-
ter grid refinement or coarsening, the grid manager takes care that all FE func-
tions are transfered to the new mesh. Since the construction of transfer matrices
from grid modifications is a computationally complex task, these matrices are con-
structed only once for each FE space. On that account, FE spaces listen for the
GridManager’s signals. As soon as the transfer matrices are constructed, the FE
spaces emit signals to which the associated FE functions react by updating their
coefficient vectors using the provided transfer matrix. Since this is just an efficient
linear algebra operation, transfering quite a lot of FE functions from the same FE
space is cheap.

After error estimation and marking, the whole transfer process is initiated in
the user code by:

gridManager . adaptAtOnce () ;

The automatic prolongation of FE functions during grid refinement makes it par-
ticularly easy to keep coarser level solutions at hand for evaluation, comparison,
and convergence studies.



13

2.5 Time-dependent Problems

KASKADE7 provides an extrapolated linearly implicit Euler method for integra-
tion of time-dependent problems B(y)y = f(v), [10]. Given an evolution equation
Equation eq, the corresponding loop looks like

Limex<Equation> limex (gridManager ,eq, variableSet);
for (int steps=0; !done && steps<maxSteps; ++steps) {
do {
dx = limex.step(x,dt,extrapolOrder ,tolX);
errors = limex.estimateError (/% ... x/);
/... (choose optimal time step size)
} while( error > tolT );
X += dx ;

}

Step computation makes use of the class SemiImplicitEulerStep. Here,
the stationary elliptic problem resulting from the linearly implicit Euler method
is defined. This requires an additional method b2 in the domain cache for the
evaluation of B. For the simple scalar model problem with B(x) independent of y,
this is just the following:

template<int i, int j, int d>
Dune :: FieldMatrix <double, TestVars :: Components<i >::m, AnsatzVars::
Components<j >::m>
b2 ( VariationalArg <double ,d> const& vi, VariationalArg<double ,d>
const& wj) const {
return bvaluexvi.valuexvj.value;

}

Of course, bvalue has to be specified in the evaluateAt method.

2.6 Nonlinear Solvers

A further aspect of KASKADE7 is the solution of nonlinear problems, involving
partial differential equations. Usually, these problems are posed in function spaces,
which reflect the underlying analytic structure, and thus algorithms for their solu-
tion should be designed to inherit as much as possible from this structure.
Algorithms for the solution of nonlinear problems of the form (I)) build upon
the components described above, such as discretization, iterative linear solvers, and
adaptive grid refinement. A typical example is Newton’s method for the solution
of a nonlinear operator equation. Algorithmic issues are the adaptive choice of
damping factors, and the control of the accuracy of the linear solvers. This includes
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requirements for iterative solvers, but also requirements on the accuracy of the
discretization.

The interface between nonlinear solvers and supporting routines is rather coarse
grained, so that dynamic polymorphism is the method of choice. This makes it pos-
sible to develop and compile complex algorithms independently of the supporting
routines, and to reuse the code for a variety of different problems. In client code
the components can then be plugged together, and decisions are made, which type
of discretization, linear solver, adaptivity, etc. is used together with the nonlinear
algorithm. In this respect, KASKADE?7 provides a couple of standard components,
but of course users can write their own specialized components.

Core of the interface are abstract classes for a mathematical vector, which sup-
ports vector space operations, but no coordinatewise access, abstract classes for
norms and scalar products, and abstract classes for a nonlinear functional and its
linearization (or, more accurately, its local quadratic model). Further, an interface
for inexact linear solvers is provided. These concepts form a framework for the
construction of iterative algorithms in function space, which use discretization for
the computation of inexact steps and adaptivity for error control.

In order to apply an algorithm to the solution of a nonlinear problem, one can
in principle derive from these abstract classes and implement their purely virtual
methods. However, for the interaction with the other components of KASKADE7 ,
bridge classes are provided, which are derived from the abstract base classes, and
own an implementation.

We explain this at the following example which shows a simple implementation
of the damped Newton method:

for(int step=1; step <= maxSteps; step++) {
lin = functional —>getLinearization(xiterate);
linearSolver —>solve (x correction ,* lin) ;
do {
xtriallter = xiterate;
triallter —axpy(dampingFactor ,* correction ) ;
if (regularityTest(dampingFactor)==Failed) return —1;
updateDampingFactor (dampingFactor) ;

while(evalTriallterate (xtriallter ,* correction ,xlin)==Failed);
xiterate = xtriallter;
if (convergenceTest(xcorrection ,*xiterate )==Achieved) return 1;

}

While regularityTest, updateDampingFactor,evalTriallterate,
and convergenceTest are implemented within the algorithm, functional,
1lin, and linearSolver, used within the subroutines are instantiations of de-
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rived classes, provided by client code. By

linearSolver —>solve (* correction ,* lin) ;

a linear solver is called, which has access to the linearization 1in as a linear oper-
ator equation. It may either be a direct or an iterative solver on a fixed discretiza-
tion, or solve this operator equation adaptively, until a prescribed relative accuracy
is reached. In the latter case, the adaptive solver calls in turn a linear solver on each
refinement step. There is a broad variety of linear solvers available, and moreover,
it is not difficult to implement a specialized linear solver for the problem at hand.

The object 1in is of type AbstractLinearization, which is imple-
mented by the bridge class Bridge: :KaskadeLinearization. This bridge
class is a template, parametrized by a variational functional and a vector of type
VariableSet: :Representation. It uses the assembler class to generate
the data needed for step computation and manages generated data. From the client
side, only the variational functional has to be defined and an appropriate set of
variables has to be given.

Several algorithms are currently implemented. Among them there is a damped
Newton method [8] with affine covariant damping strategy, a Newton path-following
algorithm, and algorithms for nonlinear optimization, based on a cubic error model.
This offers the possibility to solve a large variety of nonlinear problems involving
partial differential equations. As an example, optimization problems with partial
differential equations subject to state constraints can be solved by an interior point
method combining Newton path-following and adaptive grid refinement [?].

2.7 Module interaction

Figure [T|shows the interaction between the described modules.

3 Installation and code structure

3.1 Obtaining KASKADE7 and third-party software

KASKADET7 is currently maintained by the free and open source distributed ver-
sion control system Git and is hosted on the server https://git.zib.de/.
There are two branches: the master branch and the stable Kaskade7.4branch. Cur-
rent development of KASKADE7 code happens on the master branch. For using
the KASKADE7 code for own projects without troubles or bugs, please consider
checking out the stable Kaskade7.4branch. If you don’t mind working with the lat-
est version which is under development, you can checkout the master branch. To
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Figure 1: Module interaction

obtain a working copy of KASKADE?7 from the ZIB Git repository you first need to
be granted access rights to the repository by the admin. Then, open a terminal and
change to the directory wherein you want to create the working copy subdirectory.
Clone the KASKADE7 repository with SSH via

git clone git@git.zib.de:numerical-mathematics/...
...computational-anatomy-and-physiology/kaskade7.git

or clone with HTTPS via

git clone https://git.zib.de/numerical-mathematics/...
...computational-anatomy-and-physiology/kaskade7.git

You have now successfully cloned the master repository to your directory. If you
want to work on a branch, i.e. the Kaskade7.4branch with the current version
number, switch to it by performing

git checkout Kaskade<version-number>

which updates the index and the files in the working tree and points the HEAD at
the branch.
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Installation If you intend to run your KASKADE7 copy on a system different
from the 64-bit Linux system at ZIB, you have to install the required compil-
ers and external libraries. A collection of shell installer script can be found in
the InstallDependencies/ subdirectory. ome information can be found in
InstallDependencies/README.md. You mustinspect and change the shell
script to your needs. Start by editing install. sh and define versions, paths and
URLs. Start the installation process by

cd InstallDependencies; sh install.sh

If anything goes wrong, inspect and change the corresponding script. They are
intended to be modified as needed, and therefore mostly simple and readable.

If you are a ZIB member, an installation of required libraries is maintained and you
can skip the library installation step.

Next modify Makefile.Local toreflect the installation paths of KASKADE7
and the required libraries, i.e. change the path of KASKADE7 = ... toyour in-
stallation directory. If you installed the third-party libraries manually, you’ll have
replace the path

include /data/numerik/software/KaskadeDependencies/...
...Kaskade7.5Dependencies—-10.2/installed/Makefile.Local

by the path to your installation. Then,

make kasklib

builds the library. You can run the test suite with make test and the tutorials
with make tutorial. With a successful run of the above commands you can
now start working with the KASKADE?7 library.

3.2 Structure of the program

After checking out the program to directory KASKADE?7 we have the following
structure of the source code stored into corresponding subdirectories.

e KASKADE7/algorithm
e KASKADE7/doc

KASKADE7/fem

KASKADE7/io

KASKADE7/linalg
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KASKADE7/mg

o KASKADE7/tests

KASKADE7/timestepping

KASKADET7/tools

KASKADE7/tutorial

KASKADE7/utilities

In these subdirectories we find . hh- and .cpp- files, some auxiliary files and
sometimes further subdirectories. In directories including . cpp- files there is a
Makefile generating object files or libraries which are stored into KASKADE7/11ibs.

3.3 Compiler und Libraries

Before calling make in KASKADE?7 directory or in one of the subdirectories the
user should make sure that the correct compiler (corresponding to the selection
in the Makefiles) is available. In the installation at ZIB this can be provided by
modifying the PATH variable, e.g. using the bash shell

export PATH="/home/data/numerik/archiv/software/linux64/gcc—-$SVERSION_GCC/gcc/bin:S$PATH"

or similar in csh shell:

setenv PATH /home/data/numerik/archiv/software/linux64/gcc—SVERSION_GCC/gcc/bin:SPATH

where we have to set SVERSION _GCC to’7.1.0” or ’7.2.0” in version Kaskade7.4(note
that the given paths (/home /data/numerik/...) are adjusted to htc?? /bin/sh: /datanumerik/...
htc use).

In order to assure that all needed shared libraries are found we have to set the
LD_LIBRARY_PATH variable to the shared libraries libmpfr.so, libmpc.so, libgmp.so
(used when the compiler is called):

export LD_LIBRARY_PATH="/home/data/numerik/archiv/software/linux64/1ib"
or similar in a csh shell:

setenv LD_LIBRARY_PATH "//home/data/numerik/archiv/software/linux64/1ib"

Note: on MacOS X machines we have to set the variable DYLD_LIBRARY_PATH
with the corresponding paths.
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3.4 Using the make command

When working with KASKADE7 you will frequently encounter the make com-
mand, i.e., when compiling and linking a program or cleaning up a subdirectory. A
brief introduction to Make files can be found under the link
http://matt.might.net/articles/intro-to-make/

Now let us take a look at a few KASKADE?7 specific make calls.

Makefile.Local. In the root directory the file Makefile.Local contains paths
to third-party software, compilers, as well as flags for compiler and debugger. In
particular, the full path of the kaskade7 directory has to be defined, as described
above in the installation procedure.

Makefile.Rules This file contains a set of compiler flags which are set when
compiling a KASKADE7 program.

make in the KASKADE directory. In the root directory kaskade7 the Make-
file may be called with different parameters. The functionality of those parameters
can be set in the Makefile directly.

e make clean removes all object files, executables, graphics out, and some
other files

e make cleantutorial removes all object files, executables, and some other
files in the subdirectories stated in the Makefile

o make depend generates the Makefile in the KASKADE7 subdirectories
from the Makefile.gen template, which includes dependencies to all
(possibly nested) included c++ headerfiles of KASKADE.

o make kasklib generates object files and builds the library 1ibkaskade. a.
¢ make install combines the two commands make depend and make kasklib.

e make tutorial builds and executes the examples in the tutorial , and
builds the pdf version of the manual.

o make test builds and executes the examples in the benchmarking subdi-
rectories.

o make distribution generates tar.gz - files after executing make clean, ignor-
ing SVN information, documentation, and particular subdirectories
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e make doc creates the Doxygen documentary

e make manual compiles the . tex files and creates the manual as pdf

For installing the complete KASKADE7 use the three top make commands from
above in the order specified: clean, depend, kasklib. Note, that first some shell
variables (i.e., PATH and LD_LIBRARY _PAT H) have to be defined as described in

the paragraph[3.3]

make in subdirectory. Once you have a complete installation of KASKADE7 it
may be necessary (after changing a file) to recompile in a subdirectory and update
the KASKADE7 library. This is done by using the file Makefile in the corre-
sponding subdirectory. You just have to type make.

Note, that after checking out the code from the repository there are no files
Makefile in the subdirectories but only files called Makefile.gen. Such a
Makefile.gen can be used to generate a corresponding Makefile by typing:

e make -f Makefile.gen depend

Thus the KASKADE7 header files dependencies are detected and registered in the
Makefile. Each Makefile.gen includes a depend and a clean option.
Note that a call make depend in the KASKADE directory also generates the local
Makefile from the local Makefile.gen in each of the subdirectories men-
tioned in the Makefile.

3.5 Tutorial and examples

Applications of the KASKADE?7 software can be found in the subdirectories

o KASKADE7/tests

¢ KASKADE7/tutorial

Each of these subdirectories needs a Makefile.gen with the properties men-
tioned above. In the subdirectory KASKADE7/tutorial you find examples
which are described in detail in this manual starting with Section [f] Switch to
your KASKADE7 directory. Now, all tutorials are executed with the command

make tutorial

If make tutorial fails after make clean, try running make kasklib be-
fore.
To run these tutorials individually, you can edit the Makefile at TUTORIALMODULES
= laplacian and comment out the other tutorials, e.g. # stationary_heattransfer
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by the use of #. Otherwise, from the kaskade7 directory in your shell you can run

this tutorial by creating an executable file with the command make tutorial/laplacian/laplace
followed by the command tutorial/laplacian/laplace to execute. Or

just switch to the directory where 1aplace is located and type

make laplace

Some calculations create . vtu files, which store graphical data such as mesh
and solution data. These files can be visualized by various tools, e.g. paraview.

3.6 Testing

The directory KASKADE7/tests provides a set of test examples. In addition to
the examples in the tutorial we investigate here not only whether the computation is
running but also whether it computes the correct results. Like the tutorial examples
you can choose which tests are to be executed by editing the Makefile.Local.
Note that running the AmiraTO test requires a license for Amira, see chapter [
The testing is started in the KASKADE7 root directory by typing

make test

The results will be summarized in the file testResult.txt.

3.7 Communication with Git repository

Above in this section we described how to get a copy from the KASKADE7 Git
repository. This copy can be used for arbitrary applications. Any change by the
user is allowed. Git provides a set of commands to communicate between the local
copy of a user and the current state of the repository. Thus there are Git commands
to add a new file into the repository, to delete a file from the repository, to update
local files or to commit local changes to the repository.

Enter the command

git help

in your shell to get a first idea of the options offered by Git:

usage: git [--version] [--help] [-C <path>] [-c <name>=<value>]
[-—exec-path[=<path>]] [--html-path] [--man-path] [--info-path]

[-p | —-paginate | -P | —--no-pager] [--no-replace-objects] [--bare]
[-—git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]

<command> [<args>]
These are common Git commands used in various situations:

start a working area (see also: git help tutorial)
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clone Clone a repository into a new directory
init Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)

add Add file contents to the index

mv Move or rename a file, a directory, or a symlink
reset Reset current HEAD to the specified state

rm Remove files from the working tree and from the index

examine the history and state (see also: git help revisions)

bisect Use binary search to find the commit that introduced a bug
grep Print lines matching a pattern

log Show commit logs

show Show various types of objects

status Show the working tree status

grow, mark and tweak your common history

branch List, create, or delete branches

checkout Switch branches or restore working tree files

commit Record changes to the repository

diff Show changes between commits, commit and working tree, etc
merge Join two or more development histories together

rebase Reapply commits on top of another base tip

tag Create, list, delete or verify a tag object signed with GPG

collaborate (see also: git help workflows)

fetch Download objects and refs from another repository
pull Fetch from and integrate with another repository or a local branch
push Update remote refs along with associated objects

"git help -a’ and ’'git help -g’ list available subcommands and some
concept guides. See ’'git help <command>’ or ’git help <concept>’
to read about a specific subcommand or concept.

The correct syntax of these Git commands can easily be found in the internet,
e.g. https://git-scm.com/docs/git#_git_commands. Some more
ressources are provided in the appendix [B.1] or simply perform a search in your

preferred search engine.
A simple workflow example is presented here. Change into your cloned KASKADE7
directory. To update e.g. the manual files after a review, first type

git status

and you will see the working tree status. If you made some changes to a file, Git
notices differences between the working tree and the index file and will display this
file here. If you created a new file, this file is yet not known to Git (i.e. not tracked)
and will be displayed somewhere below. If there are other files staged for the next

commit, they are displayed here as well.
Next, you want to add your changed file and maybe a new file to the index
before committing with

git add <file-name>
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and have another look at git status. The added files are now shown on top.
Now, create a commit containing the current contents of the index and write a short
log message describing your changes:

git commit -m <a few updates to the manual>

Afterwards, your file content is ready to be pushed (i.e. load) from your local
repository into the remote repository of the master branch. This is the last step:

git push

Great, you're done and updated your first file!

4 External libraries

TODO PARDISO??
e ALBERTA: Directory alberta-3.0.1/lib (optional) [C]

— libalberta_3d.a
ALBERTA 3D-grid routines.

— libalberta_2d.a
ALBERTA 2D-grid routines.

— libalberta_1d.a
ALBERTA 1D-grid routines.

— libalberta_utilities.a
ALBERTA common utilities routines.

o AMIRAMESH: Directory libamira/lib (license restrictions apply!)

— libamiramesh.a
Reading and writing Amiramesh files.

e BOOST: Directory boost-1.70.0/1ib [C|

— libboost_signals.SUFFIX
Managed signals and slots callback implementation.

— libboost_program_options.SUFFIX
The program_options library allows program developers to obtain pro-
gram options, that is (name, value) pairs from the user, via conventional
methods such as command line and config file.

— libboost_program_system.SUFFIX
Operating system support, including the diagnostics support that will
be part of the C++0x standard library.



libboost_program_timer.SUFFIX
Event timer, progress timer, and progress display classes.

libboost_program_thread. SUFFIX
Portable C++ multi-threading.

libboost_program_chrono.SUFFIX
Useful time utilities.

SUFFIX is so under Linux and dylib under MacOS X (Darwin)

e DUNE: Directory dune-2.6.0/lib
— libdunecommon.a
DUNE common modules.

— libdunegeometry.a
DUNE geometry modules.

— libdunegrid.a
DUNE grid methods.

— libdunealbertagrid _3d.a
DUNE interface to ALBERTA 3D-grid routines. (optional)

— libdunealbertagrid 2d.a
DUNE interface to ALBERTA 2D-grid routines. (optional)

— libdunealbertagrid_1d.a
DUNE interface to ALBERTA 1D-grid routines. (optional)

— libdunegridglue.a
DUNE library for contact-problems (optional)

e HYPRE: Directory hypre-2.11.2/lib
— libHYPRE.a

e ITSOL: Directory itsol-2/1ib[C]
— libitsol.a

e MUMPS: Directory mumps-5.1.2/lib
Direct sparse linear solver library.
— libdmumps.a
— libmpiseq.a

— libmumps_common.a

24
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— libpord.a
— libpthread.a

e TAUCS: Directory taucs-2.0/lib
Preconditioner library.

— libtaucs.a

e UG for DUNE: Directory dune-2.6.0/lib
UG for DUNE, FEM grid-library.

