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Communication: Limitations of the stochastic quasi-steady-state
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It is commonly believed that, whenever timescale separation holds, the predictions of reduced chemi-
cal master equations obtained using the stochastic quasi-steady-state approximation are in very good
agreement with the predictions of the full master equations. We use the linear noise approximation
to obtain a simple formula for the relative error between the predictions of the two master equa-
tions for the Michaelis-Menten reaction with substrate input. The reduced approach is predicted to
overestimate the variance of the substrate concentration fluctuations by as much as 30%. The theoret-
ical results are validated by stochastic simulations using experimental parameter values for enzymes
involved in proteolysis, gluconeogenesis, and fermentation. © 2011 American Institute of Physics.
[doi:10.1063/1.3661156]

It is well known that whenever transients in the con-
centration of a substrate species decay over a much slower
timescale than those of the enzyme species, one can invoke
the quasi-steady-state approximation (QSSA) to considerably
simplify the deterministic (macroscopic) rate equations.1, 2

The study by Rao and Arkin3 pioneered the use of the same
approximation but on a mesoscopic level, i.e., applying a
stochastic version of the approximation to obtain reduced
chemical master equations. This approximation has since
become ubiquitous in stochastic simulations of large bio-
chemical reaction networks inside cells (see, for example,
Refs. 4–7) although its range of validity is presently unknown.
A plausible hypothesis is that the stochastic QSSA is valid in
the same regions of parameter space where the deterministic
QSSA is known to be valid. A handful of numerical studies8, 9

have shown that for some choices of rate constants which
are compatible with the deterministic QSSA, the differences
between the reduced and full master equation approaches are
practically negligible. However none of these studies exclude
the possibility that there exist regions of parameter space
where the deterministic QSSA is valid but the stochastic
QSSA exhibits large systematic errors in its predictions. In
particular one is interested in knowing how accurate are the
predictions of the stochastic QSSA for the size of intrinsic
noise, i.e., the size of fluctuations in concentrations, since
such noise is known to play important functional roles in
biochemical circuits.10 Numerical approaches cannot easily
answer such questions because the stochastic simulation algo-
rithm, the standard method which exactly samples the trajec-
tories of master equations,11 is computationally expensive.12

In this communication we seek to develop a theoretical
approach to answer the following question: Given that the
rate constants are chosen such that the deterministic QSSA
is valid, what are the differences between the predictions of
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the reduced and full master equations for the variance of the
fluctuations about the mean concentrations? We obtain a for-
mula estimating the size of these differences for the simplest
biochemical circuit which embeds the Michaelis–Menten re-
action and confirm its accuracy using stochastic simulations.
We find using physiological parameter values that the reduced
master equation approach can overestimate the variance of the
fluctuations by as much as ∼30%.

We start by considering the Michaelis–Menten reaction
with substrate input

kin−→ XS, XS + XE

k0
⇀↽
k1

XC
k2−→ XE + XP , (1)

where Xi denotes chemical species i and the k’s denote the
associated macroscopic rate constants. The reaction can be
described as follows. Substrate molecules (species S) are
pumped into some compartment at a constant rate, they bind
to free enzyme molecules (species E) to form substrate-
enzyme complexes (species C) which then either decay back
to the original substrate and free enzyme molecules or else de-
cay into free enzyme and product molecules (species P). The
first reaction in Eq. (1) could equally represent the production
of substrate by a first-order chemical reaction provided the
species transforming into substrate exists in concentrations
large enough such that fluctuations in its concentration can
be ignored. The sum of the concentrations of free enzyme and
complex is a constant since the enzyme can only be in one of
these two forms. Hence all mathematical descriptions of the
Michaelis–Menten reaction can be expressed in terms of just
complex and substrate variables. On the macroscopic level,
the QSSA proceeds by considering the case in which tran-
sients in the complex concentration decay much faster than
those of the substrate. This condition of timescale separation
is imposed by setting the time derivative of the macroscopic
complex concentration to zero, solving for the steady-state
complex concentration and substituting the latter into the rate
equation for the substrate concentration which leads to the
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new rate equation

∂

∂t
[XS(t)] = kin − k2[ET ][XS(t)]

