FREIE UNIVERSITÄT BERLIN FB MATHEMATIK UND INFORMATIK Sommersemester 2017

Prof. Dr. Ralf Borndörfer Torsten Klug

Optimierung I

Excercise Sheet 7

Submission: until 17:00 on Monday, June 12, 2017

Exercise 7.1

10 Points

Proof the following alternatives of the Farkas-Lemma:

a) Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Then exactly one of the following systems has a solution:

				$y^T b$	<	0
Ax	\leq	b	Ý	$y^T A$	=	0
				y	\geq	0

b) Let A, B, C, D and a, b be compatible matrices and vectors. Then exactly one of the following systems has a solution:

Ax	+	By	$\leq c$	a_{b}	a	$u^T A u^T B$	+ +	$v^T C \\ v^T D$	≥ =	0 0
$\begin{array}{c} Cx + \\ x \end{array}$	Dy	$-$ 0 \rightarrow 0	V	u			\geq	0		
			_	0		$u^T a$	+	$v^T b$	<	0

Exercise 7.2

Given the following optimization problem:

 $\min 4x_1 + 4x_2 + 8x_3 + 6x_4 + 6x_5$ $x_1 + x_2 + x_3 - 2x_4 + 2x_5 \ge 1$ s.t. (LP) $x_1 - 2x_2 + 2x_3 + x_4 + x_5 \ge 1$ $x_5 \geq 0$ x_1 , x_2 , x_3 , x_4 ,

a) Formulate the dual (DP) of the linear program (LP). Make a sketch for DP.

b) Solve the dual DP graphically or with SCIP.

c) Construct a optimal solution of LP out of the optimal solution of DP.

10 Points

Exercise 7.3

10 Points

Proof or counterproof the following theorem:

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Then the vector \bar{x} is an optimal solution of

$$\begin{array}{rcl} \max & c^T x \\ \text{s.t.} & Ax &= b \\ & x &\geq 0 \end{array}$$

if and only if

$$\begin{array}{rcl} A\bar{x} &=& b\\ \bar{x} &\geq& 0\\ c^{T}s &\leq& 0 & \forall s \in \{v \in \mathbb{R}^{n} \ : \ Av = 0, \ v_{\{1,\dots,n\} \setminus \mathrm{supp}(\bar{x})} \geq 0\} \end{array}$$

Homepage of the Lecture: http://www.zib.de/ss17_Optimierung_I Questions?: klug@zib.de