— libugS3.a
— libugS2.a
— libugL3.a
- libugl.2.a
— libdevS.a
— libdevX.a
e UMFPACK: Directory umfpack-5.4.0/1ib
Direct sparse linear solver library. [C|
— libumfpack.a

— libamd.a

5 Documentation online

In subdirectory Kaskade7/doc there is a script makeDocu for generating a
documentation of the source code. Necessary is the program doxygen and a
Latex installation. Outline and shape of the documentation is steered by the
doxygen parameter file called Doxyfile.

By default ( GENERATE_HTML = YES ) the generation of HTML pages is
selected. The source files to be analysed are defined via INPUT variable.

If the auxiliary program dot of the GraphViz software is available, we rec-
ommend to change the preset HAVE _DOT = NO to HAVE _DOT =Y ES in the file
Doxyfile.

After generating the documentation ( by command makeDocu ) the pages may
be considered in the browser by specifying the full path ... /kaskade7 /doc/html [index.html.
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6 Getting started

In this chapter we present a set of examples which enables a user wihout any expe-
rience with KASKADE7 to get started. In particular, the first example specifies all
the steps needed to understand the technical handling of KASKADE7 independent
of any know-how about numerics and implementation. The following examples
give more and more details, bringing together the mathematical formulation of a
problem and its implementation.

6.1 A very first example: Laplacian, the simplest stationary heat trans-
fer equation

6.1.1 Compile and execute this example

This example is implemented in subdirectory
KASKADE7/tutorial/laplacian

Files: laplace.cpp, laplace.hh, Makefile

Once appropriate changes are made to the code or the executable does not exist,
the user has to compile and generate the executable by calling the Makefile
(recall that the Makefile was already generated during the installation process
as introduced in Section [3)) while being in the KASKADE7 main directory. Just
enter the command

make tutorial/laplacian/laplace

in the terminal.
If this make procedure works without errors you get the executable file laplace
which can be run by the command

tutorial/laplacian/laplace
or, while being in the respective folder, by

./laplace

in the terminal. The program sends some messages to the terminal (about progress
of the calculation) and writes graphical information (mesh and solution data) to a
file temperature.vtu. This file can be visualized by any tool (e.g., paraview) which
can interprete vtk format.

The shell command

make clean
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deletes the files laplace, laplace.o, temperature.vtu, and gccerr.txt. The last one is
only generated if errors or warnings are discovered by the compiler. It includes all
the error messages and warnings in a single file which offers a more comfortable
way to analyse the errors than to get all error messages at once on the terminal.

We summarize: In order to get a running code which computes a finite element
soluton of the Lapacian problem, the following three commands, while in the main
KASKADET7 directory, have to be entered

make clean
make tutorial/laplacian/laplace
tutorial/laplacian/laplace

6.1.2 Problem formulation
We search for the solution u of the Laplacian or Poisson equation

—Au=-V-(Vu)=1 X €Q
u=~0 onI’

“4)

on the two-dimensional open unit square Q under homogeneous boundary condi-
tions on I' = dQ. These equations may describe stationary heat transfer caused by
a constant heat source (value 1 on the right-hand side) and constant temperature
(0°C) on the boundary, e.g. by cooling.

Resolving the V - operator in the equation (18), we can also write it in Cartesian
coordinates x and y

%u  d%u 2
g =] (x,y) €(0,1) (5)
u=~0 onI

The treatment of this problem in context of finite element methods as used in
KASKADETY is based on a variational formulation of the equation (I8). It is neces-
sary to provide a triangulation of the domain Q (including the boundary), a set of
ansatz functions (order 1: linear elements, order 2: quadratic elements,...), func-
tions for evaluating the integrands in the weak formulation, assembling of the stiff-
ness matrix and right-hand side. All this is to be specified in the files laplace.cpp
and laplace.hh using the functionality of the KASKADE?7 library. Shortly, we will
explain the details and possibilities to change the code.

Now we explain the fundamentals of treating this problem in KASKADE7 .
Since test and trial space are the same, we can reformulate the variational equa-
tion and get a minimization problem: Using the notation of functional J(u) from
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Section[2.2] we define for this example
1
F(u):= EVuTVu—fu

and .
Gu):= }/E(u — uo)z, uy=0

with a (large, e.g., 10°) penalty factor y ensuring sufficiently accurate satisfaction
of the Dirichlet boundary condition. The penalty method is widely used in numer-
ical optimization to incorporate constraints. In this context, we want to minimize
J(u) not over HJ (i.e. the space of functions in H'!(Q) which vanish on I'), but
over H'. The penalty method enables the use of H'(Q) by imposing the constraint
(i.e. the Dirichlet boundary condition) into a penalty term in the minimization for-
mulation (see [4], [13]]). Hence, the minimizer u of J(u) is a solution of equation

&

We compute a solution of the minimization problem

min](u):/F(x,ul,...,un,Vul,...,Vun)dx+/ G(x,uy,...,uy)dS
u;€V; Q 2Q

as in (1)) by a Newton iteration, solving in each step the following problem:
Find u € V. C H'(Q) such that

/QF”(~)[u,v] dr+ [ @Ol ds
:—/QF’(-)vdx—/aQG’(-)vdS Wwev (6)

where u is the Newton update (being du in section|2.2)) and consider for implemen-
tation

d1®(v)  =F'()v, dif(v) =G
d22(uy) = F'(u], a2 () = G"()uvl.
In our context V is always a finite element space spanned by the base functions

{®;}1,.. ~,with N as the dimension of the space. That means, we have to solve the
following system of N equations in order to find the minimum in the space V:

/d29(u,(p,-)dx—i—/d2r(u,(pi)ds:/de(qoi)—i—/dlr((p,-)ds for @, i=1,...
Q r Q I

(7)

N.
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Here we have

do%() = %VuTVu— fu (8)

d1%(¢) = Vu'Ve;—fo; 9)

2%(@,0;) = Vol Ve (10)

in the region £, and
I 1 2

do'() = yi(u—uo) (a1

d1"(¢) = y(u—uo)e; (12)

2" (i, 0;) = 1@ (13)

on the boundary I'.

These functions have to be defined in two mandatory classes in the problem
class (called HeatFunctional): the DomainCache defining d0*(), d1%(), and d2%()
for the region Q, and the BoundaryCache defining d0' (), d17 (), and d2 () on the
boundary I' = dQ.

In general the functional to be minimized depends nonlinearly on the solution
u. However, in this example it is linear, hence the first step of Newton’s method
already provides the solution and is implemented in main() as shown below. In case
of a nonlinear functional we have to write a complete Newton loop controlling the
size of the update and stopping if it is small enough. We present such an example
(from elasticity) later in this chapter.

Now, we focus on the specific details of implementation for our Laplacian
problem which can be found in the files laplace.cpp and laplace.hh. We are not
trying to explain everything. Just some hints to the essentials in order to get a first
feeling for the code.

The code in the main program (file laplace.cpp)

int main ()

{

std :: cout << ”Start Laplacian tutorial program” << std::endl;

constexpr int dim
int refinements =
order =

2;

[ |

using Grid = Dune:: UGGrid<dim >;
using LeafView = Grid:: LeafGridView;
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using H1Space = FEFunctionSpace<ContinuousLagrangeMapper<double ,
LeafView> >;

using Spaces = boost:: fusion:: vector<HISpace constx>;

using VariableDescriptions = boost:: fusion:: vector<Variable<
Spacelndex <0>,Components <1>,Variableld <0> > >;

using VariableSetDesc = VariableSetDescription <Spaces,
VariableDescriptions >;

using Functional = HeatFunctional <double , VariableSetDesc >;

using Assembler = VariationalFunctionalAssembler<LinearizationAt
<Functional > >;

using Operator = AssembledGalerkinOperator <Assembler >;

using CoefficientVectors = VariableSetDesc ::
CoefficientVectorRepresentation <0,1>::type;

}

sets some parameters and using statements and comprises the following essential
parts:

e definition of a triangulation of the region

GridManager<Grid> gridManager( createUnitSquare <Grid >() );
gridManager. globalRefine (refinements) ;

The parameter refinements defined in top of the main program determines
how often the coarse grid defined here has to be refined uniformly. The
resulting mesh is the initial one for the following computation. In context
of adaptive mesh refinement it might be object of further refinements, see
example in subsection

e definition of the finite element space

// construction of finite element space for the scalar
solution u.

H1Space temperatureSpace (gridManager , gridManager. grid () .
leafView () ,order) ;

Spaces spaces(&temperatureSpace);

VariableSetDesc variableSetDesc (spaces.{ "u” });

Here we define the finite element space underlying the discretization of our
equation (7)) corresponding to the introduction in Section[2.1] The parameter
order defined in top of the main program specifies the order of the finite
element space in the statement
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H1Space temperatureSpace (gridManager , gridManager. grid () .
leafView () ,order) ;

definition of the variational functional

Functional F;

The code defining the functional can be found in the file laplace.hh. The
corresponding class is called HeatFunctional and contains the mandatory
members DomainCache and BoundaryCache each of them specifying the
functions d0(), d1(), and d2() described above. The static member template
class D2 defines which Hessian blocks are available what is of major interest
in case of systems of equations, here we only have one block. D1 provides
information about the structure of the right-hand side, e.g., if it is non-zero
(present = true, i.e. it is present) or if it is not constant (constant = false). In
the member function integrationOrder the order of the integration formula
used in the assembling is specified.

template <class RType, class VarSet>

class HeatFunctional : public FunctionalBase<
VariationalFunctional >

{

public:
using Scalar = RType;
using OriginVars = VarSet;
using AnsatzVars = VarSet;
using TestVars = VarSet;

class DomainCache : public CacheBase<HeatFunctional ,
DomainCache>
{

L

class BoundaryCache : public CacheBase<HeatFunctional ,
BoundaryCache >
{

L

template <int row>

struct DI : public FunctionalBase<VariationalFunctional >::
Dl<row>

{



static bool const present = true;
static bool const constant = false;

+s

template <int row, int col>
struct D2 : public FunctionalBase<VariationalFunctional >::

D2<row , col>

static bool const present = true;
static bool const symmetric = true;
static bool const lumped = false;

template <class Cell>
int integrationOrder (Cell const& /% cell =/,

int shapeFunctionOrder, bool boundary)

const
{
if (boundary)
return 2xshapeFunctionOrder;
else
{
int stiffnessMatrixIntegrationOrder = 2x(
shapeFunctionOrder —1);
int sourceTermlIntegrationOrder = shapeFunctionOrder;
// as rhs f is constant, i.e. of
return std::max(stiffnessMatrixIntegrationOrder ,
sourceTermIntegrationOrder) ;
}
}

+s

The DomaineCache provides member functions d0, d1_impl, and d2_impl
evaluating F(-), F'(-)@;, F”(-)[¢;, @;], respectively. The function u is speci-
fied on construction of the caches, and can be evaluated for each quadrature
point in the member function evaluatedAt() using the appropriate one among

the evaluators provided by the assembler

class DomainCache : public CacheBase<HeatFunctional ,
DomainCache>
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{
public:
DomainCache (HeatFunctional consté&,
typename AnsatzVars:: Representation const&
vars._ ,
int flags=7):
data(vars_)

{

template <class Position, class Evaluators>
void evaluateAt(Position const& x, Evaluators const&
evaluators)

u = component<uldx >(data).value(boost:: fusion::at_c<
uSpaceldx >(evaluators));
du = component<uldx >(data).derivative (boost:: fusion ::
at_c<uSpaceldx >(evaluators));
f =1.0;
}

Scalar
dO() const

{

return sp(du,du)/2 — fxu;

}

template<int row>

Scalar dl_impl (VariationalArg<Scalar ,dim, TestVars::
template Components<row >::m> const& arg) const

{

return sp(du,arg.derivative) — fxarg.value;

}

template<int row, int col>
Scalar d2_impl (VariationalArg<Scalar ,dim, TestVars ::
template Components<row >::m> const &argTest,
VariationalArg<Scalar ,dim, AnsatzVars ::
template Components<row >::m> const
&argAnsatz) const

{

return sp(argTest.derivative ,argAnsatz.derivative);

}

private:
typename AnsatzVars:: Representation const& data;
Dune:: FieldVector<Scalar , AnsatzVars :: template
Components<uldx >::nm> u, f;
Dune:: FieldMatrix <Scalar , AnsatzVars :: template
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Components<uldx >::m,dim> du;
LinAlg:: EuclideanScalarProduct sp;

}s

The BoundaryCache is defined analogously. More details are presented in
the next examples. We now continue with the laplace.cpp file.

e assembling and solution of a linear system

// construct Galerkin representation

Assembler assembler (spaces);
VariableSetDesc :: Representation u(variableSetDesc);
assembler . assemble(linearization (F,u));

Operator A(assembler);

CoefficientVectors solution(VariableSetDesc ::
CoefficientVectorRepresentation <>::init(spaces));

CoefficientVectors rhs(assembler.rhs());

directIlnverseOperator (A).applyscaleadd(—1.0,rhs , solution);
component<0>(u) = component<O0>(solution) ;

The assembler is the kernel of each finite element program. It evaluates the
integrals of the weak formulation based on the member functions of the Heat-
Functional class and the finite element element space defined in the H/Space
from above, of course closely aligned to the Grid.

e output for graphical device and end of program

writeVTK (u, ”temperature” ,IoOptions () .setOrder (order) .
setPrecision (7)) ;

std :: cout << “graphical output finished , data in VIK format
is written into file temperature.vtu \n”;
std :: cout << "End Laplacian tutorial program” << std::endl;

KASKADET7 offers two formats to specify output of mesh and solution data
for graphical devices. The VTK format is used in this example and can be vi-
sualized by Paraview software, for example. In particular for 3D geometries
the format of the visualization package amira is recommended.

Exercises:

1. Use the parameter refinements to generate grids of different refinement lev-
els. Write the grid and solution data into a file and compare the results by a visual-
ization tool, e.g., Paraview.
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2. In the example above we use quadratic finite elements of Lagrange type
(i.e., order = 2). Consider increase of the number of degrees of freedom for order
=1,2,3,...

3. Change the value of f in the header file (i.e. in the evaluateAr member
function) and observe the changes in the output. (If there is no visible change, also
look at the color legend.)

Remark: This first example has been updated in March 2015 (to which this tutorial
is adjusted). The following examples have not been updated so far which leads to
discontinuities in coding/notation (e.g. fypedef instead of using). In general the
coding style of this example is to be followed.

6.2 Stationary heat transfer

This example is implemented in subdirectory

KASKADE7/tutorial/stationary _heattransfer

Files: ht.cpp, ht.hh, Makefile
We consider another stationary heat transfer problem but with some extensions
compared to the preceding example:

e the region Q may be two- or three-dimensional,
o the diffusion coefficient k¥ may depend on x € Q,
e the operator may include a mass term with coefficient ¢(x),x € Q,

o the heat source (right-hand side of heat transfer equation) may depend on
xeQ,

o the user may select between direct and iterative solution of the linear sys-
tems,

e the user gets support to handle parameters.

The corresponding scalar partial differential equation is still linear and given by

=V (k(x)Vu(x)) +q(x)u(x) = f(x) x €Q (14)
K?Z (x)=0 onT’

u(x) = up(x) onI’
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I'y and I'; denote parts of the boundary dQ = I')UI'; where we have to define
boundary conditions. On I'; we assume a homogeneous Neumann and on I'; we
prescribe the values of the solution u (Dirichlet condition).

In KASKADE7 , the solution of this problem is calculated via the Finite Element
Method (FEM). Therefore it is necessary to consider the system (I4) in its weak
formulation, see appendix In particular, we want to treat the problem in its
minimization formulation as in the example before and as described in Section [2.2]
for the general case:

Find the solution u of the minimization problem (in the finite element space)
as described in (I) using

1
F(v)= E(KVVTVV—FC]VV) —fv

and
1

Glv)= E(V_ u0)27 uo = up(x)

We remark that the homogeneous Neumann boundary conditions provide no con-
tribution in the weak formulation.

6.2.1 A walk through the main program

For solving the problem we have to do both defining the attributes of the equations
and defining the details of the method. In order to keep the example simple
we choose a constant diffusion coefficient k¥ = 1, a constant mass coefficient g = 1.
The right-hand side f is determined so that u = x(x— 1)exp(—(x—0.5)?) is solution
of equation for all (x,y,z) € Q. The domain Q is the square unit or unit cube
respectively. On the boundary we have u, = 0 for x = 0 and x = 1, elsewhere
homogeneous Neumann boundary conditions.

Preliminaries. We write some important parameters in the top of the main pro-
gram, e.g., order defining the order of the finite element ansatz, or refinements
specifying the number of refinements of the initial grid, or verbosity for se-
lecting the level (possible values 0,1,2,3) of verbosity of certain functions (e.g.
iterative solver).

int verbosityOpt = 1;

bool dump = true;

std :: unique_ptr<boost:: property_tree :: ptree> pt =
getKaskadeOptions (arge , argv, verbosityOpt, dump);

int refinements = getParameter(pt, "refinements”, 5),
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order = getParameter (pt, “order”, 2),
verbosity = getParameter(pt, "verbosity”, 1);
std :: cout << “original mesh shall be refined : ” << refinements <<
7 times” << std::endl;
std :: cout << “discretization order : 7 << order << std::endl;
std :: cout << "output level (verbosity): 7 << verbosity << std::
endl ;
int direct, onlyLowerTriangle = false;

DirectType directType;
MatrixProperties property = SYMMEIRIC;
PrecondType precondType = NONE;

std :: string empty;

In this example we use the function getKaskadeOptions to create a property_tree
pt for storing a set of parameters in tree structure. This tree is filled by pre-
definitions in a file default.json and by arguments in argc, argv. Based on this
property_tree the call of getParameter(..,s,..) provides a value corresponding to
the string s. The result might be another string or a value of any other type, e.g.
integer or double. In particular, a parameter may be specified in the input line via
the argc, argv when starting the executable, e.g.,
e Let’s have the following call of the executable heat
./heat —--order 1
then call of getParameter(...) in the statement
order = getParameter (pt, "order", 2);
assign the value 1 to the variable order.
e Let’s start the executable without parameter list then the call of getParame-
ter(...) in the statement
order = getParameter (pt, "order", 2);
checks for a string order in the file Kaskade7/default. json. If
there is none the default value of the getParameter(...,2) is assigned to the
variable order.
e Let’s consider the following call of the executable
./heat —--solver.type direct
then call of getParameter(...) in the statement
getParameter (pt, "solver.type", empty);

reveals the string “direct” as return value which is used to build a string s by
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std::string s ("names.type.");
s += getParameter (pt, "solver.type", empty);

As result we get “names.type.direct” as value of s. The call of
int direct = getParameter (pt, s, 0);
looks for the value of the string s in the file default. json and finds the

value 1 assigning it to the integer variable direct.

Note that there are default values for verbosityOpt and dump in the parameter list
of getKaskadeOptions(...). More details are given in Section

Defining the grid. We define a two-dimensional grid on a square Q = [0, 1] x
[0,1] with two triangles and refine it refinements times. The grid is main-
tained using the UG library [3]] which will allow adaptive refinement.

#if SPACEDIM==2
/1] two—dimensional space: dim=2
constexpr int dim=2;
using Grid = Dune:: UGGrid<dim >;
GridManager<Grid> gridManager( createUnitSquare <Grid >() );
gridManager. globalRefine (refinements) ;
std :: cout << std::endl << "Grid: 7 << gridManager. grid () .size (0)
<< 7 triangles , 7 << std::endl;
#else
// three—dimensional space: dim=3
constexpr int dim=3;
using Grid = Dune:: UGGrid<dim >;
GridManager<Grid> gridManager( createUnitCube <Grid >(0.5) );
gridManager. globalRefine (refinements) ;
std :: cout << std::endl << "Grid: 7 << gridManager. grid () .size (0)
<< 7 tetrahedra , ” << std::endl;
std :: cout << ” ” << gridManager. grid () .size (1) <<

2

triangles , 7 << std::endl;
#endif
std :: cout << ” ” << gridManager. grid () .size (dim—1) << 7
edges, 7 << std::endl;
std :: cout << 7 ” << gridManager. grid () . size (dim) << ”

points” << std::endl;

Here we use as grid type Dune: : UGGrid<dim>.