KM + [XS(t)]
, (2)

where [XS(t)] is the substrate concentration at time t, KM

= (k1 + k2)/k0 is the Michaelis–Menten constant, and [ET]
is the total enzyme concentration, i.e., the sum of the con-
centration of free enzyme, [XE(t)], and of the concentra-
tion of complex, [XC(t)], which is a constant as previously
mentioned. Note that the notation [Xi] (without explicit de-
pendence on t) will be reserved for the steady-state concen-
tration of species i. We assume that at t = 0, we are in
steady-state conditions; note that the system (1) is guaran-
teed to have a stable steady-state if the condition kin/k2[ET]
< 1 is satisfied. Linear stability analysis of the full rate equa-
tions describing (1) shows that the timescale for the decay of
transients in the substrate concentrations is τ s = (k0[XE])−1

while the timescale for the decay of transients in the com-
plex concentrations is τ c = (k0[XS] + k1 + k2)−1. Hence
the criterion for the validity of the QSSA on the macro-
scopic rate equations (the deterministic QSSA), i.e., for the
validity of Eq. (2), reads τs/τc = γ = ([XS] + KM )/[XE] >

KM/[ET ] � 1 (see also Ref. 13).
The question that we address in the rest of this commu-

nication is the following: Given that the condition γ � 1 is
satisfied, what is the variance of the noise about the mean
concentrations as predicted by the reduced and full master
equations?

The stochastic QSSA method implicitly starts by deduc-
ing that Eq. (2) is effectively the rate equation one would as-
sociate with a system of two chemical processes

kin−→ XS, XS
k′−→ XP , (3)

where k′ is an effective (time-dependent) rate constant equal
to k2[ET]/(KM + [XS(t)]. Note that while the first reaction
is elementary, the second is clearly not since it can be bro-
ken down into a set of more fundamental constituent re-
actions. Given the reduced set of reactions (3) one can
then construct a reduced master equation for the set of
reactions (1) (see Ref. 14 and supplementary material15 for
the construction of master equations)

∂

∂t
P (nS, t) = �kin

(
E−1

S − 1
)
P (nS, t)

+ (
E+1

S − 1
) k2[ET ]nS

KM + nS/�
P (nS, t), (4)

where � is the compartment volume in which the reac-
tions are occurring, nS is the absolute number of substrate
molecules, P(nS, t) is the probability that the system has nS

substrate molecules at time t and Em
S is the step operator

which upon acting on a function of nS changes it into a func-
tion of nS + m.14 We note and emphasize that the physical
basis of this master equation is not clear because such equa-
tions have been derived from first principles for elementary
reactions16, 17 while Eq. (3) involves a non-elementary reac-
tion. Equation (4) is simply written by analogy to what one
would write down for Eq. (3) if both reactions were elemen-
tary and hence its legitimacy is a priori doubtful.

Now we want to use this master equation to deduce the
variance of the noise in the macroscopic substrate concen-
trations. It is well known that in the macroscopic limit, the
master equation for monostable chemical systems can be ap-
proximated by a linear Langevin equation, an approximation
called the linear noise approximation (LNA),14, 19 from which
all noise statistics can be estimated analytically. For systems
with absorbing states or exhibiting multimodality, the LNA
will not usually give accurate results (see, for example,
Ref. 18) but its application to our example, the Michaelis–
Menten reaction with substrate input, is not problematic since
this reaction is only capable of monostable behavior. The
steps to construct the LNA for a general monostable chem-
ical reaction system are summarized in the supplementary
material.15 Here we will simply state the results of this recipe
when applied to the master equation (Eq. (4)). Note that the
transient decay timescales in the LNA are the same as those
obtained from linear stability analysis of the rate equations.
The variance of the substrate fluctuations in steady-state
conditions is given by

σsLNA = [XS]

�

(
1 + [XS]

KM

)
, (5)

where the subscript “sLNA” stands for “LNA of the master
equation reduced using the Stochastic QSSA.” Note that [XS]
in Eq. (5) is the steady-state substrate concentration obtained
by solving for [XS] from Eq. (2) with time derivative set equal
to zero.

We will now derive expressions for the variance of sub-
strate concentration fluctuations using the full master equation
approach. The steps of this method are as follows: (1) one
writes down the master equation for the elementary chemical
processes (1), (2) the two Langevin equations for the com-
plex and substrate fluctuations are obtained using the LNA of
the master equation, (3) expressions are found for the vari-
ance of complex and substrate concentration fluctuations in
steady-state conditions, (4) the limit γ � 1 is taken of the ex-
pressions derived in step (3) leading to the final expressions
for the variance of substrate fluctuations about the steady-
state substrate concentration solution of the rate equation,
Eq. (2). We note that this method, unlike the first one, does
not make any assumptions about the validity of an ad hoc re-
duced master equation since it is based on the master equation
for elementary processes and hence is guaranteed to be cor-
rect (see supplementary material15). We now proceed to put
this systematic recipe in practice.

