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Main focus: Systematic
approach of generating
appearance model
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Dictionary Learning:
 Learn generic appearance model during training
« Efficient sparse representation during testing
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Contribution
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Dictionary Learning

» Image Representation

Image level: High variability, low redundancy




» Represent image patches using an over-complete
dictionary

[Dictionary

Input

Sparse Coeflicient

» Recon. patch: sparse combination of atoms of
Dictionary

http://ranger.uta.edu/~huang/R_Cervigram.htm
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Training

Samples with intensity features
Rotation Inv. HOG
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Training

Samples with intensity features
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Training

Samples with intensity features FG Dictionary
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Training

Samples with intensity features FG Dictionary

Similarly, Background Dictionary is
generated
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DICE COEFFICIENT (MEAN = STD) FOR SEGMENTATION ACCURACY IN %.

Baseline Ischemia
Methods Standard CINE ~ CP-BOLD  Standard CINE  CP-BOLD
Atlas-based methods
dDemons [6] 60 + 8 55+ 8 56 + 6 49+7
FFD-MI [20] 60 £3 54+ 8 54+ 8 45+ 6
Supervised classifier-based methods
ACRF 57T+3 25+ 2 5243 21+ 2
TACRF 65 £2 20+ 3 59+1 244+ 2
Dictionary-based methods
DDLS [7] 7T1+2 32+3 66 £ 3 23+ 4
RDDL [39] 42+ 15 50 + 20 48 +13 6112
MSDDL [9] 7512 75+ 2

77+ 10 TTL£9
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Summary and Future Work

» General model-based 3D segmentation
Across anatomies and modalities

» Benetfits of Joint Dictionary Learning

Traditional PCA-based learning
2D RFRV

» Localized error prone areas
Separate/ better strategy

» Experiments on other datasets
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Training Algo
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Algorithm 1 Joint Dictionary Learning (JDL)
Input: Training patches for background and the landmarks: Y® and Y*
Output: Dictionaries for background and the landmarks: D® and D

1: for C={B,F} do

2: Compute Y ¢

3 Learn dictionaries with K-SVD algorithm

minimize[|Y“ — D°X[3 s.t. X o< S

Dt . xc

4: end for




Cost Function Calculation
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Algorithm 2 Cost Function Calculation (CFC)

Input: Testing patches along profile of current landmark locations: {Y;",}/=,, Learnt
Shape Model, Dictionaries for background and the landmarks: D® and D¥
Output: Predicted Landmark location

1: forl=1...L do
2: for p = each location on the profile of current Landmark [ do
for C={B.F} do

Compute Y,?;
REP = ||y?:p - DG&EPHE
end for
Pp=A(1- pr) +(1- .}.)pr
end for
: end for




Rotation Invariant - HOG

O

» Sample boxes aligned w.r.t. the surface normal

o Training: Foreground patches can encode the boundary
appearance and background patches can encode the
completely inside/ outside info

o Testing: optimization along normal profile ensures that both
foreground and background agrees on final position.

» Rotation problem is resolved y the RI-HOG features

o Any other sophisticated feature and sampling strategy will
suffice