Function spaces and variable sets. We use quadratic continuous Lagrange finite
elements for discretization on the mesh constructed before. The defined variableSet
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contains the description of out finite element space

using LeafView = Grid:: LeafGridView;

using HlSpace = FEFunctionSpace<ContinuousLagrangeMapper<double ,
LeafView> >;

// using H1Space = FEFunctionSpace<ContinuousHierarchicMapper<
double , LeafView> >;

using Spaces = boost:: fusion:: vector<HISpace constx>;

using VariableDescriptions = boost:: fusion:: vector<Variable<
Spacelndex <0>,Components <1>,Variableld <0> > >;

using VariableSet = VariableSetDescription <Spaces ,
VariableDescriptions >;

using Functional = HeatFunctional<double , VariableSet >;

using Assembler = VariationalFunctionalAssembler<LinearizationAt
<Functional > >;

constexpr int neq = Functional :: TestVars:: noOfVariables;

using CoefficientVectors = VariableSet::
CoefficientVectorRepresentation <0,neq >::type;

using LinearSpace = VariableSet:: CoefficientVectorRepresentation

<0,neq >::type;

// construction of finite element space for the scalar solution

T.
H1Space temperatureSpace (gridManager , gridManager. grid () .leafView
() ,order);

Spaces spaces(&temperatureSpace);

// construct variable list.

// VariableDescription<int spaceld, int components, int Id>
// spaceld: number of associated FEFunctionSpace

// components: number of components in this variable

// 1d: number of this variable

std :: string varNames[1] = { "u” };

VariableSet variableSet(spaces,varNames);

A finite element space H1Space is constructed with Lagrange elements of
order 2 on our grid or to be more precise on the set of leaves of our grid, the
leafIndexSet.

Due to generality we administrate the finite element space in a vector Spaces
of spaces though in case of a scalar heat transfer we only have one equation, i.e.,
the vector spaces has only one component, the temperatureSpace. We use
the boost fusion vector type to get a container which may hold different variable
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sets e.g. linear and quadratic element descriptions.
The template parameters for the class Variable are

e SpacelIndex<> the number of associated FEFunctionSpace (0, we have
only the H1Space in our example),

e Component s<> the number of components in this variable (1, the temper-
ature), and

e VariableId<> the number of this variable (0)

in arbitrary order. Alternatively, the class VariableDescription can be used,
where the respective numbers can be specified directly in the correct order.

Using functionals. HeatFunctional denotes the functional to be minimized.
An object of this class using the material parameters k and g is constructed by

Functional F(kappa,q);

The implementation will be discussed in Section ??. The Galerkin operator types
Assembler and Rhs are defined. The two variables u and du will hold the so-
lution, respectively a Newton correction. (Here we need only one Newton step
because the is linear in u.) The corresponding code:

// construct vatiational functional

typedef HeatFunctional<double, VariableSet> Functional;

double kappa = 1.0;

double q = 1.0;

Functional F(kappa,q);

// ... print out number of variables , equations and degrees of
freedom

// construct Galerkin representation

typedef VariationalFunctionalAssembler<LinearizationAt<
Functional > > Assembler;

typedef VariableSet:: CoefficientVectorRepresentation <0,1>::type
CoefficientVectors;

Assembler assembler (gridManager , spaces);

VariableSet:: Representation u(variableSet);

VariableSet:: Representation du(variableSet);
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Assembling.

property = SYMMETRIC;
if ( (directType == DirectType ::MUMPS) | |(directType == DirectType

::PARDISO) || (precondType == PrecondType::ICC) )
{
onlyLowerTriangle = true;
std :: cout <<
”Note: direct solver MUMPS/PARADISO or ICC preconditioner ===>
onlyLowerTriangle is set to true!”
<< std ::endl;
}

The finite element discretization in this example leads to a symmetric lin-
ear system which we have to assemble and to solve. Therefore, we should as-
sign SYMMETRIC to the variable property describing the property of the ma-
trix in order to save computing time where possible. If the matrix is symmetric
some solver offer the possibility to work only on the lower triangle, e.g., the di-
rect solver MUMPS and PARADISO, or the incomplete Cholesky preconditioner
ICC. In these cases we may (in case of ICC we even have to) set the parameter
onlyLowerTriangle used when providing the matrix from the Galerkin oper-
ator, see below.

size_t nnz = assembler.nnz(0,1,0,1,onlyLowerTriangle) ;
std :: cout << ”number of nonzero elements in the stiffness
matrix : 7 << nnz << std ::endl << std::endl;

boost::timer:: cpu_timer assembTimer;
CoefficientVectors solution(VariableSet::
CoefficientVectorRepresentation <0,1>::init(variableSet));
solution = 0;

/!l UG seems to admit concurrent reads while claiming not to be
thread safe.

// In this case we enforce multithreading during assembly.

gridManager . enforceConcurrentReads (std ::is_same <Grid ,Dune ::
UGGrid<dim> >::value);

assembler.setNSimultaneousBlocks (blocks) ;

assembler . setRowBlockFactor (rowBlockFactor) ;

assembler.assemble(linearization (F,u),assembler . MATRIX|
assembler .RHS | assembler . VALUE, nthreads ,



42

CoefficientVectors rhs(assembler.rhs());

AssembledGalerkinOperator <Assembler ,0,1,0,1 > A(assembler ,
onlyLowerTriangle) ;

std :: cout << ”"computing time for assemble:
format (assembTimer. elapsed ()) << “\n”;

”

<< boost::timer ::

Solving. A direct method (e.g., third-party software MUMPS or UMFPACK )
or an iterative solver ( e.g., the cg or the bicgstab method with a suitable precondi-
tioner) may be used for solving the assembled linear system. The variable property
describing some matrix property should be set to SYMMETRIC. The parameter
onlyLowerTriangle used for constructing the matrix has to be choosen carefully
because not every solver or preconditioner works correctly if onlyLowerTriangle is
set to true. In particular, preconditioners made for nonsymmetric problem expect
that onlyLowerTriangle = false.

if (direct)
{
boost::timer :: cpu_timer directTimer;
directlnverseOperator (A, directType , property).applyscaleadd(—1.0,
rhs , solution) ;
u.data = solution.data;
std :: cout << "computing time for direct solve:
:: format(directTimer.elapsed()) << "\n”;

2

<< boost:: timer

}

else
{
boost::timer :: cpu_timer iteTimer;
int iteSteps = getParameter(pt, “solver.iteMax”, 1000);
double iteEps = getParameter(pt, “solver.iteEps”, 1.0e—10);
typedef VariableSet:: CoefficientVectorRepresentation <0,1>::type
LinearSpace;
Dune:: InverseOperatorResult res;

switch (precondType)
{
case NONE:
{
TrivialPreconditioner <AssembledGalerkinOperator <Assembler
,0,1,0,1 > > trivial;
Dune :: CGSolver<LinearSpace> cg(A, trivial ,iteEps ,iteSteps ,
verbosity);
cg.apply(solution ,rhs ,res);

break ;
case ADDITIVESCHWARZ :
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std :: cout << "selected preconditioner: ADDITIVESCHWARZ” <<
std :: endl;

std :: pair<size_t ,size_t> idx = temperatureSpace.mapper().
globallndexRange (gridManager . grid () . leafIndexSet () .
geomTypes (dim) [0]) ;

AdditiveSchwarzPreconditioner <AssembledGalerkinOperator <
Assembler ,0,1,0,1 > > addschwarz (A, idx. first ,idx.second,
verbosity);

Dune : : CGSolver<LinearSpace> cg(A, addschwarz ,iteEps ,iteSteps ,
verbosity);

cg.apply(solution ,rhs ,res);

}
break ;
case ILUT:

{
int 1fil = getParameter(pt, “solver.ILUT.1fil”, 140);
double dropTol = getParameter(pt, “solver.ILUT,dropTol”,
0.01);
ILUTPreconditioner<AssembledGalerkinOperator <Assembler
,0,1,0,1 > > ilut (A, 1fil ,dropTol);
Dune : : BICGSTABSolver<LinearSpace> cg(A,ilut ,iteEps ,iteSteps ,
verbosity);
cg.apply(solution ,rhs ,res);
}
break ;
case ILUK:
{
int fill_lev = getParameter(pt, “solver . ILUK. fill_lev™, 3);
ILUKPreconditioner <AssembledGalerkinOperator <Assembler
,0,1,0,1> >
iluk (A, fill_lev , verbosity);
Dune :: BICGSTABSolver<LinearSpace> cg(A,iluk ,iteEps ,iteSteps ,
verbosity);
cg.apply(solution ,rhs ,res);

break ;
case ICC:
{
std :: cout << ”selected preconditioner: ICC” << std::endl;
if (property != SYMMETRIC)
{
std :: cout << "ICC preconditioner of TAUCS lib has to be
used with matrix.property==SYMMETRIC\n”;
std :: cout << "i.e., call the executable with option —
solver.property SYMMETRIC\n\n";
}

double dropTol = getParameter(pt, “solver.ICC.dropTol”,
0.01);
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ICCPreconditioner <AssembledGalerkinOperator <Assembler
,0,1,0,1 > > icc(A,dropTol);

Dune : : CGSolver<LinearSpace> cg(A,icc ,iteEps ,iteSteps ,
verbosity);

cg.apply(solution ,rhs ,res);

break ;
case ICCO:

{

std :: cout << ”selected preconditioner: ICCO” << std::endl;

ICC_OPreconditioner <AssembledGalerkinOperator <Assembler
,0,1,0,1> > icc0(A);

Dune :: CGSolver<LinearSpace> cg(A,iccO ,iteEps ,iteSteps ,
verbosity);

cg.apply(solution ,rhs ,res);

break ;
case HB:

{

std :: cout << ”selected preconditioner: HB” << std::endl;
HierarchicalBasisPreconditioner <Grid ,
AssembledGalerkinOperator <Assembler ,0,1,0,1 >::range_type

AssembledGalerkinOperator <Assembler ,0,1,0,1 >::range_type >
hb(gridManager. grid () ) ;
Dune :: CGSolver<LinearSpace> cg(A,hb,iteEps ,iteSteps ,
verbosity);
cg.apply(solution ,rhs ,res);

break ;
case ARMS:

{
int 1fil = getParameter(pt, “solver . ARMS. I1fil”, 140);

int lev_reord = getParameter(pt, “solver.ARMS.lev_reord”, 1)

double dropTol = getParameter(pt, “solver .ARMS. dropTol”,
0.01);

double tolind = getParameter(pt, "solver .ARMS. tolind”, 0.2);

ARMSPreconditioner<AssembledGalerkinOperator <Assembler
,0,1,0,1 > > iluk (A, 1fil ,dropTol,lev_reord , tolind ,
verbosity);

Dune :: CGSolver<LinearSpace> cg(A,iluk ,iteEps ,iteSteps ,
verbosity);

cg.apply(solution ,rhs ,res);

break ;
case BOOMERAMG:

{

int steps = getParameter (pt, “solver .BOOMERAMG. steps”,
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iteSteps);

int coarsentype = getParameter(pt, “solver .BOOMERAMG.
coarsentype”, 21);

int interpoltype = getParameter(pt, “solver .BOOMERAMG.
interpoltype”, 0);

int cycleType = getParameter(pt, “solver .BOOMERAMG. cycleType

int r’elal)z%ype = getParameter (pt, “solver .BOOMERAMG. relaxType

int V’argizl;nt = getParameter (pt, “solver .BOOMERAMG. variant”,

int ?))V;erlap = getParameter (pt, “solver .BOOMERAMG. overlap”,

doubll)e; tol = getParameter(pt, “solver .BOOMERAMG. tol”, iteEps
)

double strongThreshold = getParameter(pt, “solver .BOOMERAMG.
strongThreshold” ,dim==2)?70.25:0.6) ;

BoomerAMG<AssembledGalerkinOperator <Assembler ,0,1,0,1 > >
BoomerAMGPrecon (A, steps ,coarsentype , interpoltype , tol,
cycleType ,relaxType , strongThreshold , variant ,overlap ,1,
verbosity);

Dune :: LoopSolver<LinearSpace> cg (A, BoomerAMGPrecon, iteEps ,
iteSteps , verbosity);

cg.apply(solution ,rhs ,res);

break ;

/...

case EUCLID:

{
std :: cout << ”selected preconditioner: EUCLID” << std ::endl;
int level = getParameter (pt, “solver .EUCLID. level” ,1);
double droptol = getParameter(pt, “solver.EUCLID.droptol”

,0.01) ;

int printlevel = 0;

if (verbosity >2) printlevel=verbosity —2;

printlevel = getParameter(pt,”solver .EUCLID. printlevel”,
printlevel);

int bj = getParameter(pt, “solver .EUCLID.bj” ,0);

Euclid<AssembledGalerkinOperator <Assembler,0,1,0,1 > >
EuclidPrecon (A, level ,droptol , printlevel ,bj, verbosity);

Dune : : CGSolver<LinearSpace> cg(A, EuclidPrecon ,iteEps,
iteSteps ,verbosity);

cg.apply(solution ,rhs ,res);

break ;
case JACOBI:
default:

{

std :: cout << ”selected preconditioner: JACOBI” << std::endl;
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JacobiPreconditioner <AssembledGalerkinOperator <Assembler
,0,1,0,1> > jacobi(A,1.0);

Dune : : CGSolver<LinearSpace> cg(A,jacobi ,iteEps ,iteSteps ,
verbosity);

cg.apply(solution ,rhs ,res);

}
break ;
}
solution x= —1.0;
u.data = solution.data;
std :: cout << “iterative solve eps= 7 << iteEps << 7: 7
<< (res.converged?”converged”:”failed”) << ” after ”
<< res.iterations << 7 steps, rate="
<< res.conv_rate << 7, computing time=" << (double)(
iteTimer.elapsed () .user)/le9 << 7s\n”;
}
Output.

// output of solution in VIK format for visualization ,
// the data are written as ascii stream into file temperature.vtu,
// possible is also binary

writeVTK (u, "temperature” ,loOptions () .setOrder (order).setPrecision

(7))

// output of solution for Amira visualization ,
// the data are written in binary format into file temperature.am,
// possible is also ascii

// ToOptions options;

// options.outputType = IoOptions:: ascii;

/l LeafView leafView = gridManager. grid () .leafView () ;

/!l writeAMIRAFile (leafView , variableSet ,u,” temperature”,options) ;

Default values (ascii format) will be set if opt ions are omitted in the parameter
list.

You may also produce instant graphical output, using the GnuplotWriter. Usage of
this type of output needs that the program gnuplot is installed on the machine where
you run your KASKADE7 application, and X11 is installed on the machine which
controls your display. For using the GnuplotWriter, add in the headers-section of
your program the line
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#include “io/gnuplot.hh”

At the point of the ht.cpp source where you wish to output the solution, e.g. near
the VTK output, insert the following lines:

IoOptions gnuplotOptions{};
/1l gnuplotOptions.info = IoOptions::none; // or IoOptions::
summary or loOptions:: detail
// or use the two lines below to be able to set gnuplotOptions.

info using the parameter —gnuplotinfo:

// s = “names.gnuplotinfo.” + getParameter(pt, ”gnuplotinfo”,
empty ) ;

// gnuplotOptions.info = static_cast <IoOptions ::Info >(getParameter
(pt, s, 0));

// the parameter —gnuplotinfo may be set to one of the following

values: none or summary or detail
// LeafView leafView = gridManager. grid () .leafView () ;
writeGnuplotFile (u, "temperature”, gnuplotOptions) ;

Set the environment variable DISPLAY to your-workstation-name:0, and run
on your workstation the command

xhost +htcnnn
# substitute nnn by the proper three digits, for example 026 for htc026

to permit htcnnn to send X11-output to your workstation.
Furthermore, in the above example, you have also to supply a file named t emperature.gnu
with appropriate gnuplot commands, like the following:

set terminal x11

set dgrid3d 50,50 splines
set title "temperature"
set style line 1 1w O

set pm3d implicit at s
splot "temperature.data" with dots
pause 15

set style fill solid

set pm3d map

splot "temperature.data"
pause 15

The above command makes gnuplot to display first a landscape graphics of the

solution for 15 seconds and after this a colormap graphics for 15 seconds.

There is also a source ht gnuplot . cpp availableinthe stationary_heattransfer
directory, which already includes gnuplot output, and which may be used to build

the program heat_gnuplot by just typing in

make heat_gnuplot



48

6.2.2 Defining the functional

The definition of the functional is the actual interface to a user who is not interested
in algorithmic details. Here one has to specify the parameters of the problems,
e.g., the material properties (in DomainCache) and the boundary conditions (in
BoundaryCache).

Further informationabout the order of integration and D1 and D2 are expected.

