FREIE UNIVERSITÄT BERLIN FB MATHEMATIK UND INFORMATIK SS 2018 Prof. Dr. Ralf Borndörfer Pedro Maristany

Optimization III

Exercise Sheet 3

Submission: Thursday, 09.05.2018, 14:00

Exercises:

Rigorous mathematical proofs/arguments are expected if not stated otherwise. You are allowed to work in groups of two.

Homepage of the Lecture: http://www.zib.de/ws17_Optimierung_II Questions?: maristany@zib.de

Exercise 3.1

Let D := (V, A) be a directed graph with capacities $u : A \to \mathbb{R}_+$, and let $b : V \to \mathbb{R}$ with $\sum_{v \in V} b(v) = 0$ be the balance function on the nodes. Prove that there exists a b - flow on D that respects u if and only if

$$\sum_{a \in \delta^+(X)} u(e) \ge \sum_{v \in X} b(v), \quad \forall X \subseteq V.$$

Exercise 3.2

Show that the *Maximum Flow Problem* can be regarded as a special case of the *Minimum Cost Problem*.

Exercise 3.3

Given a directed graph D := (V, A), let (T, L, U) be a partition of A, and T a spanning tree of D.

- a) Prove that there exists a unique flow x on D such that $x_a = l_a$ for all $a \in L$ and $x_a = u_a$ for all $a \in U$.
- b) In the first part of the exercise, nothing is said about the flow value x_a for arcs $a \in T$. Is the unique flow x always feasible?

Exercise 3.4

This weeks modeling exercise will be the *Diet Problem*. We are trying to find a combinations of foods and nutritional values that leads to a funny solution once the model is solved. The final version of the exercise will be posted on Friday, May 4th.

[Model the problem as an Integer Program.]

10 Points

10 Points

10 Points

10 Points