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Abstract

The paper deals with the behavior of a suspension of rigid particles in a gas or liquid under the inuence of
high frequency vibrations. Two dimensional nonlinear problem on evolution of slightly inhomogeneous suspension
in a square cavity subjected to vibrations with linear polarization is studied numerically on the base of averaged
equations. The state with zero average velocity and particle distribution in the form of symmetrical cloud with
maximal concentration in the cavity center is chosen as the initial state. It is found that at �rst the particle
distribution evolves to the state with the symmetry C4v. However, this state becomes unstable and a spontaneous
breakdown of the symmetry occurs, the cross-over e�ect. As the result, the solution with C2v symmetry establishes.
Simulations performed for initial position of the cloud slightly shifted from the cavity center, and for essentially non-
symmetric initial distribution of particles show that di�erent quasi-equilibrium solutions are possible. Evidently,
this is related to the existence of in�nite number of conservation laws for the transport equation. Initial distributions
of particles with "up-down" mirror symmetry with respect to the vibration direction also demonstrate in the course
of evolution the cross-over e�ect: at �rst the cloud is attened in the direction of vibrations, then the particles
distribution becomes distorted and takes inversion symmetry.
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1 Introduction

It is known, that vibrations are able to exert signi�cant inuence on the behaviour of hydrodynamic systems in the
presence of inhomogeneity of either density or vibrations [1]. Wide class of heterogeneous systems are the systems
with particles suspended in a gas or liquid. However, for the system where the particles are uniformly distributed over
the liquid, one should expect the behaviour in a vibrational �eld similar to that of homogeneous liquid. Therefore,
consideration of slightly inhomogeneous suspension is interesting.

The governing equations for the description of pulsation ows of liquid and solid phases are obtained in [2] on
the basis of two-uid theoretical approach. The di�erence in the inertial properties of phases, the phase-to-phase
interactions according to the Stokes law and the e�ect of joined masses are taken into account. The averaged equations
are formulated within the framework of single-uid approximation. The set of averaged equations is simpli�ed for the
case of slightly inhomogeneous suspension.

The linear stability of quasi-equilibrium of slightly inhomogeneous suspension �lling plane in�nite layer in weigth-
lessness conditions is studied for the case of particles concentration gradient to be constant and parallel to the vibration
axis. It is shown, that the oscillatory instability arises at any small intensity of vibrations; the wavelength of the most
dangerous perturbations increases with the vibrational parameter growth.

This paper is devoted to the numerical simulation of the behavior of slightly inhomogeneous suspension in a high
frequency vibrational �eld.
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2 Problem formulation. Governing equations

We consider the square cavity, �lled with the particles suspension, and subjected to high frequency linear polarized
vibrations in weightlessness. According to [2], the behavior of this system is described by the equations

@~v

@t
+ (~vr)~v � Rv~j(~jr�) = �rp+4~v;(1)

@�

@t
+ (~vr�) = 0;(2)

div~v = 0;(3)

where ~v is the average velocity, p is the pressure, � is the volume concentration of solid phase, and ~j is the unit vector
in the direction of vibration axis. The behavior of system is governed by the dimensionless parameter, which is analog
of the vibrational Rayleigh number

Rv =
(a!L)2B

(�=�m)2
;(4)

where a and ! are amplitude and frequency of vibrations respectively, L is the linear semi-dimension of the cavity
side, � is the dynamic viscosity of uid, �m is the characteristic density of suspension, B is the complicated function of
material parameters of the system and dimensionless frequency introduced as 
 = �s!=. Here �s is the solid phase
density,  is the phase-to-phase friction coe�cient.

Coe�cient B tends to zero with 
 = 0 . At small values of 
 parameter B is exhibits parabolic behavior accurate
to the terms of order O(
4). Let us denote B at 
!1 by B1. The expression for B1 can be simpli�ed in limiting
cases.

In particular, consider the case of dust suspended in air. In this case �=�s << 1 (� is the density of liquid phase),
� << 1 and mass concentration � = �s� is �nite. The expression for B1 takes the form

B1 =
1

4

�

� + �
:(5)

In opposite case of small bubbles suspended in a liquid, when �=�s >> 1, we have

B1 =
(1� �)�

(2�+ 1)3
:(6)

In our model we neglect the di�erence in average velocities of solid and liquid phases. Physically this means that
the particles are frozen in average ow.

The governing equations (1)-(3) should be completed with the boundary conditions. Velocity �eld has to satisfy
the no-slip condition at the boundary S of of the cavity

~vjS = 0:(7)

Due to impermeability conditions (7) no any boundary conditions for the concentration � is needed.
Let us x and y axes are transversal and longitudinal to the vibration axis respectively. The origin of coordinate

system is located in the cavity center. In this case we have ~j = (0; 1; 0).