The template for the functional framework.

template <class RType, class VarSet>
class HeatFunctional

{

typedef HeatFunctional <RType, VarSet> Self;

public:
typedef RType Scalar;
typedef VarSet OriginVars;
typedef VarSet AnsatzVars;
typedef VarSet TestVars;
static ProblemType const type = VariationalFunctional;

class DomainCache

class BoundaryCache
template <int row> struct DIl
template <int row, int col> struct D2

template <class cell>
int integrationOrder (Cell const& cell, int shapeFunctionOrder ,
bool boundary) const

{ ... }

private:
Scalar kappa, q;
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The domain cache. As in the Laplacian problem in Section[6.1|we have to define
d1(v), d2(v) evaluating F’(-)(v) and F"(-)(v,w) respectively. Using the notation

from Section [2.2] we have in this example

F(u) = l(KVuTVu—I—quz) — fu

2
and
1 2
G(”):E(u—ub% up =0
In the domain € we have
1 T 2
do() = i(KVu Vu+qu®) — fu (15)
T
di(g) = &Vu Voi+qupi—fo; (16)
T
d2(¢i,0;) = KVO Vi +qpi0; (17)
class DomainCache
{
public:
DomainCache (Self const& F_,
typename AnsatzVars:: Representation const& vars.,
int flags=7): F(F.), data(vars.)
{
template <class Entity >
void moveTo(Entity const &entity) { e = &entity; }
template <class Position, class Evaluators>
void evaluateAt(Position const& x, Evaluators const&
evaluators)
{
using namespace boost:: fusion;
int const uldx = result_of :: value_at_c <typename AnsatzVars::

Variables ,0 >::type :: spacelndex;
xglob = e—>geometry (). global(x);

u = component<O>(data).value(at_c<uldx>(evaluators));

du = component<0O>(data).derivative (at-c<uldx >(evaluators))

[0];
double v, w, vX, vXX, wX, wXX, uXX;
v = xglob[0]x(xglob[0] — 1);
w = exp(—(xglob[0] — 0.5)*(xglob[0] — 0.5));

vX = 2xxglob[0] — 1;



50

vXX = 2;
wX = —2x(xglob[0] — 0.5)x%w;
wXX = —2%xw — 2x(xglob[0] — 0.5)*wX;

uXX = vXXxw + 2*xvXxwX + vxwXX;
f = —F.kappaxuXX + F.qg*xv*w;

Scalar dO() const

{

return (F.kappaxduxdu + F.q*uxu)/2 — fxu;;

}

template<int row, int dim>
Dune:: FieldVector<Scalar, TestVars::template Components<row >::

m>
dl (VariationalArg<Scalar ,dim> const& arg) const
{

return duxarg.derivative [0] + F.q*uxarg.value — fxarg.value;
}

template<int row, int col, int dim>

Dune:: FieldMatrix <Scalar, TestVars::template Components<row >::
m, AnsatzVars::template Components<col >::m>

d2 (VariationalArg<Scalar ,dim> const &argTest, VariationalArg<
Scalar ,dim> const &argAnsatz) const

{

return argTest.derivative [O]*argAnsatz.derivative [0] + F.qgx*
argTest.valuexargAnsatz . value;
}

private:
Self const& F;
typename AnsatzVars:: Representation const& data;
typename AnsatzVars:: Grid::template Codim<O>::Entity constx e;
Dune:: FieldVector<typename AnsatzVars:: Grid::ctype , AnsatzVars
:: Grid :: dimension> xglob;
Scalar f;
Scalar u;
Dune:: FieldVector<Scalar , AnsatzVars :: Grid : : dimension> du;

+s

The boundary cache. Analogously to example we determine d1(v), d2(v)
as G'()(v) and G”(-)(v,w) respectively. These functions deliver value 0 on those
parts of the boundary where we have homogeneous Neumann condition.

class BoundaryCache
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{
public:
static const bool hasInteriorFaces = false;
typedef typename AnsatzVars::Grid::template Codim<O0>::Entity ::
LeafIntersectionlterator Facelterator;

BoundaryCache (Self const&, typename AnsatzVars:: Representation
const& vars_, int flags=7): data(vars_), e(0)
{

void moveTo(Facelterator const& entity)
{

e = &entity ;

penalty = 1.0e9;

}

template <class Evaluators>
void evaluateAt(Dune:: FieldVector<typename AnsatzVars:: Grid::
ctype , AnsatzVars:: Grid :: dimension—1> const& x, Evaluators
const& evaluators)

using namespace boost:: fusion;
int const uldx = result_of :: value_at_c <typename AnsatzVars::
Variables ,0 >::type :: spacelndex;

xglob = (xe)—>geometry (). global(x);

u = component<0>(data).value (at_c<uldx>(evaluators));

u0 = 0;
}
Scalar dO() const
{
return penalty x(u—u0) x(u—u0)/2;
}

template<int row, int dim>
Dune:: FieldVector<Scalar, TestVars::template Components<row >::
m>
dl (VariationalArg<Scalar ,dim> const& arg) const
{
if ( (xglob[0]<=1le—12) || (xglob[0]>=(1—-1e—12)) )
return penalty x(u—uQ)=xarg.value[0];
else return 0.0;

}

template<int row, int col, int dim>
Dune :: FieldMatrix <Scalar , TestVars::template Components<row >::
m, AnsatzVars::template Components<col >::n>
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d2 (VariationalArg<Scalar ,dim> const &argTest, VariationalArg<

Scalar ,dim> const &argAnsatz) const

{

if ( (xglob[0]<=1le—12) || (xglob[0]>=(1—-1e—12)) )
return penaltyxargTest.valuexargAnsatz. value;

else return 0.0;

}

private :

typename AnsatzVars:: Representation const& data;

Facelterator constx e;
Scalar penalty, u, u0;

+s

The remainings.

// constructor

HeatFunctional (Scalar kappa-, Scalar q-): kappa(kappa-), q(q-)

{
}

// structure of right—hand side
template <int row> struct DI
static bool const present true ;
static bool const constant = false;

T

// structure of matrix
template <int row, int col> struct D2

{

static bool const present = true;
static bool const symmetric = true;
static bool const lumped = false;

+s

// accuracy of integration formulas

template <class Cell>

int integrationOrder (Cell const& cell, int
bool boundary) const

{

if (boundary)

return 2xshapeFunctionOrder;
else

return 2xshapeFunctionOrder —1;

shapeFunctionOrder ,
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int main(int argc, char xargv|[])

{

using namespace boost:: fusion;
boost::timer :: cpu_timer totalTimer;

std :: cout << "total computing time: ” << (double)(totalTimer.
elapsed () .user)/le9 << 7s\n”;

std :: cout << "End heat transfer tutorial program” << std::endl;

We use the class boost::timer::cpu_timer to measure the computing time. The

statement
boost::timer::cpu.timer totalTimer;

defines and starts a clock of type boost::timer::cpu_timer with initial value
equal to zero. The member function totalTimer.elapsed() of this class variable

provides the (unformatted) time passed since starting.
Exercises:

e 1. Let the code run for the 2D- and a 3D-geometries as prepared in the exam-
ple. Consider the generated graphical output in an appropriate visualization

tool, e.g. Paraview.

e 2. Compute solutions for different parameters refinement and order us-
ing the dynamical parameter handling getKaskadeOptions (changeable op-
tions are: refinements, order, verbosity, solver.type, solver.preconditioner,
blocks, threads, rowBlockFactor, solver.iteMax, solver.iteEps and others;

look through the program to find more).

o 3. Change the static parameters of the problem (k and ¢) using the dynamical
parameter handling getKaskadeOptions (i.e. include the getParameter option

for those two).

e 4. Use the direct solver and different iterative methods for solving the linear
system. Investigate the effect of different accuracy requirements i teEps in

the iterative solvers.

6.3 Laplace on a circle area

This example is implemented in subdirectory

KASKADE7/tutorial/geomgrid
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Files: geomgrid.cpp, laplace.hh, Makefile
We compute the solution u of the Laplacian or Poisson equation in two space vari-
ables on a circle area.

2’u  d%u
_ﬁ_aiyz:] (x,y) €Q (18)
u=20 onI’

on the two-dimensional closed circle area Q = {(x,y) € R? | x> +y* < 1/2} with
the origin as the midpoint and with a radius size of v/2 under homogeneous bound-
ary conditions on I' = dQ. These equations may describe stationary heat transfer
caused by a constant heat source (value 1 on the right-hand side) and constant
temperature (0°C) on the boundary, e.g. by cooling.

In the following, we take some looks on the main program in geomgrid.cpp,
focussing only on the parts which significantly differ from the code we considered
in the previous example programs.

Defining the grid. We are using the Dune::GeometryGrid template class with
a Dune:UGGrid on a square [—1,1]> C R? as a base grid, together with a trans-
formation class SquareToCircle, which maps the points from the square to the
circle with the origin as the midpoint and a radius of size v/2. We are start-
ing with the creation of a course grid on the square, consisting of the five points
(—1,—1),(1,-1),(1,1),(—=1,1) and (0,0). As there is in KASKADE7 no utility-
routine available for just the creation of a start-grid without passing it unmodified
to a gridmanager instance, we must define the start-grid step by step, using the
Dune GridFactory. In the following, we create a GridFactory called factory, and
tell the factory by calling the method insertVertex about the five grid-points men-
tioned before. The desired start-grid we wish to define, consists of five vertices
and four triangles, with each triangle defined by its three corner vertices, which
we tell the factory by calling the method insertElement. In the next step, we cre-
ate from the resulting factory a grid. This grid is passed as the base grid to the
Dune::GeometryGrid through the first parameter, together with the class Square-
ToClircle as the second parameter. The resulting GeometryGrid is immediately
used to create a KASKADE7 gridmanager instance. Next, the GeometryGrid is
refined using the gridmanagers globalRefine method.

constexpr int dim=2;
using Grid = Dune:: UGGrid<dim >;
using GeoGrid = Dune:: GeometryGrid<Grid , SquareToCircle >;

Dune :: GridFactory <Grid> factory ;
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// vertex coordinates v[0], v[1]

Dune :: FieldVector<double ,dim> v;

v[0]=—1; v[l]=—1; factory.insertVertex(v);

v[0]=1; v[l]=—1; factory.insertVertex (Vv);

v[0]=1; v[l]=1; factory.insertVertex (v);

v[0]=—1; v[1]=1; factory.insertVertex (Vv);

v[0]=0; v[1]=0; factory.insertVertex(v);

// triangles defined by 3 vertex indices

std :: vector<unsigned int> vid(3);

Dune :: GeometryType gt (Dune:: GeometryType :: simplex ,2) ;
vid[0]=0; vid[1l]=1; vid[2]=4; factory.insertElement(gt,vid);
vid[0]=1; vid[1]=2; vid[2]=4; factory.insertElement(gt,vid);
vid[0]=2; vid[1]=3; vid[2]=4; factory.insertElement(gt,vid);
vid[0]=3; vid[1]=0; vid[2]=4; factory.insertElement(gt,vid);

Grid* grid( factory.createGrid () ) ;

GridManager<GeoGrid> gridManager (new GeoGrid(grid ,new
SquareToCircle (radius)));

gridManager . globalRefine (refinements ) ;

We now take a look at the transformation class SquareToCircle:

class SquareToCircle: public Dune:: AnalyticalCoordFunction< double

{

, 2, 2, SquareToCircle >

using Base = Dune:: AnalyticalCoordFunction< double, 2, 2,
SquareToCircle >;

public :
using DomainVector = Base:: DomainVector;
using RangeVector = Base:: RangeVector;

SquareToCircle ( double _radius=sqrt(2) ): radius(-radius) {}

void evaluate ( const DomainVector &u, RangeVector &y ) const
{
double enorm = sqrt(u[O]«u[O]+u[l]xu[l]);
if (enorm > 1.0e—5)
{
double radiusFactor = radiusx*std ::max(std:: fabs(u[0]),std::
fabs (ul[l]));
double scaling = radiusFactor/enorm;
y[ O ] = u[ O ]*scaling;
y[ 1 ] =u[ 1 ]xscaling;
}
else
{
y[ 0 ]

ul[ 0 ];
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private :
double radius ;

+s

The transformation is done in the method evaluate of the class, by a adapted
scaling of the squares points to the target circle. To avoid the division by small
numbers points, which are near the origin, are not scaled, but just copied.

An alternative method to read command line parameters In this example pro-
gram, we use an alternative method to obtain parameters from the command line.
The parameters on the command line may be specified in similar way as for the
example program However, they are read by the program using a different
parsing scheme, based on the boost::program_options namespace, extended by a
class named options_description. The advantage of using this programming inter-
face is that with little effort you will get a useful parameter description when you
call the program just with the --help option, and that this interface interface is eas-
ier to handle. The necessary code to read the parameters and to generate the help
message is just the following:

int refinements , order, verbosity;
double radius;

if (getKaskadeOptions (argc ,argv,Options

("refinements”, refinements , 5, “number
of uniform grid refinements”)

(”order”, order , 2, “finite
element ansatz order”™)

(”verbosity”, verbosity , 1, “output
level™)

(radius”, radius , std::sqrt(2), “radius
of the circle”)))

return 1;

For the specification of each command line parameter, a list of four program param-
eters, enclosed in parentheses, must be specified, in the following order: the name
of the parameter on the command line as a string, the program variable where to
read in the value of the parameter, a default value, and a parameter description.
Note that, the parameters are just read here in one block, and therefore, this inter-
face is not suitable for situations, where the parameters need to be read at multiple
locations of the program, as in the example[6.2]
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The remaining program parts. The whole program (with the parts already dis-
cussed before excluded) follows:

int main(int argc, char xargv|[])

{

std :: cout << ”Start GeometryGrid tutorial program” << std::endl;

boost::timer:: cpu_timer totalTimer;

std :: cout << “original mesh shall be refined : ” << refinements
<< 7 times” << std ::endl;
std :: cout << “discretization order : 7 << order << std
::endl;
std :: cout << "output level (verbosity) 7 << verbosity <<
std :: endl;
bool onlyLowerTriangle = false;

using LeafView = GeoGrid:: LeafGridView ;

using H1Space = FEFunctionSpace<ContinuousLagrangeMapper<double ,
LeafView> >;

using Spaces = boost::fusion:: vector<HISpace constx>;

using VariableDescriptions = boost:: fusion :: vector<Variable <
Spacelndex <0>,Components <1>,Variableld <0> > >;

using VariableSetDesc = VariableSetDescription <Spaces,
VariableDescriptions >;

using Functional = HeatFunctional<double , VariableSetDesc >;

using Assembler = VariationalFunctionalAssembler<LinearizationAt
<Functional > >;

using Operator = AssembledGalerkinOperator <Assembler >;

constexpr int neq = Functional :: TestVars:: noOfVariables;

using CoefficientVectors = VariableSetDesc ::
CoefficientVectorRepresentation <0,neq >::type;

// construction of finite element space for the scalar solution
u

H1Space temperatureSpace (gridManager ,gridManager. grid () .
leafGridView () ,order);

Spaces spaces(&temperatureSpace);

std ::string varNames[1] = { "T” };

VariableSetDesc variableSet(spaces ,varNames) ;
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Functional F(radius);

constexpr int nvars = Functional:: AnsatzVars:: noOfVariables;

std :: cout << std::endl << "no of variables = 7 << nvars << std ::
endl ;

std :: cout << "no of equations = 7 << neq << std::endl;

size_t dofs = variableSet.degreesOfFreedom (0,nvars);

std :: cout << "number of degrees of freedom = ” << dofs << std
::endl;

// construct Galerkin representation
Assembler assembler (spaces);
VariableSetDesc :: VariableSet u(variableSet);

size_t nnz = assembler.nnz(0,neq,0,nvars,onlyLowerTriangle);
std :: cout << "number of nonzero elements in the stiffness matrix
7 << nnz << std::endl << std::endl;

boost::timer :: cpu_timer assembTimer;

assembler.assemble(linearization (F,u));

std :: cout << “computing time for assemble: ” << boost::timer::
format (assembTimer. elapsed ());

Operator A(assembler);

CoefficientVectors solution(VariableSetDesc ::
CoefficientVectorRepresentation <>::init(spaces));

CoefficientVectors rhs(assembler.rhs());

boost:: timer:: cpu_timer directTimer;

directlnverseOperator (A).applyscaleadd(—1.0,rhs , solution);

std :: cout << ”computing time for direct solve: ” << boost::timer
:: format(directTimer.elapsed());

component<0>(u) = component<O>(solution);

L2Norm 12Norm ;
std :: cout << "L2norm(solution) = 7 << I12Norm(boost:: fusion:: at_c
<0>(u.data)) << std::endl;

boost::timer:: cpu_timer outputTimer;

writeVTK (u, "temperature”,loOptions () .setOrder (order) .
setPrecision (7)) ;

std :: cout << ”graphical output finished , data in VIK format is
written into file temperature.vtu\n”;

std :: cout << “computing time for output:
format (outputTimer . elapsed ()) << “\n”;

std :: cout << "total computing time: 7 << boost::timer :: format(
totalTimer .elapsed ());

std :: cout << "End GeometryGrid tutorial program” << std::endl;

()

<< boost::timer ::
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The functional. The implementation of the functional - only the parts, which
differ from the first Laplace example discussed before in this manual, looks as
follows:

HeatFunctional (Scalar radius_=std::sqrt(2)): radius(radius_) {}

class BoundaryCache

{
public:
using Facelterator = typename AnsatzVars:: Grid::
Leaflntersectionlterator ;

BoundaryCache (HeatFunctional <RType, AnsatzVars> consté&,
typename AnsatzVars:: VariableSet const& vars_,
int flags=7):

data(vars-), penalty(1e9), u0(0.)

{}

void moveTo( Facelterator const& entity)

{

e = &entity ;

}

template <class Evaluators>

void evaluateAt(Dune:: FieldVector<typename AnsatzVars:: Grid::

ctype ,
AnsatzVars :: Grid :: dimension
—1>
const& x, Evaluators const& evaluators)
{
using namespace boost:: fusion;
int const uldx = result_of::value_at_c <typename AnsatzVars::
Variables ,
0>::type::spacelndex;
xglob = (xe)—>geometry (). global(x);
squareNorm = sqrt( xglob[0]*xxglob[0]+xglob[1]xxglob[1] );
u = component<0>(data).value (at_c<uldx>(evaluators));

}

Scalar

dO() const

{

if ( squareNorm >= radius )
return penalty x(u—u0)*x(u—u0)/2;
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else return 0.0;

}

template<int row, int dim>

Dune :: FieldVector<Scalar, TestVars::template Components<row >::
n>

dl (VariationalArg<Scalar ,dim> const& arg) const

{

if ( squareNorm >= radius )
return penalty x(u—u0)xarg.value[0];
else return 0.0;

}

template<int row, int col, int dim>
Dune :: FieldMatrix <Scalar , TestVars::template Components<row >::
m,
AnsatzVars :: template Components<col >::m>
d2 (VariationalArg<Scalar ,dim> const &argl,
VariationalArg <Scalar ,dim> const &arg2)
const
{
if ( squareNorm >= radius )
return penaltyxargl.valuexarg2.value;
else return 0.0;

}

private:
typename AnsatzVars:: VariableSet const& data;
Facelterator constx e;
Dune :: FieldVector <typename AnsatzVars:: Grid::ctype , AnsatzVars
:: Grid :: dimension> xglob;
Scalar penalty, u, uO, squareNorm, radius;

+s

Exercises:

1. Determine the exact solution of the underlying Laplacian problem [6.3|for a
prescribed arbitrary radius of the circle area. Use the parameter radius to solve the
Laplacian problem on circles with different radiuses. Write the grid and solution
data into a file and view them by a visualization tool, e.g., Paraview, and verify the
correctness of the numerically computed solution.

2. a. Extend the example to solve the Laplacian problem on an ellipse area
with a given long half-axis a and a short half axis . Implement and use the com-
mandline parameters ——1ong and ——short for the half-axises a and b.

b. Introduce an additional parameter ——angle, which passes an angle in de-
grees to the program, and rotate the ellipse area by this angle.
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6.4 Artificial Test Problem (atp)

This example is implemented in subdirectory
KASKADE7/tutorial/artificial _1d_testProblem.

Files: atp.cpp, atp.hh, function.gnu, Makefile

The example features the use of the use of KASKADE7 for solving an ODE
boundary value problem. The example is an artificially generated scalar ODE for
the function u: R — R

u(x) = exp(—x?). (19)
The equation is

2
%— (0.9exp(—x?) 4 0.1u) (4x* —2) +5-g(x) =0 (20)

where
a) g(x) = exp(u) —exp(exp(—x*))

b) se{-1,0,1}.

The equation is solved in the interval [—3,3] with the simplified boundary condi-
tions

2D

u(=3)=u(3)=0. (22)
The problem is nonlinear for s =1 or s = —1, and linear for s = 0.
The initial values are
u’(x) =0 for x € [-3,3] . (23)

In the following, we take some looks on the main program in atp.cpp, fo-
cussing only on the parts which significantly differ from the code we considered in
the previous example program.

Defining the grid. In this example, we have to use a one-dimensional grid on the
interval [3,3]. A 1D-grid implementation is included within Dune, implemented as
the class Dune : : OneDGrid. We are starting with a course grid, consisting of the
three points -3,0,3, and refine it ref inement s times. As there is in KASKADE7
no utility-routine available for the creation of the start-grid, we must define the
start-grid step by step, using the Dune GridFactory. In the following, we create a
GridFactory called factory, and tell the factory by calling the method insertVertex
about the three grid-points -3,0,3. The desired start-grid we wish to define, consists
of the two elements, i.e. subintervals, [—3,0] and [0,3], which we we tell the
factory by calling the method insertElement. In the next step, we create from the
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result factory a grid, which will be after creation immediately refined using the
globalRefine method. Finally, the resulting grid is moved under control of the
KASKADE7 gridmanager.

