
Freie Universität Berlin Prof. Dr. Ralf Borndörfer
FB Mathematik und Informatik Isabel Beckenbach
WS 2017/18

Optimization 2

Exercise Sheet 8
Submission: Wednesday, 20.12.2017, 12:00

Exercises:
Rigorous mathematical proofs/arguments are expected if not stated otherwise. You are
allowed to work in groups of two.

Homepage of the Lecture: http://www.zib.de/ws17_Optimierung_II
Questions?: beckenbach@zib.de

Exercise 8.1 4+6 Points

Let v1, . . . , vn, w1, . . . , wn,W ∈ N≥1 be given positive integers. Consider the 0, 1
Knapsack Problem

max
n∑

i=1

vixi

n∑
i=1

wixi ≤ W

xi ∈ {0, 1} ∀i = 1, . . . , n.

For every i = 1, . . . , n and w ∈ {1, . . . ,W} we denote by m[i, w] the maximum value
of items of weight less than w using the first i items, i.e.,

m[i, w] := max{
∑
j∈S

vj : S ⊆ {1, . . . , i},
∑
j∈S

wj ≤ w},

in particular, m[n,W ] equals the optimal value of the knapsack problem. We set
m[0, w] := 0 for all w ∈ {1, . . . ,W}.

(a) Show that m[i, w] satisfies the following recursion:

m[i, w] :=

{
m[i− 1, w] if wi > w

max{m[i− 1, w],m[i− 1, w − wi] + vi} if wi ≤ w
.

please turn over



(b) Look at the following algorithm for the 0, 1 Knapsack Problem.

for w = 1 to W do
m[0, w] = 0

end
for i = 1 to n do

for w = 1 to W do
if wi > w then

m[i, w] = m[i− 1, w]
else

m[i, w] = max{m[i− 1, w],m[i− 1, w − wi] + vi}
end

end

end

Calculate its time and space complexity.

Does this algorithm run in polynomial time?

Exercise 8.2 5 Points

Given an undirected graph G = (V,E) and a positive integer k ≤ n. The degree
constrained spanning tree problem asks whether a spanning tree exists in which no
vertex has degree greater than k.

Show that this decision problem is NP-complete.

Exercise 8.3 1+4 Points

Let (E, I, c) be a constrained optimization problem of the form min{c(I) : I ∈ I},
where I is a family of subsets of E, and c : E → Z an integral function on E.
We denote this optimization problem by ΠO and its associated decision problem
min{c(I) : I ∈ I} ≤ B by ΠD.

(a) Show that ΠO ∈ P implies ΠD ∈ P .

(b) Assume that for every instance of ΠO of size n an upper bound U(n) is given
with U ∈ O(2n), and ΠD ∈ P . Derive a polynomial time algorithm for ΠO

using a polynomial time algorithm for ΠD


