Dictionary Learning for Medical Image Segmentation

ANIRBAN MUKHOPADHYAY THERAPY PLANNING ZUSE INSTITUTE BERLIN

• Medical Image Segmentation

2

Medical Image Segmentation

• Fully automatic

3

Medical Image Segmentation

• Fully automatic

• Arbitrary 3D anatomy and modality

Medical Image Segmentation

- Fully automatic
- Arbitrary 3D anatomy and modality
- Deformable model

Deformable Model Recipe

Deformable Model

- Appearance model
- Geometric Regularizer

Deformable Model Recipe

Deformable Model

- Appearance model
- Geometrie Regularizer

Deformable Model Focus

Deformable Model

- Appearance model
- Geometrie Regularizer

•Main focus: Systematic approach of generating appearance model

Kainmüller et al. *MICCAI Workshop 3D Segmentation* 2007

Kainmüller et al. MICCAI Workshop 3D Segmentation 2007

Dictionary Learning:

- Learn generic appearance model during training
- Efficient sparse representation during testing

Contribution

11

• General 3D Segmentation

Contribution

12

General 3D Segmentation

• Joint Dictionary Learning (JDL)

Dictionary Learning

13

Image Representation

• Image level: High variability, low redundancy

• Patch level: Low variability, high redundancy

 Recon. patch: sparse combination of atoms of Dictionary

http://ranger.uta.edu/~huang/R_Cervigram.htm

Training

15

Samples with intensity features Rotation Inv. HOG

Samples with intensity features

FG Dictionary

Sparse Rep

Similarly, Background Dictionary is generated

Cost Function Calculation

		h_{ij}		No.	4.	3.5		÷.	
		۲	ar ya	h_{ik}	1	si e			11 W.
=		inter Land	1	9	\mathbf{k}_{d}	6	χ.	ų - 1	
	Ŕ.		۵	1.0	1				jan Mari

÷.,		àn,				ž.	a a la característica de la	
a la constante	0 lu v				Sec. 1	da -		
			e Porte		10.00		ú.	1
		Auto A	- Jan	nad v	aul.			ίų.

Cost Function Calculation

8

=	Adverte March	10.2 M	💩 _ state (³ 10	$w_{h,g}(t) = 0$	1 1 1 m	an Darie 👷		1. A. 18		
	k.		5		la se	N.V.	41. 1-			
=	Major.	, Alta			a series	ulu, s	du.			
	0		4		100			9	din a	

Liver CT

Femur MR

Cardiac Image Segmentation

29

Sparse modeling

- Appearance
- o Motion

Dice coefficient (mean \pm std) for segmentation accuracy in %.

(3<u>0</u>)

	Baselin	ne	Ischemia						
Methods	Standard CINE	CP-BOLD	Standard CINE	CP-BOLD					
Atlas-based methods									
dDemons [6]	60 ± 8	55 ± 8	56 ± 6	49 ± 7					
FFD-MI [20]	60 ± 3	54 ± 8	54 ± 8	45 ± 6					
Supervised classifier-based methods									
ACRF	57 ± 3	25 ± 2	52 ± 3	21 ± 2					
TACRF	65 ± 2	29 ± 3	59 ± 1	24 ± 2					
Dictionary-based methods									
DDLS [7]	71 ± 2	32 ± 3	66 ± 3	23 ± 4					
RDDL [39]	42 ± 15	50 ± 20	48 ± 13	61 ± 12					
MSDDL [9]	75 ± 3	75 ± 2	75 ± 2	71 ± 2					
UMSS [10]	62 ± 20	71 ± 10	65 ± 14	66 ± 11					
Proposed	77 ± 10	77 ± 9	74 ± 7	74 ± 6					

Summary and Future Work

- General model-based 3D segmentation
 Across anatomies and modalities
- Benefits of Joint Dictionary Learning
 - Traditional PCA-based learning 2D RFRV
- Localized error prone areas
 Separate/ better strategy
- Experiments on other datasets

Thank You

Questions?

Training Algo

Algorithm 1 Joint Dictionary Learning (JDL)

Input: Training patches for background and the landmarks: Y^B and Y^F **Output:** Dictionaries for background and the landmarks: D^B and D^F

- 1: for $C = \{B,F\}$ do
- 2: Compute Y^C
- 3: Learn dictionaries with K-SVD algorithm

$$\underset{D^{C}, X^{C}}{\text{minimize}} \|Y^{C} - D^{C} X^{C}\|_{2}^{2} \quad \text{s. t.} \quad \|X_{i}^{C}\|_{0} \leq S$$

4: end for

Cost Function Calculation

Algorithm 2 Cost Function Calculation (CFC)

Input: Testing patches along profile of current landmark locations: $\{Y_{l,p}^T\}_{l=1}^L$, Learnt Shape Model, Dictionaries for background and the landmarks: D^B and D^F Output: Predicted Landmark location

```
1: for l = 1...L do
        for p = \text{each location on the profile of current Landmark } l do
2:
             for C = \{B, F\} do
3:
                  Compute Y_{l,p}^T
4:
                 R_{l,p}^{C} = \|y_{l,p}^{T} - D^{C}\hat{x}_{l,p}^{C}\|_{2}^{2}
5:
             end for
6:
                P_{l,p} = \lambda (1 - R_{l,p}^B) + (1 - \lambda) R_{l,p}^F
7:
8:
        end for
9: end for
```

Rotation Invariant - HOG

• Sample boxes aligned w.r.t. the surface normal

- Training: Foreground patches can encode the boundary appearance and background patches can encode the completely inside/ outside info
- Testing: optimization along normal profile ensures that both foreground and background agrees on final position.

• Rotation problem is resolved y the RI-HOG features

• Any other sophisticated feature and sampling strategy will suffice