Freie Universität Berlin FB Mathematik und Informatik WS 2017/18 Prof. Dr. Ralf Borndörfer Isabel Beckenbach

Optimization 2

Exercise Sheet 10 Submission: Wednesday, 17.01.2018, 12:00

Exercises:

Rigorous mathematical proofs/arguments are expected if not stated otherwise. You are allowed to work in groups of two.

Homepage of the Lecture: http://www.zib.de/ws17_Optimierung_II Questions?: beckenbach@zib.de

Exercise 10.1

2+4+2 Points

Let G = (V, E) be a connected graph. The graphic matroid \mathcal{M}_G associated to G has E as its ground set and $F \subseteq E$ is independent if and only if G[F] contains no cycle. Denote the set of independent sets of \mathcal{M}_G by \mathcal{I}_G .

- (a) Show that \mathcal{M}_G is indeed a matroid.
- (b) How do the bases and circuits of \mathcal{M}_G look like?
- (c) Give a formula for the rank function of \mathcal{M}_G .

Exercise 10.2

Give a closed formula for the rank functions of the following matroids.

- (a) The free matroid $(E, 2^E)$.
- (b) The k-uniform matroid $U_{k,n}$ on a ground set of size n, i.e.

$$U_{k,n} := (\{1, \dots, n\}, \{I \subseteq \{1, \dots, n\} : |I| \le k\}).$$

(c) The trivial matroid $(E, \{\emptyset\})$.

6 Points

Exercise 10.3

Let G = (V, E) be a connected graph. Look at the following independence systems and prove or disprove that they are matroids.

(a) $\mathcal{M}_1 := (E, \mathcal{I}_1)$ where \mathcal{I}_1 is the set of all matchings in G, i.e.,

$$\mathcal{I}_1 = \{ M \subseteq E : \deg_M(v) \le 1 \ \forall v \in V \}.$$

(b) $\mathcal{M}_2 := (V, \mathcal{I}_2)$ where \mathcal{I}_2 is the set of all vertex subsets covered by some matching of G, i.e.,

 $\mathcal{I}_2 = \{ U \subseteq V : \exists \text{ maching } M \text{ with } U \subseteq V(M) \}.$