/] one—dimensional space: dim=1
int const dim=1;
using Grid = Dune:: OneDGrid;

Dune :: GridFactory <Grid> factory ;

// point (in case of dimension >1: vertex) coordinates v[O]

Dune:: FieldVector<double ,dim> v;

v[0]=—3; factory.insertVertex (v);

v[0]=0; factory.insertVertex(v);

v[0]=3; factory.insertVertex(v);

std :: vector<unsigned int> vid(2);

Dune :: GeometryType gt(Dune:: GeometryType :: simplex ,dim) ;

vid[0]=0; vid[l]=1; factory.insertElement(gt,vid);

vid[0]=1; vid[1]=2; factory.insertElement(gt,vid);

// interval defined by 2 point indices

std :: unique_ptr <Grid> grid( factory.createGrid () ) ;

// the coarse grid will be refined refinements times

grid —>globalRefine (refinements);

// some information on the refined mesh

std ::cout << "Grid: 7 << grid—>size (1) << 7 points 7 << std::
endl ;

// a gridmanager is constructed

// as connector between geometric and algebraic information

GridManager<Grid> gridManager (std :: move(grid));

The remaining. The functional class, which defines the atp-ODE and the bound-
ary conditions, is called ATPFunctional, and the constructor of this class accept the
parameter s from (21)) as the only argument, named £sign in the code below. For
solution of the arising linear systems in the Newton-iteration loop, we use the direct
linear solver UMFPACK, for which the matrix must be supplied in triplet-format,
e.g. as two integer-arrays ridx and cidx, which hold the row- and column-
indices and the double-array data, which holds the corresponding values of the
matrix-elements. The line

MatrixAsTriplet<double> triplet (nnz);

reserves the needed space for the matrix nonzero elements, and the line

triplet = A.get<MatrixAsTriplet<double> >();

copies to the reserved MatrixAsTriplet class space the assembled galerkin-operator
matrix.
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The lines below compute the LU-factorization of the matrix hold in triplet and
copies the right hand side of the linear system to the std: : vector<double>
rhs.

Factorization <double> sxmatrix = 0;

matrix = new UMFFactorization<double >(size ,0, triplet .ridx ,
triplet.cidx , triplet.data);

assembler.toSequence (0,neq,rhs.begin());

The line

matrix —>solve (rhs , sol) ;

finally solves the linear system, storing the solution to the std: : vector<double>
sol.
In the remaining code the vector sol is converted to the

VariableSet:: VariableSet dx(variableSet);

container class, and the Newton-correction is computed by multiplying with —1,
and then is added to the iterate VariableSet::VariableSet x. Finally
the norms of the Newton-correction dx and the norm of the residuum rhs are
computed for print-out and convergence-checking. The computed iterates can be
viewed using gnuplot, when the bool variable graphicalOutput is set to true
- what is done by default.

using Functional = ATPFunctional<double , VariableSet >;

Functional F(fsign);

Assembler assembler (gridManager , spaces) ;
VariableSet:: VariableSet x(variableSet);
VariableSet:: VariableSet dx(variableSet);

// set nnz to the number of structural nonzero elements of the
matrix to be assembled below

size_t nnz = assembler.nnz(0,neq,0,nvars, false);

size_t size = variableSet.degreesOfFreedom (0,nvars);

AssembledGalerkinOperator <Assembler ,0 ,neq,0,nvars> A(assembler) ;

MatrixAsTriplet <double> triplet (nnz);

std :: vector<double> rhs(size), sol(size);

int k=0;

L2Norm 12Norm ;

double norm_dx, norm_rhs;
x=0;



64

std :: cout << std ::endl << "Newton iteration starts:” << std::

endl <<
Ziter || correction || |[|F|| assemble time
linsolve time”
<< std::endl;

// begin of ordinary Newton iteration loop

do

{

boost:: timer :: cpu_timer assembTimer;
assembler . assemble (linearization (F,x));
double assembleTime = (double)(assembTimer.elapsed ().user)/1e9

triplet = A.get<MatrixAsTriplet<double> >();

// for (k=0; k< nnz; k++)

/1 {

/1] printf("%3d %3d %e\n”, triplet.ridx[k], triplet.
cidx [k], triplet.datal[k]);

/1l }

boost::timer:: cpu_timer directTimer;

Factorization <double> sxmatrix = 0;

matrix = new UMFFactorization<double >(size ,0, triplet.ridx,
triplet.cidx , triplet.data);

assembler.toSequence (0,neq,rhs.begin());

for (int 1=0; I<rhs.size(); ++1) assert(std::isfinite (rhs[1]))

matrix —>solve (rhs , sol) ;

double solveTime = (double) (directTimer.elapsed().user)/1e9;

delete matrix ;

for (int 1=0; l<sol.size(); ++1) assert(std::isfinite (sol[1]))

dx.read(sol.begin());
dx *= —1;
X += dx;
norm_dx=I12Norm (component <0>(dx) ) ;
VariableSet:: VariableSet tmp(dx);
tmp.read (rhs.begin());
norm_rhs=12Norm (component <O0>(tmp) ) ;
std :: cout << std::setw(4) << k+l1 << 7 7
<< std::setw(15) << std::setprecision (5) << std::
scientific << norm_dx << 7 7
<< std::setw(15) << norm_rhs << 7 7 << std::
setprecision (3) ;

std :: cout.unsetf(std::ios::fixed | std::ios::scientific);
std :: cout << std:: fixed << std::setw(6) << 7 << std s
setprecision (3)
<< assembleTime << s 7 << std sisetw (6) <<

2

solveTime << ”s 7 << std ::endl;
// output of solution in VIK format for visualization ,
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/! the data are written as ascii stream into file temperature.
vtu ,

// possible is also binary

// char fname[6];

// IoOptions options;

/! options.outputType = IoOptions:: ascii;

// sprintf (fname,” atp_%#02d” ,k) ;

/] writeVTK (x,fname, [oOptions () .setOrder (order)) ;

if ( graphicalOutput )

{
IoOptions gnuplotOptions;
std :: string s = “names. gnuplotinfo.” + getParameter(pt, ”
gnuplotinfo”, empty);
gnuplotOptions.info = static_cast<IoOptions :: Info >(
getParameter (pt,s,0));
writeGnuplotFile (x,” function”, gnuplotOptions) ;
e
k ++;

}

while ( norm_dx > 1.0e—5 );

6.5 Using embedded error estimation
This example is implemented in subdirectory
KASKADE7/tutorial/Embedded_errorEstimation.

Files: peaksource.cpp, peaksource.hh, Makefile
We consider a simple stationary heat transfer problem in the two-dimensional re-
gion Q, similar to that in Section[6.2] The corresponding linear partial differential
equation is given by
V-(VT) = f(x) x €Q o4
T = Ty(x) on dQ

which can be solved in two and three space dimensions. We determine the right-
hand side f of the equation so that

T = x(x—1.0)y(y — 1.0)exp(—100((x — 0.5)> + (y — 0.5)?))

is the soluton of in 2d. On the whole boundary dQ we prescribe the values of
T (Dirichlet condition). In 3D, the equation reads analogously.

Equation (24) is treated in the same way as before the stationary heat transfer
problem (6.2). However, we now control the discretization error by an error esti-
mation. The estimator provides information about the global and the local error.
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Local error estimates are used to refine the mesh where the estimated error exceeds
a threshold. If the estimate of the global error indicates sufficient accuracy the se-
quence of compute solution on a fixed mesh, estimate the discretization error, and
refine stops.

bool accurate = true;
do {
refSteps ++;

boost:: timer:: cpu_timer assembTimer;

VariableSet:: Representation x(variableSet);

assembler . assemble(linearization (F,x));

CoefficientVectors solution(VariableSet::
CoefficientVectorRepresentation <0O,neq >::init(variableSet));

solution = 0;

CoefficientVectors rhs(assembler.rhs());

AssembledGalerkinOperator <Assembler ,0,1,0,1 > A(assembler,
onlyLowerTriangle) ;

MatrixAsTriplet<double> tri = A.get<MatrixAsTriplet<double> >()

)

if (direct) {
boost::timer:: cpu_timer directTimer;
directInverseOperator (A, directType , property).applyscaleadd
(—1.0,rhs ,solution) ;
x.data = solution.data;
if ( verbosity >0) std::cout << "direct solve: 7 << (double)(
directTimer.elapsed () .user)/1e9 << ”s\n”;

else {

int iteSteps = getParameter(pt, "solver.iteMax”, 1000);

double iteEps = getParameter(pt, "solver.iteEps”, 1.0e—10);

boost::timer :: cpu_timer iteTimer;

typedef VariableSet:: CoefficientVectorRepresentation <0,neq >::
type LinearSpace;

Dune:: InverseOperatorResult res;

solution = 1.0;

switch (precondType)

{

case JACOBI:
default:
{
JacobiPreconditioner <AssembledGalerkinOperator <Assembler
,0,1,0,1> > jacobi(A,1.0);
Dune :: CGSolver<LinearSpace> cg(A,jacobi ,iteEps ,iteSteps
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,0);
cg.apply(solution ,rhs ,res);

break ;

}

solution x= —1.0;

x.data = solution.data;

if ( verbosity >0) std::cout << “iterative solve eps= 7 <<
iteEps << ”7: 7 << (res.converged?”’converged”:” failed”) << ”
after ” << res.iterations << 7 steps, rate=" << res.
conv_rate << 7, time=" << (double) (iteTimer.elapsed () .user)
/1e9 << 7s\n”;

}

// error estimate

VariableSet:: Representation e = X;
projectHierarchically (variableSet ,e);
e —= X;

/l use of error estimate for adaptive mesh refinement
accurate = embeddedErrorEstimator( variableSet ,e,x,
IdentityScaling () ,tol , gridManager) ;

/! necessary updates for next loop cycle
nnz = assembler.nnz(0,1,0,1,onlyLowerTriangle) ;;
size = variableSet.degreesOfFreedom (0,1);

// VariableSet:: Representation xx may be used beyond the do...
while loop
xx.data = x.data;
}  while (!accurate);

In this partition of the main program we have the loop in which the solution
of the linear system (resulting from finite element discretization) is followed by an
embedded estimation of the discretization error (as described in Section [2.4) and
by adaptive mesh refinement as long as the estimated error exceeds a threshold.
If the estimate is smaller than the threshold the value of accurate is set to true
otherwise to false.

The embedded error estimator needs an approximation of order p which is
considered in hierarchical bases. The difference between order p — 1 projection
(provided by function projectHierarchically) and order p solution yields a measure
for the error. For instance, if we provide a solution with quadratic finite elements
(order = 2), we substract the embedded (in hierarchical bases point of view) part
of order = 1, of cause in the same bases in which the solution is considered.

Parameters of the program (e.g., order, refinement, etc) can be specified by the
dynamic parameter handling as described in example (6.2). As default values we
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set order =2, re finement =5, solver.type = direct, etc., look into the source code
for the other parameters.
In top of the file peaksource.cpp you find the definition

#define DIM 2

which is used to select the space dimension of the problem, possible values are
2 and 3. While the grid for the 2d problem is defined directly in the top of the
main program we exported the definition for 3D into the file cubus.hh. The three-
dimensional problem needs a lot of memory when started with re finement = 5,
therefore we recommend a moderate refinement of the initial mesh, e.g., re finement
= 3, and to use an iterative linear solver.

The most important parameters for controlling the adaptive process are the ab-
solute tolerance atol and the relative tolerances rtol to be specified via the dynamic
parameter handling. The adaptive refinement is stopped as soon as we have for the
estimated error e:

\le]|? < atol® 4 rtol®||u| |

After computing the solution it is written to file temperature.vtu for visualiza-
tion objects.

6.6 Using hierarchical error estimation

This example is implemented in subdirectory
KASKADE7/tutorial/HB _errorEstimation

Files: heat.cpp, heat3d.cpp, poisson.hh, Makefile

Here we consider the same problem as in the Section [6.5] In 2D, we define
the region € in the main program (heat.cpp). The 3D example is presented in
heat3d.cpp. Here we have to use the dynamic parameter handling in order to spec-
ify a file in which a geometry is described in the amiramesh format. One such
file is cube.am describing the unit cube. The user may specify the file name in the
command for starting the executable or else cube.am is taken as default:

./heat3d --file cube.am

On the whole boundary we prescribe the values 7' = 0 (Dirichlet condition). In
3D, the equation reads analogously, using additional terms for the third dimension.



69

As in the example of Section [6.5]we control the discretization error by an error
estimation. The estimator provides information about the global and the local error.
Local error estimates are used to refine the mesh where the estimated error exceeds
a threshold. If the estimate of the global error indicates sufficient accuracy the
sequence of compute solution on a fixed mesh, estimate the discretization error,
and refine stops. The sequence stops also if the maximum number of refinement
steps maxAdaptSteps is reached.

do

{

refSteps ++;

CoefficientVectors solution(VariableSet::
CoefficientVectorRepresentation <0O,neq >::init(variableSet));

solution = 0;

CoefficientVectors hilfe (VariableSet ::
CoefficientVectorRepresentation <O,neq >::init(variableSet));

hilfe = 0;

assembler.assemble (linearization (F,x));

CoefficientVectors rhs(assembler.rhs());

typedef AssembledGalerkinOperator<Assembler,0,1,0,1> AssOperator

AssembledGalerkinOperator <Assembler ,0,1,0,1 > A(assembler ,
onlyLowerTriangle) ;

if (direct)
{
directlnverseOperator (A, directType , property).applyscaleadd
(—=1.0,rhs ,solution);
}

else

{

switch (iterateType)

{
case CG:

{
if ( verbosity >0 ) std::cout << "preconditioned cg solver
is used” << std::endl;
JacobiPreconditioner <AssOperator> jacobi(A,1.0);
Dune : : CGSolver<LinearSpace> cg(A,jacobi ,iteEps ,iteSteps ,
verbosity —1);
cg.apply (hilfe ,rhs ,res);
}
break ;
case PCG:

{

1)

if ( verbosity >0) std::cout << preconditioned cascadic
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multigrid solver I is used” << std ::endl;
JacobiPreconditioner <AssOperator> jacobi(A,1.0);
NMIIIPCGSolver<LinearSpace> pcg(A,jacobi ,iteEps ,iteSteps ,
verbosity —1);
pcg.apply (hilfe ,rhs ,res);

break ;
case APCG:

{

1)

if ( verbosity >0) std::cout << preconditioned cascadic
multigrid solver Il is used” << std::endl;
int addedIterations = getParameter(pt, “solver.APCG.
addedIterations”, 10);
JacobiPreconditioner <AssOperator> jacobiPCG(A,1.0) ;
NMIITAPCGSolver<LinearSpace> apcg(A,jacobiPCG ,iteEps,
iteSteps ,verbosity —1,addedIterations);
apcg.apply (hilfe ,rhs ,res);
}
break ;
default:
std :: cout << ”Solver not available” << std::endl;
throw —111;

}

solution .axpy(—1,hilfe);

}

dx.data = solution.data;

// Do hierarchical error estimation. Remember to provide the
very same underlying problem to the

// error estimator functional as has been used to compute dx (do
not modify x!).

std :: vector<double> errorDistribution (is.size (0) ,0.0);

typedef VariableSet:: GridView :: Codim<0>::Iterator Celllterator ;

double maxErr = 0.0;

double errLevel = 0.0;

if (!tolX.empty())

{
tmp *x= 0 ;
estGop.assemble (ErrorEstimator (LinearizationAt<Functional >(F, x

),dx));

int const estNvars = ErrorEstimator :: AnsatzVars :: noOfVariables
int const estNeq = ErrorEstimator :: TestVars:: noOfVariables;
size_t estNnz = estGop.nnz(0,estNeq,0,estNvars , false);
size_t estSize = exVariableSet.degreesOfFreedom (0,estNvars);
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std :: vector<int> estRidx (estNnz), estCidx (estNnz);

std :: vector<double> estData(estNnz), estRhs(estSize),
estSolVec(estSize);

estGop.toSequence (0,estNeq,estRhs.begin());

/l iterative solution of error estimator
typedef AssembledGalerkinOperator<EstAssembler> AssEstOperator

AssEstOperator agro(estGop);

Dune:: InverseOperatorResult estRes;

ExCoefficientVectors estRhside (estGop.rhs());

ExCoefficientVectors estSol(ExVariableSet ::
CoefficientVectorRepresentation <0,1>::init(exVariableSet))

estSol = 1.0 ;

JacobiPreconditioner <AssEstOperator> jprec (agro, 1.0);

jprec .apply (estSol ,estRhside); //single Jacobi iteration

estSol . write (estSolVec.begin());

// Transfer error indicators to cells.

for (Celllterator ci=variableSet.gridView.begin<0>(); cil=
variableSet.gridView.end<0>(); ++ci)

{

typedef HIExSpace:: Mapper:: GloballndexRange GIR;

double err = 0;

GIR gix = spaceEx.mapper().globallndices (xci);

for (GIR::iterator j=gix.begin(); jl!=gix.end(); ++j)
err += fabs(component<O>(estSol)[*xj]);

errorDistribution[is.index(xci)] = err;
if (fabs(err)>maxErr) maxErr = fabs(err);
}
errLevel = 0.5xmaxErr;
if (minRefine >0.0)
{

std :: vector<double> eSort(errorDistribution);
std ::sort(eSort.begin(),eSort.end () ,compareAbs);

int minRefineIndex = minRefinex(eSort.size ()—1);
double minErrLevel = fabs(eSort[minRefinelndex])+1.0e—15;
if (minErrLevel<errLevel) errLevel = minErrLevel;

}

errNorm = 0 ;

for (k=0; k < estRhs.size () ; k++ )
errNorm += fabs(estRhs[k]xestSolVec[k]) ;
}

// apply the Newton correction here
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X += dx;

if ( verbosity >0)
std ::cout << "step = 7 << refSteps << << size << 7 points
, [[estim. err|| = ” << errNorm << std::endl;

%,

// graphical output of solution, mesh is not yet refined

std :: ostringstream fn;

fn << ”graph/peak—grid”;

fn.width (3) ;

fn. fill (°0");

fn.setf (std::ios_base ::right ,std::ios_base:: adjustfield);

fn << refSteps;

fn . flush () ;

writeVTK (x,fn. str () ,IoOptions () .setOrder (order)) ;

std :: cout << ” output written to file ” << fn.str() << std::
endl ;

if (refSteps>maxAdaptSteps)
{
std :: cout << ”"max. number of refinement steps is reached” <<
std :: endl;
break ;

}

// Evaluation of (global/local) error estimator information
if (!tolX.empty())
{
if (errNorm<requested)
{
accurate = true ;
std ::cout << ”||estim. error || is smaller than requested” <<
std :: endl;
}

else
{
// Refine mesh.
int noToRefine = 0;
double alphaSave = 1.0 ;
std :: vector<bool> toRefine( is.size(0), false ) ; //for
adaptivity in compression
std :: vector< std :: vector<bool> > refinements;
for (Celllterator ci=variableSet.gridView.begin<0>(); cil!=
variableSet.gridView.end<0>(); ++ci)
if (fabs(errorDistribution[is.index(xci)]) >= alphaSavex
errLevel)
{

noToRefine ++;
toRefine[is.index(xci)] = true ;
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gridManager . mark (1,*ci);

}

refinements . push_back (toRefine) ;
accurate = !gridManager.adaptAtOnce () ;
}

}

size = variableSet.degreesOfFreedom (0,1);

gk = size/dNk;

dNk = size;

yk += pow(dNk, alpha);

zk = pow(dNk, alpha) x(pow(errNorm/requested ,d+xalpha)—pow(qgk, alpha
))/(pow(gk,alpha) —1.0);

iteEps = safetys*betaxerrNormx*yk/(yk+zk)

} while (!accurate);

6.7 SST pollution

This example is implemented in subdirectory
KASKADE7/tutorial/sst_pollution.