The master equation for the four elementary chemical
processes given by Eq. (1) is

∂tP (nS, nC, t) =
[
k0

�

(
E+1

S E−1
C − 1

)
nS(nT − nC)

+�kin

(
E−1

S − 1
) + k1

(
E−1

S E+1
C − 1

)
nC

+ k2
(
E+1

C − 1
)
nC

]
P (nS, nC, t), (6)

where nC is the absolute number of complex molecules and
nT is the absolute total number of molecules of enzyme in free
and complex form. Note that nT is a constant equal to [ET]�.
In the macroscopic limit, the master equation, Eq. (6), can be

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



181103-3 Limitations of the stochastic QSSA J. Chem. Phys. 135, 181103 (2011)

approximated by a pair of Langevin equations as given by the
LNA. The variance of the substrate fluctuations in steady-state
conditions is given by (see supplementary material15)

σLNA = [XS]

�

(
1 + [XS]

KM

K1 + [XS]

KM + [XS]

γ

1 + γ

)

γ�1−−−→ [XS]

�

(
1 + [XS]

KM

K1 + [XS]

KM + [XS]

)
, (7)

where we have defined K1 = k1/k0 and in the last step have
taken the limit of γ � 1 which corresponds to the condition
in which the deterministic QSSA Eq. (2) is valid.

Comparing Eqs. (5) and (7), we see that the two are not
generally equal to each other except in the case β = k2/k1

� 1. From a fundamental point of view, this disagreement im-
plies that the reduced master equation does not obey the gen-
eralized fluctuation-dissipation theorem of non-equilibrium
physics14, 20 and that hence it is flawed. More importantly, we
observe that the condition β = k2/k1 � 1 is not equivalent
to the quasi-steady-state condition γ � 1. The former con-
dition is consistent with the enzyme-substrate complex be-
ing in thermodynamic equilibrium with free enzyme and sub-
strate, a condition which is difficult to uphold in open systems
since they are characterized by non-equilibrium steady states.
While the quasi-steady-state condition can easily be satisfied
in open systems since it is only required that the total en-
zyme concentration is much less than the Michaelis–Menten
constant. Hence we can conclude that for open systems, the
stochastic QSSA based on Eqs. (3) and (4) is NOT the legiti-
mate stochastic equivalent of the deterministic QSSA.

There are two possible hypothetical scenarios which
would imply that the stochastic QSSA is perhaps still a very
good general method to estimate the size of the concentration
fluctuations. The first case would be if experimental evidence
showed that for many enzymes it just happens that β � 1.
The second case would be if experimental evidence showed
no such restriction on β but nevertheless the difference be-
tween the variance prediction of the reduced and full master
equations is so small as to be negligible. We now consider
each case.

A perusal of the experimental data available in the liter-
ature shows that there are very few studies which simultane-
ously report values of k1 and k2, the data required to estimate
β. The vast majority of studies report values for KM, a consid-
erable number report k2 and a small percentage report both k2

and KM.21 Now the ratio k2/KM, frequently called the enzyme
efficiency,22 is defined as


 = k2

KM

= β

1 + β
k0. (8)

The recent study by Bar-Even et al.21 based on mining the
Brenda24 and KEGG databases25 concluded that for most en-
zymes 
 lies in the range 103−106 M−1 s−1. It is also known
that the association constant k0 takes values in the range
106−109 M−1s−1.22 We can conclude from these two pieces
of data and using Eq. (8) that the range of β for most enzymes
is between 0 and some number which is much greater than 1
and that hence on the basis of experimental data one cannot
argue for the general validity of the stochastic QSSA.

Of course as previously mentioned, it could still happen
that even though there is no restriction on β, that the variance
as predicted by the stochastic QSSA and the true variance are
negligibly small. We can test this hypothesis quantitatively
by using Eqs. (5) and (7) to derive the fractional relative error
ε in the variance prediction of the stochastic QSSA

ε = σLNA − σsLNA

σLNA
= −(1 − α)αβ

1 + β(1 − α(1 − α))
, (9)

where α = kin/(k2[ET]), a non-dimensional quantity which
can take values between 0 and 1 as previously mentioned in
the discussion after Eq. (2). Furthermore, it can be shown
using Eq. (2) that at steady-state one has [XE] = [ET](1 − α)
and [XC] = [ET]α, from which we can deduce that α is a
measure of how saturated is the enzyme with substrate. Note
that Eq. (9) shows that the relative error tends to zero as α

