Freie Universität Berlin FB Mathematik und Informatik Sommersemester 2017 Prof. Dr. Ralf Borndörfer Torsten Klug

Optimierung I

Excercise Sheet 8

Submission: until 17:00 on Monday, June 19, 2017

Exercise 8.1

10 Points

Unless otherwise stated, we consider a linear program in standard form

$$\begin{array}{rcl} \max & c^T x \\ \text{s.t.} & Ax &= b \\ & x &\geq 0 \end{array}$$

with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, m < n, $\operatorname{rank}(A) = m$, $P^{=}(A, b) \neq \emptyset$.

Prove or disprove the following statements.

- a) A non-basic variable that enters the basis in any step of the simplex algorithm cannot leave the basis in the next step.
- b) A basic variable that just left the basis in any step of the simplex algorithm cannot enter the basis in the next step.
- c) If $A = A^{\top}$ then each feasible solution of the linear program

$$\begin{array}{ll} \max & c^T x \\ \text{subject to} & A \, x = c \end{array}$$

is optimal.

- d) If none of the basic solutions is degenerate and the LP is bounded, then the optimal solution is unique.
- e) If an unbounded variable x_j were substituted by $x_j^+ x_j^ (x_j^+, x_j^- \ge 0)$, then in each step of the simplex method at most one of the variables x_j^+ , x_j^- is not equal to zero.

Exercise 8.2

Solve the following problem by the simplex method:

10 Points

Emphasis for each iteration which variable leaves and which variable enters the basis.

10 Points

Exercise 8.3

Consider the linear Programm (P)

$$\begin{array}{rcl} \max & c^T x \\ \text{s.t.} & Ax &= b \end{array}$$

with $P(A, b) \neq \emptyset$.

Show that the following statements are equivalent:

- 1. (P) has an optimal solution.
- 2. All feasible solutions of (P) are optimal.
- 3. c is a linear combination of rows of A.

Homepage of the Lecture: http://www.zib.de/ss17_Optimierung_I Questions?: klug@zib.de