Files: sst.cpp, sst_nleqErr.cpp, sst_giant.cpp, sst.hh, Makefile

The following example is a straightforward extension of an instationary 1-D-
model for the pollution of the stratosphere by supersonic transports (SSTs). The
rather crude model describes the interaction of the chemical species O, Oz, NO and
NO,; along with a simple diffusion process.

The equations for the stationary 2D-model are:

= DAui+kyi —kipuy +ki3up + ki gus —ky suiuy — ki guiug

= DAuy+kyuy —kapus + ko zuyup — ko qupus 25)
= DAuz— k371 Uz + k3721/t4 + k3731/t1 Ug — k374l/t21/t3 +800.0 + SST

o o o O

= DAuyg — ky 1us + kg puouz — kg 3uius +800.0 ,
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where
D = 0.5-1077,
kit,....kig @ 4-103,272.443800016,1074,0.007,3.67-10716,4.13.10712
kai,...,koa @ 272.4438,1.00016-107%,3.67-10716,3.57.107 1%
ki,...,ksa : 1.6-1078,0.007,4.1283-107!2,3.57-107 15,

)

kai,...,ksz @ 7.000016-1073,3.57-10715,4.1283-10"12

B 3250 if (x,y) €[0.5,0.6]%
SST - {360 otherwise.

The boundary conditions are

8u,-

g g for i=1,....4 (26)
on

IQ

and the domain Q is just the unit square of R2. Two sets of startvalues are supplied
- the first one produces a mildly nonlinear problem, which can be solved applying
an ordinary Newton iteration. The startvalues for the ordinary Newton iteration are

=1.306028 - 10° ,

uf (x,y)

ud(x,y) = 1.076508 - 10'2 | y) Q. o7
u(x,y) = 6.457715-10'0 | ’

ud (x,y) = 3.542285-10'°

The second set of startvalues produces a highly nonlinear problem for which it is
necessary to apply a damped Newton method in order to solve it. The second set
of startvalues is

ud(x,y) =107,
ud(x,y) =107,

(2)( ) ; (xy)€Q. (28)
M3(X,y) = 10 )

The solution of the mildly nonlinear variant of the SST problem is in detail featured
in the main programm sst.cpp, where the Newton iteration loop is included, as well
as computations of the norms of the Newton correction and residual vector in each
iteration step. The linear systems arising in each Newton step are solved using the
iterative DUNE solver BICGSTAB together with the ILUK preconditioner.
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For solving the highly nonlinear variant of the SST problem, we provide head-
erfiles for two alternative damped Newton methods. The use of the two methods
are featured in the programs sst_nleqErr.cpp and sst_giant.cpp.

In the program sst_nleqErr.cpp the nonlinear solver class NlegSolver, which is
defined in the headerfile algorithm/nleq_err.hh is used to solve the problem. The
class NlegSolver is a simplified implementation for KASKADE7 of the algorithm
due to Deuflhard [8]], p.148f, without the switch to a Quasi-Newton iteration nearby
the solution.

In the program sst_giant.cpp the nonlinear solver class Giant, which is defined
in the headerfile algorithm/giant_gbit.hh is used to solve the problem. The class
Giant is an implementation for KASKADE7 of the GIANT-GBIT algorithm due to
Deufihard [8], p.160f.

6.8 Stokes equation
This example is implemented in subdirectory

KASKADET7/tutorial/stokes.

Files: stokes.cpp, stokes.hh, Makefile
We consider the stationary 2D driven cavity problem for incompressible fluids on
the unit square Q governed by the linear Stokes equation:

—Au+Vp = 0 xy) € Q=[0,1]x [0,1]
V-u = 0 xy) €Q
(29)
ulx,y) = -1 ondQify=1
u(x,y) = 0 elsewhere on 0Q,

with velocity u = u(x,y) and pressure p = p(x,y).

6.9 Elasticity

This example is implemented in subdirectory
KASKADE7/tutorial/elastomechanics.

Files: elastomechanics.cpp, elastomechanics.hh, Makefile

We consider the three dimentional linear elasticity problem defined by the Navier-
Lame equations on a unit cube domain Q and we compute the dispacement vector
u for the corresponding vector linear elliptic pde where f is the force vector:
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V.o = 0 x,y,z) € Q=1[0,1]x [0,1]x [0,1]

o = Atr(e)l+2ue

e = 5(Vut(Vu)") (30)
Flu) = Lo:e)
Gu) = ta(u—uy)?® —fu

Inserting the linearized Green Lagrange strain tensor € into the stress tensor & we
end up with the Navier-Lame equations, where A and u are the Lame constants.

(A4+w)V(V-u)+uViu=0 (31)

Going through the main program elastomechanics.cpp the set up for defining the
grid and computing the solution is done analogously to the 3D stationary heat trans-
fer in (6.2)), with the difference in giving the displacement variable 3 components:

auto varSetDesc = makeVariableSetDescription (makeSpaceList(&
h1Space), make_vector(Variable<Spacelndex <0>,Components <3>>(
u”)));

For creating the functional object an ElasticModulus object is passed to the
ElasticityFunctional defined in elastomechanics.hh, the ElasticModulus object can
be initilized by either choosing a predefined material in KASKADE7 library where
in this example steel is used (a list of the known materials is printed to the command
line when running the example) or by giving the Lame constants A and g.

using Functional = ElasticityFunctional <VarSetDesc >;

using Assembler = VariationalFunctionalAssembler<LinearizationAt
<Functional> >;

using CoefficientVectors = VarSetDesc::
CoefficientVectorRepresentation <0,1>::type;

// Create the variational functional.
Functional F(ElasticModulus :: material (material));
// Functional F(ElasticModulus (double lambda, double mu)) ;

Moving to elastomechanics.hh to define the necessary DomainCache we will
make use of the LameNavier class and its member functions d0(), dI(), d2() and
setLinearizationPoint(), where we creat an object energy of it which is initilized
with the ElasticModulus
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setLinearizationPoint() takes the tensor of displacement derivative at the current
evaluation point as it’s input. Where it defines the displacement derivatives around
which to linearize as will as the strain tensor.

// Deriving from FunctionalBase introduces default D1 and D2
structures .

template <class VarSet>

class ElasticityFunctional: public Kaskade:: FunctionalBase <
VariationalFunctional >

{

public:

using ElasticEnergy = Kaskade:: Elastomechanics :: LameNavier<dim,
Scalar >;

class DomainCache

{

public:
DomainCache( ElasticityFunctional const& functional , typename
AnsatzVars :: VariableSet const& vars_, int flags=7)

: vars(vars_), energy(functional.moduli)

{}

template <class Entity >

void moveTo(Entity const& entity) {}

template <class Position, class Evaluators>
void evaluateAt(Position const& x, Evaluators const&
evaluators)

{
energy.setLinearizationPoint( boost:: fusion::at_c<u_Idx >(
vars .data).derivative (boost:: fusion :: at_c<u_Space_Idx >(
evaluators)) );
}

The member function d0() returns the scalar value of the elastic stored energy den-
sity which defines our functional F(u):

Fu)y = 3(o:¢)
Lir(e) +u(e:e) G2

Scalar dO() const
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{
}

The member function d/() returns the vector defining the first directional derivative
of the elastic stored energy density which defines our F’(u):

return energy.d0();

F'(u,@;) = Atr(€)Vi +2u(e) Ve (33)

template<int row>
Vector dl (VariationalArg<Scalar ,dim> const& arg) const

{
}

The member function d2() returns the matrix defining the second directional deriva-
tive of the elastic stored energy density which defines our F”'(@;, @;):

return energy.dl(arg);

F"(¢i,9) = e(Vg) Ce(Vo)) (34)

Where C is the fourth-order linear elastic stiffness tensor and €(V ) represents the
strain displacement matrix.

_37(1) —
o 90 A+2u A A0 0 0]
0 3 ao A A+420 A 0 0 O
0 o % A A A+2u 0 0 O
T _ 9z — H
e(ch)_O%%,C_ 0 0 0 u 0 0
% o 20 0 0 0 0 u O
% a0 0 0 0 0 0 pu
L dy ox i

template<int row, int col>

Matrix d2 (VariationalArg<Scalar ,dim> const& argTest,
VariationalArg <Scalar ,dim> const& argAnsatz) const

{

}

return energy.d2(argTest,argAnsatz);

private:
typename AnsatzVars:: VariableSet const& vars;
ElasticEnergy energy;
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Moving to the boundary cache we will define an inhomogeneous Neumann
boundary condition of 1N on the cube’s bottom face which has an outward nor-
mal of [0, -1, 0] and a homogeneous Neumann boundary condition on the cube’s
top face having an outward normal of [0, 1, O], the remaining 4 faces we will
assign a homogeneous Dirichlet boundary condition. To do so we will make use
member function moveTo which takes a Facelterator iterating over the cells
intersecting with the domain boundary to assign the penalty value alpha and the
value beta to each cell on the boundary. The Facelterator object const
e points to a Dune::intersection type which has the member function cen-

of the

force
& fac
terUn

itOuterNormal() returning the outward unit normal » of the current cell.

clas

{

s BoundaryCache : public CacheBase<ElasticityFunctional ,
BoundaryCache >

public:
using Facelterator = typename AnsatzVars:: Grid::

LeaflIntersectionlterator ;

BoundaryCache (ElasticityFunctional const& f_, typename

AnsatzVars :: VariableSet const& vars_, int flags=7)
vars (vars_)

{}
void moveTo( Facelterator const& face)
{
Vector up(0); up[l] = 1; // unit
upwards pointing vector
auto n = face—>centerUnitOuterNormal () ; /] unit
outer normal
if (nxup > 0.5) // top face: natural boundary
conditions (homogeneous Neumann, zero normal stress)
{
alpha = 0; // retardation force factor
beta = 0; // absolute force vector
}
else if (nxup < —0.5) // bottom face: force boundary
condition (inhomogeneous Neumann, given normal stress)
{
alpha = 0;
beta = up;
}

else // side face: essential boundary
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conditions (homogeneous Dirichlet)

{
alpha = lel4; // requires large penalty for hard
materials such as steel with a Young’s modulus around
7e9
beta = 0;
}

}

In this example we will define the necessary member functions d0' (), d1' _impl(),
and d2' _impl() as follows:

dor() = %(x(u—uo)z — Bu
d1impl(¢;)) = oug;— B, (35)
d2' _impl(@;, 0;) = a(ee;)

template <class Evaluators>

void evaluateAt(Dune:: FieldVector<typename AnsatzVars:: Grid::
ctype ,dim—1> const& x, Evaluators const& evaluators)

{

using namespace boost:: fusion;

u = at_c<u_ldx >(vars.data).value(at_c<u_Space_Idx >(
evaluators));
}

Scalar
dO() const

{

return alphax(uxu)/2 — betaxu;

}

template<int row>

Scalar dl_impl (VariationalArg<Scalar ,dim,dim> const& arg)
const

{

return alphax(uxarg.value) — betaxarg.value;

}

template<int row, int col>

Scalar d2_impl (VariationalArg<Scalar ,dim,dim> const &argl ,
VariationalArg <Scalar ,dim,dim> const &arg2) const

{

return alpha=x(argl.valuexarg2.value);

}
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private:

typename AnsatzVars:: VariableSet const& vars;
Vector u, beta;

Scalar alpha;

}s

It is also valid to replace the member functions d 1" _impl(), and d2' _impl() with
d1Y(), and d2"()

template<int row>

Dune :: FieldVector<Scalar, dim> dl (VariationalArg<Scalar ,dim
> const& arg) const

{

}

template<int row, int col>

Dune:: FieldMatrix <Scalar , dim, dim>

d2 (VariationalArg<Scalar ,dim> const &argl, VariationalArg<
Scalar ,dim> const &arg2) const

{

return alpha % uxarg.value[0] — betaxarg.value[0];

return alpha x argl.value[0] *x arg2.value[0] * unitMatrix<
Scalar ,dim>();

}

Going back to elasomechanics.cpp we will discuss how to postprocess the nor-
mal stressess Oy, Oy, and 6, and output them with the displacement field to the file
elasto.vtu. To do so we will make use of the Kaskade: :interpolateGlobally func-
tion which interpolates from a FunctionSpaceElement to another. We interpolate
values from the FE space hlSpace where the solution was carried out to be stored
on a [2Space. First we creat a [2Space with 3 components( normalStress)

// Postprocessing

L2Space<Grid >:: Element_t<DIM> normalStress (12Space);

The interpolateGlobally function will iterate over all evaluation points in the solu-
tion space, within it we redefine the functional and pass the solution x to setLin-
earizationPoint after which use the functional member function cauchyStress to
retrieve stress components.

interpolateGlobally <PlainAverage >(normalStress , makeFunctionView
(h1Space, [&] (auto const& evaluator)
{
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auto modulus = ElasticModulus :: material (material);
HyperelasticVariationalFunctional <Elastomechanics ::
MaterialLaws :: StVenantKirchhoff <DIM>,
LinearizedGreenLagrangeTensor <double ,DIM>>
energy (modulus) ;

energy.setLinearizationPoint (component<0>(x).derivative (
evaluator));
auto stress = Dune::asVector(energy.cauchyStress());

return Dune:: FieldVector<double ,3>{stress [0], stress [4],
stress [8]};
D)

auto vsd = makeVariableSetDescription (makeSpaceList(&l2Space)

boost:: fusion :: make_vector( Variable <Spacelndex <0>,Components
<3>>("NormalStress”),

Variable <Spacelndex <0>,Components <3>>("Dispacement™))) ;

auto data = vsd.variableSet () ;
component<0>(data) = normalStress;
component<l>(data) = component<0>(x);

// output of solution in VIK format for visualization ,

// the data are written as ascii stream into file elasto.vtu,

/l possible is also binary

if (vtk)

{
ScopedTimingSection ts(”"computing time for file i/0”,timer);
writeVTKFile (data ,”elasto”,loOptions () .setOrder (order) .

setPrecision (7)) ;
e
return 0;

I_22e12
—le12

l 69e-15

Dispacement Magnitude

Figure 2: Paraview visualization of the displacement field magnitude
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6.10 Instationary heat tranfer
This example is implemented in subdirectory
KASKADE7/tutorial/instationary _heattransfer.

Files: movingsource.cpp, movingsource.hh, integrate.hh, Makefile
We consider a simple instationary heat transfer problem in the two-dimensional
region Q. The corresponding linear parabolic equation is given by

Z—V-(K(x)VT) = f(x) x€Q 0<t<=T
T = Tyxr) onT (36)
T = Ty on Q

The term I" denotes the boundary dQ where we have to define boundary conditions.
We prescribe the values of the solution 7' (Dirichlet condition). The initial value of
the solution at # = 0 is given by the function Ty on the region Q.

In KASKADE7 , the solution of this problem is based on a Rothe method, i.e.
we first discretize in time, then the resulting elliptic problems by a finite element
method (FEM). Therefore it is necessary to consider the system (36) in its weak
formulation, see appendix. Analogous to the stationary problems considered before
we define the mesh, the spaces for the spatial discretization, and the functional due
to weak formulation:

int main(int argc, char xargv|[])
{
int const dim =
int refinements
40;
double dt = 0.1, maxDT = 1.0, T = 10.0, rTolT = 1.0e—2, aTolT =
1.0e—2, rTolX = 1.0e—5, aTolX = 1.0e—5, writelnterval = 1.0;

23

6, order = 2, extrapolOrder 2, maxSteps =

boost:: timer:: cpu_timer totalTimer ;
std :: cout << ”Start moving source tutorial program” << std::endl

)

typedef Dune:: UGGrid<dim> Grid;
std :: unique_ptr <Grid> grid ( RefineGrid <Grid >(refinements) );

std :: cout << "Grid: 7 << grid—>size (0) << 7 7 << grid —>size (1)
<< 77 << grid—>size (2) << std ::endl;

GridManager<Grid> gridManager (std :: move(grid));
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/l construct involved spaces.
typedef FEFunctionSpace<ContinuousLagrangeMapper<double , Grid ::
LeafGridView> > HlSpace;

H1Space temperatureSpace (gridManager ,gridManager. grid () .leafView
() ,order);

typedef boost::fusion::vector<HISpace constx> Spaces;
Spaces spaces(&temperatureSpace);

typedef boost::fusion::vector<VariableDescription <0,1,0> >
VariableDescriptions ;
std :: string varNames[1] = { "u” };

typedef VariableSetDescription <Spaces, VariableDescriptions >
VariableSet;
VariableSet variableSet(spaces,varNames);

typedef MovingSourceEquation<double , VariableSet> Equation;
Equation Eq;

std :: vector<VariableSet:: Representation> solutions ;

Eq.time (0) ;
VariableSet:: Representation x(variableSet);
Eq.scalelnitialValue <O>(InitialValue (0) ,x);

X = integrate (gridManager, Eq, variableSet, spaces, gridManager.
grid (), dt, maxDT, T, maxSteps, rTolT, aTolT, rTolX, aTolX,
extrapolOrder, std::back_inserter(solutions), writelnterval ,
x, DirectType ::MUMPS) ;

std :: cout << "End moving source tutorial program” << std::endl;
std :: cout << "used cpu time: 7 << (double)(totalTimer.elapsed().
user)/le9 << 7s\n”;

Kernel of this implementation is the function integrate which performs the in-
tegration in time based on the LIMEX method:

template <class Grid, class Equation, class VariableSet, class
Spaces, class Outlter>
typename VariableSet:: Representation
integrate (GridManager<Grid>& gridManager ,
Equation& eq, VariableSet const& variableSet ,
Spaces const& spaces,

Grid const& grid, double dt, double dtMax,
double T, int maxSteps, double rTolT, double



// write initia
xout = Xx;
++out;

double outTime

std :: vector<std

1
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aTolT ,
double rTolX, double aTolX, int extrapolOrder ,
Outlter out, double outlnterval ,
typename VariableSet:: Representation x,
DirectType directType,
int verbosity = 0)

position

eq.time ()+outlnterval;

pair<double ,double> > tolX (variableSet.

noOfVariables) ;
std :: vector<std :: pair<double , double> > tolXC(variableSet.
noOfVariables) ;

for (int i=0; i<tolX.size (); ++1i)

{

tolX[i] = std:: make_pair(aTolX,rTolX);
tolXC[i] = std:: make_pair(aTolX/100,rTolX/100);

}

std :: vector<std :: pair<double ,double> > tolT (variableSet.
noOfVariables) ;
for (int i=0; i<tolT.size (); ++i)
tolT[i] = std:: make_pair(aTolT,rTolT);

Limex<Equation> limex (gridManager ,eq, variableSet ,directType ,ILUK

,verbosity)

s

Dune :: FieldVector<double,2> samplePos (0) ;

int steps;

bool done = false;
for (steps=0; !done && steps<maxSteps; ++steps) {
if (eq.time ()>T—1.1xdt)

{

dt = T—eq.time () ;

done = true

}

)

typename VariableSet:: Representation dx(x);

int redMax =
int red = 0;
double factor
double err;

55

1.0;



dt x= factor;
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dx = limex.step(x,dt,extrapolOrder ,tolX);

std :: vector<std :: pair<double , double> >

errors =

limex . estimateError (x, extrapolOrder ,

extrapolOrder —1);

err = 0;
for (int 1=0;
err

i<errors.size (); ++i)

= std ::max(err, errors[i]. first/(tolT[i]. first+tolT[i
].second*xerrors[i].second));

factor = std::pow(0.5/err ,1./(extrapolOrder+2));
factor = std::max(0.5,std ::min(factor ,1.33));
eq.time () << =~ << dt << 7 T <K err << ' 7 K

std :: cout <<
red << °

<<

<<

++red ;

variableSet.degreesOfFreedom ()

9

>

<< component<0>(x).value (samplePos) [0] <<

\n’s

} while (err>1 && red<=redMax) ;

if ( verbosity >0 )

{

+s

/1l

{

std :: cout. flush () ;
std ::cout << "t= 7 << eq.time () << 7 dt = 7 << dt << 7

factor =

2

<< factor << 7 red=" << red << ’\n’;

write linearly interpolated equidistant output
assert (eq.time ()<=outTime) ;
while (outTime<=eq.time ()+dt)

typename VariableSet:: Representation z(x);
z.axpy ((outTime—eq.time () )/dt,dx);
outTime += outlnterval;

}
// step ahead
X += dx;

eq.time (eq.time ()+dt);
dt = std::min(dtxfactor ,dtMax) ;

/] perform mesh coarsening
coarsening (variableSet ,x,eq.scaling () ,tolX , gridManager) ;

if
{

(1)

9



87

// debugging output
typedef typename Grid::LeafGridView LeafGridView ;
LeafGridView leafView = gridManager. grid () .leafView () ;

IoOptions options;

options .outputType = IoOptions :: ascii;

writeVTK (x, 7" graph/outScaledGrid "+paddedString (2% steps+1),
options .setOrder (1)) ;

if ( verbosity >0 )
std :: cout << variableSet.degreesOfFreedom () << ” values

written to 7 << “graph/outScaledGrid”+paddedString (2x*
steps+1) << std::endl;

}
std ::cout << “\n’;
limex . reportTime (std :: cout);

if (!done)
std ::cout << ”x*x maxSteps reached xxx\n”;

return X;

6.11 Navier-Stokes equations
This example is implemented in subdirectory

KASKADE7/tutorial/instationary_NavierStokes.