→ 0 and α → 1 and that hence the reduced master equation
provides a correct prediction of the size of the substrate fluc-
tuations whenever the free enzyme or complex concentrations
are very small (similar results have been obtained by Mastny
et al.23 for the Michaelis–Menten reaction with no substrate
input; however their results are not for general α and β and
do not enforce the validity of the deterministic QSSA; see
later for discussion). In Fig. 1, the solid lines illustrate the
predictions of Eq. (9) for three different values of β: (1)
1, (2) 2.8, and (3) 10. Case (1) utilizes experimental data
for the enzymes Chymotrypsin and Malate dehydrogenase
with respective substrates acetyl-L-tryptophan and NADH
(Refs. 26 and 27) while case (2) is based on data for the en-
zyme Lactate dehydrogenase with substrate pyruvate.28 These
enzymes are respectively involved in proteolysis, gluconeo-
genesis and the conversion of pyruvate (the final product of
glycolysis) to lactate in anaerobic conditions. Case (3) show-
cases the largest possible error made by the stochastic QSSA;
this is consistent with a highly efficient enzyme such as
β-Lactamase for which 
 is of the same order of magnitude
as the maximum possible association rate constant k0 ∼ 108

− 109 s−1 M−1.22 The theoretical predictions of our LNA
based method are confirmed by stochastic simulations of
the master equations, Eqs. (4) and (6), using Gillespie’s
algorithm11 (data points in Fig. 1). Note that the maximum
possible percentage error is about 30% which is significant.
Also note that the maximum error in all cases is reached
at α = 1/2 namely when the enzyme is half saturated with
substrate which occurs when the substrate concentrations are
equal to the Michaelis–Menten constant KM (this is the case
for most enzymes of the glycolytic pathway30); for substrate
concentrations much smaller or larger than KM, the error is
negligible.

The LNA is strictly speaking valid for large volumes or
equivalently in the limit of large number of molecules14, 29 and
hence one could argue that our theoretical formula Eq. (9) is
of limited validity inside cells where molecule numbers can
be quite small.31 Figure S1 (see supplementary material15)
shows the results of stochastic simulations for the case α =
0.5 and β = 10 using a total number of enzyme molecules nT

varying between 1 and 100 molecules. Note that the error ε is
practically constant at 30%, the value predicted by the LNA
and shown in Fig. 1. This suggests that the estimates provided
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FIG. 1. Plot of the fractional relative error, ε, in the variance of fluctuations
as predicted by the reduced master equation obtained from the stochastic
QSSA versus the enzyme saturation parameter α. The solid lines show the
theoretical prediction Eq. (9) for three different values of β: 1 (blue), 2.8
(magenta), and 10 (yellow-green). These three cases are, respectively, consis-
tent with the enzymes being Chymotrypsin or Malate dehydrogenase, Lactate
dehydrogenase and a highly efficient enzyme such as β-Lactamase. The data
points show the results of stochastic simulations using the Gillespie algorithm
for reactions involving a total of 100 enzyme molecules and total enzyme
concentrations in the nano and millimolar range. The ratio of substrate and
complex decay timescales, γ , is greater than 10, which enforces the validity
of the deterministic QSSA. Details in the supplementary material (Ref. 15).

by our method are accurate even for low copy number condi-
tions.

Our study has focused on the most common type of
stochastic QSSA in the literature which is heuristic in na-
ture and hence the question regarding its validity. There are a
class of alternative model reduction techniques23, 32 based on
singular-perturbation analysis (sQSPA and sQSPA-�) which
are rigorous and whose validity is not under question. For
the Michaelis–Menten reaction without substrate input, these
methods lead to a reduced master equation of the same form
as the heuristic stochastic QSSA whenever the free enzyme
or complex concentrations are very small (see Table II of
Ref. 23). This implies that for such conditions the error in
the predictions of the stochastic QSSA should be zero, a re-
sult which is also reproduced by our method. However, note
that though these concentration conditions can be compati-
ble with the deterministic QSSA they are not synonymous
with it. The sQSPA methods do not lead to a reduced mas-
ter equation for parameters consistent with the deterministic
QSSA and hence cannot make statements regarding the ac-
curacy of the heuristic stochastic QSSA in such conditions.
Our contribution fills this important gap by deriving an ex-
plicit formula for the error in the predictions of the stochastic
QSSA, i.e., Eq. (9), for all parameter values consistent with
the deterministic QSSA. We finish by noting that a recent
study by Gonze et al.8 also studied the reaction system (1) us-
ing numerical simulations and found little difference between
the predictions of the stochastic QSSA and the full master

equation. The study used values of β = 0.1 (see Table 7.2 in
Ref. 8) and hence in the light of our results, it is clear why
they observed high accuracy of the stochastic QSSA. How-
ever, as we have shown, this is not the general case: many
enzymes have large β and hence discrepancies of the order
of few tens of percent between the predictions of the reduced
and full approaches will be visible whenever substrate con-
centrations are approximately equal to the Michaelis–Menten
constant.
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