3 Numerical method

Incompressibility condition (3) for average ow allows to use two-�eld method [3]. We rewrite the equations (1), (2)
formulated in the primitive variables, velocity ~v and pressure p, in terms of stream function  and vorticity ! de�ned
as

~vx =
@ 

@y
; ~vy = �

@ 

@x
;(8)

! = curlz~v;(9)
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Equations (1)-(3) being rewritten in terms of the stream function and vorticity take the form
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�
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@x
� Rv

@2�

@x@y
= 4!;(10)

4 + ! = 0;(11)
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�
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@y

@ 

@x
= 0;(12)

and the boundary conditions are:

 jS = 0;
@ 

@n

�
�
�
�
S

= 0:(13)

To evaluate the values of the vorticity at the rigid boundary we use Thom formulae [3]:

!jS = �
2

h2
 jS�1 + O(h);(14)

where !jS�1 is the value of stream function in internal point of cavity, distant normally to the boundary on the step
of grid h.

We introduce uniform grid

xi = (i� 1=2)h; i = 1; : : : ; N + 1;(15)

yj = (j � 1=2)h; j = 1; : : : ; N + 1;(16)

where h = 2L=N is the step of grid. Attribute the values of stream function  and vorticity ! to the nodes of this
grid. We intend to solve transport equation for concentration (12) by means of �nite volume method. Therefore it is
necessary to have the values of concentration in centers of cells, formed by the grid nodes, i.e. in the points with the
coordinates

xi = ih; i = 1; : : : ; N;(17)

yj = jh; j = 1; : : : ; N:(18)

Numerical procedure at each time step is the following. At �rst we solve the equation (10) for the vorticity - by
using known values of  k and �k at the previous time step k, we �nd the values of vorticity !k+1 at the new, k + 1,
time step. Then, the new values of the stream function  k+1 are found from the Poisson equation (11). Finally, the
new values of the concentration �k+1 are found from the transport equation (12).

The equation for the vorticity (10) is solved using conventional explicit �nite-di�erence scheme. Solution of the
Poisson equation (11), at each time step, is found by the successive overrelaxation method. Solution of transfer
equation is carried out by the explicit scheme based on the �nite volume discretization. This scheme was proposed by
R.J.LeVeque [4] in the framework of wave propagation method for the conservation laws for hyperbolic equations and
has the second order in space.

As the initial state we use the state with zero average velocity and distribution of the particles in the form

�(x; y; t = 0) = (1� x2)2(1� y2)2exp(�x2 � y2):(19)

4 Numerical results

The calculations were carried out for di�erent values of vibration parameter Rv. It is found that the behavior of
suspension at di�erent values of vibration parameter is qualitatively similar. The more intensive vibration inuence
on the system, the more intensive a ow, arising in a cavity under vibrations and the faster transition to the stationary
state.

Consider evolution of the "cloud" of particles (19) in time with �xed value of the vibration parameter Rv = 100.
At �rst, under the inuence of vibrations, the cloud becomes more and more at in the direction of vibrations. The
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Figure 1: Isolines of the concentration and stream function for Rv = 100 respectively: a, b - solution at time t=0.15,
c, d - �nal solution.

isolines of the concentration and stream function at time t = 0:15 are presented in �g. 1a, 1b. The distribution of the
particles evolves to certain one, which has the mirror symmetry with respect to the straight lines, passing through the
centers of sides and vertexes of square. This means the presence of symmetry group C4v. Obviously, this symmetry
group is allowed by the equations (10)-(12) and boundary conditions (13), (14).

However, this state turns out to be unstable to the symmetry-breaking perturbations. Spontaneous break-down
of the symmetry is observed { the cross-over e�ect. As the result, the solution with inversion symmetry with respect
to the cavity center and mirror symmetry with respect to the straight lines, passing through the vertex of the square
is established. This means that the symmetry group C2v, which is the subgroup of C4v, takes place. Isolines of
concentration and streamlines corresponding to this solution are presented in �g. 1c, 1d.

It follows from the structure of the transport equation that both average concentration and integral over the cavity
of any function of concentration should be conserved in time. In numerical simulation we control the average value of
the concentration over the cavity and its squared value. For example, changing of concentration up to the moment
of setting of the solution with inversed symmetry was less than 10%. Then, this stationary solution gradually gets
smeared by numerical di�usion. This naturally a�ects the integral characteristics.

There have been performed the simulations starting from some other initial distributions of particles, such that the
cloud slightly shifted from the center and essentially non-symmetric initial particles distributions. It follows from these
experiments, that di�erent quasi-equilibrium solutions are possible. Evidently, this concerned with the existence of
in�nite numbers of conservation laws for transport equation. Initial distributions of particles with "up-down" mirror
symmetry with respect to the direction of vibrations, evolve according to the scenario similar to that discussed above.
At �rst such solutions become more and more at in the direction of vibrations, then, due to cross-over e�ect, the
distribution of the particles becomes distorted with the inversion symmetry.
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5 Conclusion

Di�erent types of solutions have been found for di�erent inital states. The evolution from the initial state with
zero average velocity and particle distribution in the form of symmetric cloud with maximal concentration in the
cavity center demonstrates the cross-over e�ect. Initial distributions of particles with "up-down" mirror symmetry
with respect to the vibration direction lead to the qualitatively similar results. The calculations using the initial
distributions of particles in the form of cloud slightly shifted from the cavity center, and essentally non-symmetric
initial distributions of particles show that di�erent quasi-equilibrium solutions are possible.

The work was partially supported from the Grant N 992286 of Universities of Russia, the Grant of State Support
for Leading Scienti�c Schools, and Grant of Russian Foundation for Basic Research.
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