Files: navierStokes.cpp, navierStokes.hh, integrate_navierStokes.hh, Makefile
We consider the instationary 2D driven cavity problem for incompressible fluids
on the unit square € governed by the Navier-Stokes equations:

u—VAu+(u-Viu+Vp = 0 (x,y) € Q=10,11x[0,1]
V-u = 0 xy) €Q
(37)
ulx,y) = -1 ondQify=1
u(x,y) = 0 elsewhere on dQ,

with velocity u = u(x,y) and pressure p = p(x,y).
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7 Parameter administration

7.1 Introduction

KASKADET7 is used to compute the solution of a partial differential equation. Of-
ten there are a lot of parameters describing details of the equation or details of
the solving algorithm. The programmer has two ways to handle these parameters.
One way is to define them statically in top of the main program and compile the
code whenever one of the values has to be changed. The second way is to use a
dynamical support via the command line. To achieve this, different approaches are
possible. One possible way is to use the boost : : program_options methods
to define parameters, related default values and descriptions. Another approach
which we decided to implement, is based on the boost : :property_tree util-
ities. While the program_options approach gives you the advantage of producing
a actually helpful output when calling your program with the help option, this ap-
proach does not support quite good the simple implementation of self-speaking
parameter-names. While with the program_options approach, you would have
to program the association of names to internal integer values in each applica-
tion program newly, using our implementation based on using the definitions from
the default. json file, and in the application the consistent names defined in
utilities/enums.hh, allows you to use both on the command line as also in
your application programs source code self-speaking names.

7.2 Implementation in KASKADE7

We use the boost packages property_tree and program options. In the main
program we have to include "utilities/kaskopt.hh” and to add

int verbosity = 1;

bool dump = true;

boost:: property_tree :: ptree xpt = getKaskadeOptions (argec, argv,
verbosity , dump);

The call of getKaskadeOptions (argc, argv, verbosity, dump) gen-
erates a pointer to a property_tree storing a set of hierarchically ordered parameter
names each described by a string. On the leaf level a parameter is connected to a
default value of one of the types (string, int, double,...). The initial specifications
in the property_tree is provided by the entries in the file default.json.

Let’s develop a structure of the tree in this file:

{

"solver":
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{
}I
"names":
{
}
}

The tree has two main branches, "solver" and "names", each of them gen-
erates further branches. For example the branch "solver" offers the following
new branches:

"solver":
{
"type": "direct",
"direct": "UMFPACK",
"iterate": "CG",
"property": "GENERAL",
"preconditioner": "NONE",

"iteEps": 1.0e-12,
"iteMax": 1000,
"ILUT":

"BOOMERAMG" :
{
}I
}I

The branches "type", "direct", "iterate", "property", ... end on
this level (the leaf level) getting a default value. Other branches like "ILUT"
generate new branches, e.g.,

"ILUT":
{
"dropTol": 0.01,
"1fil": 140
by

We have defined a function call getParameter extracting the values of param-
eters from the argc —, argv([] - list. This kind of parameter handling is
considered in the following.

Starting the KASKADE7 application such a set of hierarchically ordered pa-
rameters is read from the file default . json stored in the KASKADE7 root di-
rectory. Then the default values of all predefined parameters may be modified by
command line. The code has not to be recompiled.

We give some examples illustrating this mechanism, compare also the applica-
tion in the stationary heat problem from Section [6.2}
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Static parameters. The user defines all the parameters describing the problem,
the descretization, or the solver directly in the code, preferably in top of the main
module, e.g.;

e Particular parameters of the problem are set, e.g., the diffusion coefficient k
in a heat transfer equation

kappa = 1.0;

e Parameter for discretization
refinement = 5;
order = 3;

By this the initial grid is refined 5 times, and cubic (order 3) ansatz functions
are selected.

e For selecting a direct solver we can set the parameters

direct = true;
directType = DirectType::MUMPS;

The variable direct may have the value TRUE or FALSE and can be used to
switch between direct or iterative solution of linear systems. If the option
direct = true is chosen the user may select also a particular direct solver
from an enumeration class defined in the file /utilities/enums.hh, i.e.

enum class DirectType { UMFPACK, PARDISO, MUMPS, SUPERLU,
UMFPACK3264, UMFPACK64 };

e Selection and control of an iterative linear solver

direct = false;

iterateType = IterateType::CG;

iteEps = 1.0e-8;

iteSteps = 500;

preconditionerType = PrecondType::ILUK;

If the option direct = false is chosen the linear systems will be solved by an

iterative solver. The particular solver may be one of the enumeration class in
the file /utilities/enums.hh, i.e.

enum class IterateType { CG, BICGSTAB, GMRES, PCG, APCG, SGS
Jie
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A suitable preconditioner is selected from enumeration class in the file /util-
ities/enums.hh, i.e.

enum class PrecondType { NONE, JACOBI, PARTIAL, ILUT, ILUK,
ARMS, INVERSE, ADDITIVESCHWARZ, BOOMERAMG, EUCLID,
TRILINOSML, SSOR, ICCO, ICC, ILUKS };

The disadvantage of static parameter handling is that recompiling is necessary
whenever a parameter is to be changed.

Dynamic parameters. Instead of defining parameters statically in the code we
offer a possibility to change them via command line.

./heat —--solver.direct UMFPACK

Starting the executable heat results in messages of the following kind
solver.direct=DirectType::MUMPS changed to DirectType::UMFPACK
Start program (r.1103)

End program

Evaluation of a parameter in the program.

2

std :: cout << ”Start program (r.
,empty) << 7)7;

<< getParameter(pt,” version”

Some parameter (e.g., the version number) are generated automatically.

std :: string s(’names.”), empty;

s += getParameter(pt, “solver.direct”, empty);
DirectType directType = static_cast<DirectType >(getParameter (
pt, s, 2));

directInverseOperator (A, directType , properties).applyscaleadd
(—1.0,rhs ,solution);

The parameter of the routine getParameter are the data bank pt, the
name of the parameter and a default value.

After reading the set of parameters is documented in a file which includes in
its name the calendar date, clock and process id, e.g.,

run-2010-02-24-12-37-85744. json
run-2010-02-24-12-55-86099. json
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e Rerun of the program with the same set of parameter values as in a run before

./heat --default run-2010-02-24-12-37-85744. json
e Application of a user defined set of parameter values

./heat --addons use_amg. json

The parameter values of the file use_amg. json substitute the default val-
ues. The contents of this file maybe look like

{

"solver":
{
"type": "iterate",
"iterate": "CG",
"property": "GENERAL",
"preconditioner": "BOOMERAMG",
"BOOMERAMG" :
{
"steps": 5,
"coarsentype": 10,

Completely new sets of parameters can be provided by this method.

Structure of a parameter file. Allowed are files of json, xml, or info format.
Here we present an excerpt of an info file:

solver
{
type direct
name MUMPS
}

names
{
type
{
iterate 0
direct 1
}
direct
{
UMFPACK O
PARDISO 1
MUMPS 2

run
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version 1103:1104M

kaskade7 /Users/roitzsch/Kaskade7
starttime 2010-02-25-09-47

pid 92109

or formulated in xml - format:

<?xml version="1.0" encoding="utf-8"?>
<solver>
<type>direct</type>
<name>MUMPS</name>
</solver>
<names>
<type>
<iterate>0</iterate>
<direct>1</direct>
</type>
<direct>
<UMFPACK>0</UMFPACK>
<PARDISO>1</PARDISO>
<MUMPS>2</MUMPS>
</direct>
</names>
<run>
<version>1103:1104M</version>
<kaskade7>/Users/roitzsch/Kaskade7</kaskade7>
<starttime>2010-02-25-09-26</starttime>
<pid>-92016</pid>
</run>

8 Grid types

There are several grid types we can use in KASKADE7 . They work on different el-
ement types in 1D, 2D and 3D, e.g., simplices like triangles and tetrahedra, prisms,
pyramids, and cubes and are realized as C++ classes. In general they don’t include
functions for mesh generation but an initial mesh must be provided by the user.
However, the grid classes have features to refine or to coarsen (globally or locally)
the user defined initial grid. The main libraries available via DUNE interface are

e UGGrid
e ALUGrid

e AlbertaGrid

The class GridManager connects geometrical information about the grid with al-
gebraic information due to the finite element discretization.
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9 Linear solvers

9.1 Direct solvers

KASKADE7 includes some of the well-known direct solvers, such as MUMPS,
UMFPACK and PARDISO (see section 4] and appendix [C).

The factorization base class Factorizationhas Scalar and SparseIndexInt
as template parameters. The constructor should do the factorization of the sparse
matrix and solve method will compute the solution. The matrix is defined by vec-
tors ridx, cidx and data containing the row and column index and the value of
the matrix entry.

MUMPSFactorization<double ,int> matrix (n,nnz,ridx ,cidx , data ,
SYMMETRIC) ;
matrix . solve (rhs , sol);

There is predefined factory of solvers which is used by the direct InverseOperator
subroutine.

DirectType solver = DirectType ::UMFPACK;
MatrixProperties prop = MatrixProperties : : GENERAL;
int onlyLowerTriangle = true;

AssembledGalerkinOperator <Assembler ,0,1,0,1 > A(assembler ,
onlyLowerTriangle) ;

directInverseOperator (A, solver , prop).applyscaleadd(—1.0,rhs,
solution) ;

In this case the corresponding initial object has to be included at the lining stage
(see the Makefilein tutorial/stationary_heattransfer orexplicitly in
the code.

9.2 Iterative solvers, preconditioners

In KASKADE7 we use iterative linear solvers offered by the DUNE ISTL library.
The main important are the cg-method and the bicgstab - mthod. This library also
provides a set of preconditioners including Jacobi-, SOR-, SSOR , and ILU. In
addition there are some other preconditioners from other libraries, see Table
The interfaces between these solvers and KASKADE7 can be studied in the tutorial
example tutorial/stationary_heattransfer.
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Incomplete LU ILUK www-users.cs.umn.edu/~saad/software/ITSOL/
Incomplete LU ILUP www-users.cs.umn.edu/~saad/software/ITSOL/
Algebraic MG ARMS www-users.cs.umn.edu/~saad/software/ITSOL/

Algebraic MG BOOMERAMG acts.nersc.gov/hypre/

Table 1: Some available preconditioners

10 Miscellaneous

10.1 Coding Style

The following coding guideline should be followed when programming KASKADE7
modules and headers:

o Indentation depth is 2 spaces, don’t use tabs

e Variables must begin with lowcase letters, separate words with upcase letters
(e.g. onlyLowerTriangle)

e Names of classes must begin with upcase letters (e.g. HeatFunctional)

e Macronames consist of upcase letters only, words are separated by under-
lines (e.g. SPACEDIM, ENABLE_ALUGRID)

e Constructor arguments preferably with trailing underline (e.g. in the Heat-
Functional constructor: Scalar q-)

e get/set methods names must be named getXYZ() and setXYZ()
e Braces must go on a new line and not indented
e Namespaces must be indented

e Use sensible/comprehensive variable/class/function names (e.g. int refine-
ments, class DomainCache, void evaluateAt(...))

e Comment your program for yourself to understand it, when you look at it
at a later time (one year after programming) and for other users to easily
comprehend and use it. Adhere to the following documentation suggestions:

— Write documentation for a more or less experienced user. Assume a
good understanding of common C++ features and idioms, but do not
omit documentation when using more arcane language features. As-
sume a good general understanding of numerical mathematics and fi-
nite elements, but do not assume in-depth knowledge of every details


www-users.cs.umn.edu/~saad/software/ITSOL/
www-users.cs.umn.edu/~saad/software/ITSOL/
www-users.cs.umn.edu/~saad/software/ITSOL/
acts.nersc.gov/hypre/
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of, say, error estimators or flux limiters. Apply common sense when
deciding what and how to document.

— Use doxygen to document the interface of classes, methods, and free
functions. Prefer a semantic documentation: tell what a class/method-
/function does on a mathematical or abstract level, if appropriate with
formulas.

— For classes, document on a top level view what the class (including
its methods) is supposed to do, what’s it good for, in which situations
it should be used. State requirements of template parameters (use the
\tparam tag). If appropriate, state class invariants and memory con-
sumption. In complex settings, consider providing code examples for
class usage.

— For methods and functions, document on a more detailed level what
they are supposed to do, and which assumptions the parameters have
to satisfy (preconditions). Describe what guarantees for the return val-
ues or output parameters hold (postconditions). If appropriate, state
runtime complexity. Relate this to the class documentation.

— Use plain comments to document the implementation. Prefer a seman-
tic documentation here, too. State design and implementation deci-
sions.

10.2 Measurement of cpu time

We use the boost package timer to perform measurements of user time, wall-clock
time, and system time. For that, we have to include

#include <boost/timer/timer.hpp>

We start such a time measurement by adding a line like the following:

boost::timer:: cpu_timer timer;

where t imer stands for an arbitrary name chosen by the user. The time elapsed
since defining the timer is given by

(double) (timer.elapsed () .user)/1e9;
(double) (timer .elapsed () .wall)/1e9;

with scaling factor 1e9.
For example, we measure the user time for the assembly in the Stokes problem,

see
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boost::timer:: cpu_timer timer;
assembler.assemble(linearization (F,x));
std :: cout << (double) (timer.elapsed ().user)/le9 << ”s\n”;

The timer function format () prints wall clock time, user time, and system
time and some additional information, e.g. in the example above

boost::timer:: cpu_timer timer;
assembler.assemble(linearization (F,x));
std ::cout << "% — 7 << totalTimer.format() << “s\n”;

yields the following output:

% —— 0.615291s wall, 0.460000s user + 0.150000s system = 0.610000s CPU (99.1%)

10.3 Namespaces
10.4 Multithreading
10.5 Special aspects of the DUNE grid interface

As already mentioned KASKADE7 is based on the DUNE core modules. The DUNE
grid interface enables the separation of the finite element code from the grid im-
plementation. Furthermore, the DUNE grid module provides several grid imple-
mentations. You can consult the class documentation and tutorials on the DUNE
webpage [2]] for questions concerning the usage of the grid interface. Nevertheless,
some approaches for specific issues are not that easy to find out. Therefore, we will
explain them here.

The following example shows how the grid interface can be employed for find-
ing the vertices (their global indices) of an (boundary) face. In this application we
have boundary segments with different properties and we want to find all segments
with a certain property and mark the corresponding vertices. First we present the
code snippet which achieves this an then explain the details.

const int dim = 3;

using Grid = Dune:: UGGrid<dim >;

std :: vector<int> propertiesOfBoundarySegments;

std :: vector<int> propertiesOfElements; // not further used

std :: unique_ptr <Grid> gridPtr (Dune :: GmshReader<Grid >::read (" grid/
coarseCube .msh” ,propertiesOfBoundarySegments ,
propertiesOfElements)) ;

GridManager<Grid> gridManager (std :: move( gridPtr));

Grid :: LeafGridView leafGridView = gridManager. grid ().leafGridView
03
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9 Dune:: MultipleCodimMultipleGeomTypeMapper<Grid :: LeafGridView , Dune
:: MCMGVertexLayout> vertexMapper (leafGridView ) ;
10 Dune :: BitSetVector <1> dirichletNodes (leafGridView . size (dim) ,false)
11 for (const auto& element : Dune::elements (leafGridView)) {
12 const Dune:: ReferenceElement<double ,dim>& refElement = Dune::
ReferenceElements <double , dim>::general (element.type());

13 if (element.hasBoundarylIntersections ()) {

14 for(const auto& intersection : Dune::intersections (

leafGridView ,element)) {

15 if (intersection .boundary()) {

16 if (propertiesOfBoundarySegments[intersection .
boundarySegmentIndex () ]J==1) { // has desired property
value ?

17 int localFacelndex = intersection.indexInlnside () ;

18 int nvFace = refElement. size (localFacelndex , 1, dim);

19 for (int i=0; i<nvFace; i++) {

20 int localVertexIndex = refElement.subEntity (

localFacelndex , 1, i, dim);

21 dirichletNodes [vertexMapper.sublndex (element ,

localVertexIndex ,dim)] = true;

22 )

23 }

24 }

25 }

% }

27 }

In lines [I]to [[0] needed variables are defined. In particular, in line 5] the grid (and
boundary segments together with their property) is read from a gmsh-file in which
the positions of the vertices, the elements, the boundary segments and their prop-
erties are recorded. Since the grid interface guarantees that the boundary segments
are ordered in the same way as they are inserted, we can later query the index of a
boundary segment and then get its property by the vector propertiesOfBoundarySegments
. The purpose of the for-loops in lines [T1| and [T4] is to iterate over all boundary
segments (which is an intersection located at the boundary). The member function
boundarySegmentIndex() of the class Intersection provides the index of the boundary
segment and we can check whether it has a certain property (line[T6). By the local
index of the boundary segment (as it is a face of an element) and with the aid of
the reference element (which was defined in line we obtain the local indices of
the vertices of the segment (line 20). By a suitable mapper we then get the global
indices and can mark the vertices (line [21)).
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11 Details in C++ implementation

11.1 Smart pointers (std: :unique_ptr)

The class std: :unique_ptr defines a sort of smart pointer. Unique pointers
make sure that the object they refence to is deleted when the life of the pointer
ends. Additionally only one unique pointer can hold a reference, which allows to
explicitly express ownership of objects on the heap.

In our first example (see Section [6.2)) the ownership of the new Grid is trans-
fered form grid to gridManager on line 4. The value of grid is zero after
this takeover.

int const dim = 2;

typedef Dune:: SGrid<dim,dim> Grid

std :: unique_ptr <Grid> grid (new Grid);
GridManager<Grid> gridManager (std :: move( grid)) ;

11.2 Fusion vectors (boost: :fusion: :vector)

The boost : : fusion: : vector template allows the definiton of container classes
with elements of different types. In our example (Stokes) the finite element H1-
spaces for the pressure and velocity have different order and are collected in the
Spaces vector.

