Freie Universität Berlin FB Mathematik und Informatik Sommersemester 2017 Prof. Dr. Ralf Borndörfer Torsten Klug

Optimierung I

Excercise Sheet 6

Submission: until 14:15 on Tuesday, June 6, 2017

Exercise 6.1

10 Points

Given a polyhedron P(A, b) defined by

	/ 1	1	1	0	0 \		(2)
	1	0	0	1	0		1
	0	1	1	0	0		1
	1	0	1	0	1		2
	1	0	1	1	0		2
	-1	0	0	0	0		0
	0	-1	0	0	0		0
A =	0	0	-1	0	0	b =	0
	0	0	0	-1	0		0
	0	0	0	0	-1		0
	1	0	0	0	0		1
	0	1	0	0	0		1
	0	0	1	0	0		1
	0	0	0	1	0		1
	0	0	0	0	1/		1/

Show the following statements:

- a) $\dim (P(A, b)) = 5.$
- b) $-x_i \leq 0$ defines a facet of P(A, b) for all i = 1, ..., 5.
- c) $x_5 \leq 1$ defines a facet of P(A, b).
- d) Which of the inequalities are redundant?

Exercise 6.2

a) Proof:

Let $\mathcal{P} = \mathcal{P}^{=}(A, b) \subseteq \mathbb{R}^{n}$ be a polyhedron, $x \in \mathcal{P}$. The following statements are equivalent:

i) x is a vertex of \mathcal{P}

10 Points

- ii) rank $A_{supp(x)} = |supp(x)|$
- iii) $\{A_{j}\}_{j \in supp(x)}$ is linear independent
- b) A matrix $A \in \mathbb{R}^{m \times n}$ is called totally unimodular if each square submatrix of A has determinant equal to 0, +1, or 1. In particular, each entry of a totally unimodular matrix is 0, +1, or 1.

Let $A \in \mathbb{R}^{m \times n}$ totally unimodular and $b \in \mathbb{Z}^m$. Proof the following statement:

If A is totally unimodular, then the polyhedron $P^{=}(A, b)$ has only integer vertices. Hint: Use a) and Cramer's Rule.

Exercise 6.3

10 Points

- a) Show that each non-trivial face of a polyhedron is the intersection of facets of the polyhedron.
- b) Let P be a polyhedron of dimension d, and let F be a non-trivial face of P whose dimension k is less than d. Prove that there exist faces $F_{k+1}, F_{k+2}, \ldots, F_{d-1}$ of P such that
 - (i) $F \subseteq F_{k+1} \subseteq F_{k+2} \subseteq \ldots \subseteq F_{d-1} \subseteq P$,
 - (ii) $\dim(F_{k+i}) = k+i$, für $i = 1, \dots, d-k-1$.

Hint: induction over d-k

Homepage of the Lecture: http://www.zib.de/ss17_Optimierung_I Questions?: klug@zib.de