H1Space pressureSpace (gridManager , gridManager. grid () .leafIndexSet
() ,ord—1);

H1Space velocitySpace (gridManager , gridManager. grid () .leafIndexSet
() ,ord);

typedef vector<HI1Space constx,HlSpace constx> Spaces;
Spaces spaces(&pressureSpace ,&velocitySpace);

The elements are accessed by the at_c-template or an iterative template like
foreach.

class PrintSpace

{

template <typename T>
void operator () (T& t) const
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std ::cout << t << std::endl;

std :: cout << at_c <0>(spaces) << std::endl;
std :: cout << at_c <I>(spaces) << std ::endl;

/1l

or equivalent

foreach (spaces, PrintSpace);

12

The dos and don’ts — best practice

Place using-directives as locally as possible. Especially in header files you
should never place them at global scope or in namespaces, as then the scope
of the using-directive will extend to all files included after this header file.
Therefore this clutters the global namespace and foils the idea behind names-
paces and sooner or later will lead to errors that are difficult to find.

Be careful with committing changes to the SVN repository. Especially, when
you have modified header files, ensure that the commands “make install”
and “make tutorial” still complete without errors before committing your
changes.

When iterating e.g. over cells, create the end-iterator outside the for state-
ment:

auto itEnd = gridView.end<0>();
for (auto it = gridView.begin<0>(); it != itEnd; ++it)

Creating the end iterator incurs a small but often non-negligible cost. Current
compilers (as of 2015-03-11) appear not to be smart enough to optimize the
repeated creation of the end iterator in the test of the for loop away. Hence
obtain it once beforehand.

Avoid copying entities or entity pointers whenever possible. Entites, and —
depending on the grid implementation — even entity pointers, may be large
objects, and copying/creating them is expensive.

Objects like Geomet ry are returned by reference, and — again depending
on the grid used — may be created on demand, which is expensive. Store
references that are used more than one time:
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auto const& geometry = cell.geometry () ;
for( int i = 0; i < dim+1; i++ )
std :: cout << geometry.corner (i) << std::endl;

13 Modules

This section briefly describes a couple of modules that provide additional func-
tionality or convenience routines, but are not considered to be part of the core
KASKADET7 libraries, e.g., because their applicability is limited to a quite narrow
problem domain.

13.1 Differential operator library

Defining problems as in [6.9] can be a tedious and error-prone task. Consider an
optimization problem subject to linear elasticity constraints: the Lamé-Navier op-
erator appears twice (once in the constraint and once in the adjoint equation) and
has to be coded anew, even though linear elasticity probably has been implemented
already. For this reason, a couple of standard differential operators are predefined
in fem/diffops/. We will present the (unspectacular) definition of the Pois-
son equation —Au = f in terms of the predefined Laplace differential operator class
just to show the principle. There is, of course, no real improvement, but this is dif-
ferent for more complex differential operators, such as linear elastomechanics or
the Stokes problem.

#include “fem/diffops/laplace.hh”

template <class Scalar, class VarSet>
class HeatFunctional
{
public:
typedef VarSet OriginVars;
typedef VarSet AnsatzVars;
typedef VarSet TestVars;

class DomainCache

{

public :
template <class Entity >
void moveTo( Entity const &)

{
}

laplace .setDiffusionTensor (1.0) ;
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template <class Position, class Evaluators>
void evaluateAt(Position const& x, Evaluators const&
evaluators)

using namespace boost:: fusion;
int const uldx = result_of::value_at_c <typename OriginVars::
Variables ,0 >::type::spacelndex;

u component<0>(data).value (at_c<uldx >(evaluators));

du = component<0O>(data).derivative (at_c<uldx >(evaluators))
[0];

laplace.setLinearizationPoint(du);

f = 1.0;

}

Scalar
dO() const

{

return laplace.d0() — fx*u;
}

template<int row, int dim>
Dune:: FieldVector<Scalar , TestVars::template Components<row >::

m>
dl (VariationalArg<Scalar ,dim> const& arg) const
{

return laplace.dl(arg)—fxarg. value;
}

template<int row, int col, int dim>

Dune :: FieldMatrix <Scalar , TestVars::template Components<row >::
m, AnsatzVars::template Components<col >::n>

d2 (VariationalArg<Scalar ,dim> const &argTest, VariationalArg<
Scalar ,dim> const& argAnsatz) const

{

return laplace.d2(argTest,argAnsatz);

}

private:

Scalar u, f;

Dune:: FieldVector<Scalar , AnsatzVars :: Grid : : dimension> du;
Kaskade :: Laplace<Scalar , AnsatzVars :: Grid :: dimension> laplace;

}s
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13.2 Deforming grid manager
13.2.1 Motivation

In finite element computations the discretization of the spatial domain Q influences
the accuracy of the solution and the efficiency of numerical solvers in many ways.
E.. the discretization ; of Q contains artificial corners. The possibly occuring
corner singularities at these artificial corners lead to unnecessary adaptive refine-
ment, thus reducing the efficiency of numerical solvers. Moreover the boundary
dQy, does in general not coincide with the boundary dQ2. The same holds for inner
boundaries in the case of multi-phase problems. Thus the position of the imposed
boundary conditions is resolved inexactly as well as the orientation of the surface’s
normal vectors.

Both effects may be reduced if more information than the coarsest discretiza-
tion €, is available. In many cases there exists a finer discretization €2, which
has been coarsened in order to efficiently solve the problem. If this is not the case it
is also possible to use knowledge on tangent plane continuity, possibly of subsets,
of Q. The implemented DeformingGridManager is able to

e consider inner boundaries if phase information is provided
e adjust/smoothen (parts of) the inner and/or outer boundaries
e detect and preserve “sharp” features

e control angle conditions.

13.2.2 Getting started

The class DeformingGridManager is implemented using a policy based class
design (implementations mentioned below can be found in namespace Policy).
The following three policies have to be specified:

e OuterBoundaryPolicy: Determines the behaviour on domain bound-
ary. Choose one of:

— ConsiderOuterBoundary: Consider complete domain boundary
(default).

— IgnoreOuterBoundary: Ignore complete domain boundary.

- SpecifyOuterBoundary: Specify particular parts of the outer
boundary that shall be considered/ignored. The parts that shall be con-
sidered/ignored are identified via their boundary segment index.
In general the specified ids will be considered and the remaining ids
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will be ignored.
If skipSpecifiedIds==true itis the other way round.

If the given policies do not satisfy your needs you may implement your own
policy. Then your policy must implement the method:

template<class Face> bool ignoreOuterBoundary (Face const&
face) const;

e InnerBoundaryPolicy: Determines the behaviour on inner boundaries.
Note that ITnnerBoundaryPolicy!=IgnoreInnerBoundary does
only make sense if a phase element is passed to the constructor of
DeformingGridManager, i.e. inner boundaries only exist if phase in-
formation has been provided. Choose one of:

— ConsiderInnerBoundary: Consider all inner boundaries.
— IgnoreInnerBoundary: Ignore all inner boundaries (default).

— SpecifyInnerBoundary: Specify particular parts of the inner
boundaries that shall be considered/ignored. The parts that shall be
considered/ignored are identified via a pair of phase ids associated with
the neighbouring phases. In general the specified pairs will be consid-
ered and the remaining pairs will be ignored.

If skipSpecifiedIds==true itis the other way round.

If the given policies do not satisfy your needs you may implement your own
policy. Then your policy must implement the method:

bool ignorelnnerBoundary (int phaseld, int neighbourld) const;

e ThresholdPolicy<Scalar>: Feature detection. Choose one of:

— NoGradientThreshold: No feature detection (default).

— ApplyGradientThreshold: Simple feature detection. Consider-
ing the provided or computed surface normals in local 2-dimensional
coordinate systems leads to a scalar quantity, the slope in the local coor-
dinate system. This policy allows to specify a threshold for this slope.
If the threshold is exceeded it is assumed that we detected a sharp cor-
ner that should not be smoothened. Note that slope = 1 is equivalent
to an angle of 2-45° =90°.
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If the given policies do not satisfy your needs you may implement your own
policy. Then your policy must implement the method:

void applyGradientThreshold(Scalar &gradient) const;

Usage: In order to use the deforming grid manager include the file "fem/deform-
inggridmanager.hh” instead of “fem/gridmanager.hh”. Then you may start using
this grid manager implementation using the following typedef:

typedef DeformingGridManager < double ,UGGrid<3>,Policy ::
IgnoreOuterBoundary , Policy:: ConsiderIlnnerBoundary , Policy ::
ApplyGradientThreshold > GridManager;

Supposing that there exists a grid stored in a std: :unique_ptr and a phase
element phaseElement (a FunctionSpaceElement holding the phase ids)
we can create an object of GridManager:

using namespace Policy;

GridManager gridManager(std ::move(grid), phaseElement,
IgnoreOuterBoundary () , ConsiderInnerBoundary () ,
ApplyGradientThreshold (0.71));

Remark: As it seems not to be possible to determine adequate a priori estimates
that guarantee that angle conditions are not violated during mesh refinement, aa
posteriori verification step has been implemented. In this step the deformation that
is associated with the specified policies is damped as long as degradation of mesh
regularity is considered not acceptable. It may be better to move this damping step
to another policy, but currently you can not change it.

13.2.3 Advanced usage

14 Gallery of projects

15 KASKADE7 publications

KASKADE7 provided numerical simulation results for many articles and two books.
Here we present the most important of them:

e Peter Deuflhard, Martin Weiser:
Numerische Mathematik 3. Adaptive Losung partieller Differentialgleichun-
gen,
de Gruyter, 2011.
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Peter Deuflhard, Martin Weiser:
Adaptive numerical solution of PDEs,
de Gruyter, to appear 2012.

Olaf Schenk, Andreas Wichter, Martin Weiser:

Inertia revealing preconditioning for large-scale nonconvex constrained op-
timization,

SIAM J. Sci. Comp. 31(2): 939-960(2008).

Martin Weiser:
Optimization and Identification in Regional Hyperthermia,
Int. J. Appl. Electromagn. and Mech. 30: 265-275(2009).

Martin Weiser:
Pointwise Nonlinear Scaling for Reaction-Diffusion Equations,
Appl. Num. Math. 59 (8): 1858-1869(2009).

Anton Schiela, Andreas Giinther:

An interior point algorithm with inexact step computation in function space
for state constrained optimal control,

Num. Math. 119(2): 373-407(2011), see also ZIB Report 09-01 (2009).

Martin Weiser:
On goal-oriented adaptivity for elliptic optimal control problems,
to appear in Opt. Meth. Softw., see also ZIB-Report 09-08 (2009).

Anton Schiela, Martin Weiser:

Barrier methods for a control problem from hyperthermia treatment plan-
ning,

in M. Diehl, F. Glineur, E. Jarlebring, W. Michiels (eds.): Recent Advances
in Optimization and its Applications in Engineering (Proceedings of 14th
Belgian-French-German Conference on Optimization 2009), 419-428(2010),
Springer, see also ZIB-Report 09-36 (2009).

Martin Weiser, Sebastian Gotschel:

State trajectory compression for optimal control with parabolic PDEs,
SIAM J. Sci. Comp., 34(1):A161-A184(2012), see also ZIB Report 10-05
(2010).

Sebastian Gotschel, Martin Weiser, Anton Schiela:
Solving optimal control problems with the Kaskade7 Finite Element Tool-
box,
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in Dedner, Flemisch, Klofkorn (Eds.) Advances in DUNE, 101-112(2012),
Springer, see also ZIB Report 10-25 (2010).

Lars Lubkoll:
Optimal control in implant shape design,
thesis, TU Berlin 2011.

Peter Deuflhard, Anton Schiela, Martin Weiser:
Mathematical cancer therapy planning in deep regional hyperthermia,
Acta Numerica 21: 307-378(2012), see also ZIB-Report 11-39 (2011).

Lars Lubkoll, Anton Schiela, Martin Weiser:
An optimal control problem in polyconvex hyperelasticity,
ZIB-Report 12-08 (2012).

A  Weak formulations

A.1 Stationary heat equation

/KVM-Vvdx—}—/quvdx:/fvdx (38)
Q Q Q

B Online resources

B.1

Git
https://git-scm.com/docs common used commands in Git

https://git-scm.com/docs/git#_git_commands complete list
of Git commands

http://git.or.cz/course/svn.html crash course for switching
from SVN to Git

http://rogerdudler.github.io/git—-guide/ short starting guide
for Git

https://git-scm.com/book/en/v2 the entire Pro Git book, writ-
ten by Scott Chacon and Ben Straub and published by Apress
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C Libraries

ALBERTA

ALBERTA is an Adaptive multiLevel finite element toolbox using Bisectioning
refinement and Error control by Residual Techniques for scientific Applications.
DUNE offers an abstraction to the ALBERTA grid manager through the Alberta-
Grid class.

e Homepage: http://www.alberta-fem.de/

e Currently developed by University of Stuttgart, Institute of Applied Analysis
and Numerical Simulation: https://www.ians.uni—-stuttgart.
de

AMIRA

Amira is a software platform for 3D and 4D data visualization, processing, and
analysis. It is being actively developed by Thermo Fisher Scientific in collabora-
tion with the Zuse Institute Berlin (ZIB), and commercially distributed by Thermo
Fisher Scientific.

Amira remains the development platform for many research projects at the De-
partment of Visual Data Analysis at ZIB. For this purpose, ZIB maintains a version
of Amira for Research Partners. Research partners are individuals who actively
participate in a joint research project with ZIB aiming at joint publications, joint
software development, and/or joint funding. ZIB can provide Amira for Research
Partners for the duration of the project on an individual basis free of charge.

e Research partners obtain the software and a license as follows: https:
//amira.zib.de/download.html

e Amira at Thermo Fisher Scientific: https://www.thermofisher.
com/de/de/home/industrial/electron—-microscopy/
electron—-microscopy—-instruments—-workflow—
solutions/3d-visualization—analysis—software/
amira-life-sciences—-biomedical.html

e Amira at Wikipedia: https://en.wikipedia.org/wiki/Amira_
(software)


http://www.alberta-fem.de/
https://www.ians.uni-stuttgart.de
https://www.ians.uni-stuttgart.de
https://amira.zib.de/download.html
https://amira.zib.de/download.html
https://www.thermofisher.com/de/de/home/industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-visualization-analysis-software/amira-life-sciences-biomedical.html
https://www.thermofisher.com/de/de/home/industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-visualization-analysis-software/amira-life-sciences-biomedical.html
https://www.thermofisher.com/de/de/home/industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-visualization-analysis-software/amira-life-sciences-biomedical.html
https://www.thermofisher.com/de/de/home/industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-visualization-analysis-software/amira-life-sciences-biomedical.html
https://www.thermofisher.com/de/de/home/industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-visualization-analysis-software/amira-life-sciences-biomedical.html
https://en.wikipedia.org/wiki/Amira_(software)
https://en.wikipedia.org/wiki/Amira_(software)
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BOOST

Boost is a set of libraries for the C++ programming language that provides support
for tasks and structures such as linear algebra, pseudorandom number generation,
multithreading, image processing, regular expressions, and unit testing.

e Homepage: https://www.boost.org/

e Boost at Wikipedia: https://en.wikipedia.org/wiki/Boost_
(C%2B%2B libraries)

DUNE

DUNE, the Distributed and Unified Numerics Environment is a modular toolbox for
solving partial differential equations (PDEs) with grid-based methods. It supports
the easy implementation of methods like Finite Elements (FE), Finite Volumes
(FV), and also Finite Differences (FD).

DUNE is a community project. It is free software licensed under the GPL
(version 2) with a so called “runtime exception” (see license). This licence is
similar to the one under which the libstdc++ libraries are distributed. Thus it is
possible to use DUNE even in proprietary software.

The underlying idea of DUNE is to create slim interfaces allowing an efficient
use of legacy and/or new libraries. Modern C++ programming techniques enable
very different implementations of the same concept using a common interface at a
very low overhead. Thus DUNE ensures efficiency in scientific computations and
supports high-performance computing applications.

You will find a class documentation for DUNE core modules of several versions
at their homepage.

e Homepage: https://dune-project.org/

HYPRE

Livermore’s HYPRE library of linear solvers makes possible larger, more detailed
simulations by solving problems faster than traditional methods at large scales.
It offers a comprehensive suite of scalable solvers for large-scale scientific sim-
ulation, featuring parallel multigrid methods for both structured and unstructured
grid problems. The HYPRE library is highly portable and supports a number of
languages.

HYPRE is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License (as published by the Free Soft-
ware Foundation) version 2.1 dated February 1999.


https://www.boost.org/
https://en.wikipedia.org/wiki/Boost_(C%2B%2B_libraries)
https://en.wikipedia.org/wiki/Boost_(C%2B%2B_libraries)
https://dune-project.org/
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e Homepage: https://computing.llnl.gov/projects/hypre-
scalable-linear-solvers—-multigrid-methods

ITSOL

ITSOL is a library of iterative solvers for general sparse linear systems of equa-
tions. ITSOL can be viewed as an extension of the itsol module in SPARSKIT. It
is written in C and offers a selection of recently developed preconditioners.

e Homepage: https://www—users.cs.umn.edu/~saad/software/
ITSOL/

MUMPS

MUMPS (MUltifrontal Massively Parallel Solver) is a package for solving systems
of linear equations of the form Ax = b, where A is a square sparse matrix that
can be either unsymmetric, symmetric positive definite, or general symmetric, on
distributed memory computers. MUMPS implements a direct method based on
a multifrontal approach which performs a Gaussian factorization A = LU where
L is a lower triangular matrix and U an upper triangular matrix. If the matrix is
symmetric then the factorization A = LDL” where D is block diagonal matrix with
blocks of order 1 or 2 on the diagonal is performed.

e Homepage: http://mumps.enseeiht.fr/

PARDISO

The package PARDISO is a thread-safe, high-performance, robust, memory effi-
cient and easy to use software for solving large sparse symmetric and unsymmetric
linear systems of equations on shared-memory and distributed-memory multipro-
Cessors.

e Homepage: https://pardiso-project.org/

TAUCS

TAUCS is a C library of sparse linear solvers. The TAUCS incomplete Cholesky
preconditioner is a more memory-efficient version of the incomplete LU precondi-
tioner for symmetric positive definite matrices.

e Homepage: https://www.tau.ac.il/~-stoledo/taucs/


https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
https://www-users.cs.umn.edu/~saad/software/ITSOL/
https://www-users.cs.umn.edu/~saad/software/ITSOL/
http://mumps.enseeiht.fr/
https://pardiso-project.org/
https://www.tau.ac.il/~stoledo/taucs/
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UG for DUNE

UG is a software tool for the numerical solution of partial differential equations on
unstructured meshes in two and three space dimensions using multigrid methods.
UG runs both sequentially and in parallel. DUNE offers an abstraction to the UG
grid manager through the UGGrid class. UG is free software, available under the
LGPLv2+.

e Information about UG at DUNE homepage: https://dune-project.
org/doc/install-ug/

UMFPACK

UMFPACK is a set of routines for solving unsymmetric sparse linear systems,
Ax = b, using the Unsymmetric MultiFrontal method. It uses dynamic memory
allocation, and has a symbolic preordering and analysis phase that also reports
the upper bounds on the nonzeros in L and U, flop count, and memory usage in
the numeric phase. It can be used for real and complex matrices, rectangular and
square, and both non-singular and singular. It is included in SuiteSparse, a suite of
sparse matrix algorithms.

e Homepage of SuiteSparse: https://people.engr.tamu.edu/davis/
suitesparse.html
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