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� We develop a general theory of noise-induced oscillations in subcellular volumes.

� The theory provides the power spectrum in closed form for any monostable network.
� The spectra close to a Hopf bifurcation have three universal features.
� The predicted features are seen in experimental single cell data.
� Simulations of circadian and mitotic oscillators verify the theory's accuracy.
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A class of theoretical models seeks to explain rhythmic single cell data by postulating that they are
generated by intrinsic noise in biochemical systems whose deterministic models exhibit only damped
oscillations. The main features of such noise-induced oscillations are quantified by the power spectrum
which measures the dependence of the oscillatory signal's power with frequency. In this paper we derive
an approximate closed-form expression for the power spectrum of any monostable biochemical system
close to a Hopf bifurcation, where noise-induced oscillations are most pronounced. Unlike the commonly
used linear noise approximation which is valid in the macroscopic limit of large volumes, our theory is
valid over a wide range of volumes and hence affords a more suitable description of single cell noise-
induced oscillations. Our theory predicts that the spectra have three universal features: (i) a dominant
peak at some frequency, (ii) a smaller peak at twice the frequency of the dominant peak and (iii) a peak at
zero frequency. Of these, the linear noise approximation predicts only the first feature while the
remaining two stem from the combination of intrinsic noise and nonlinearity in the law of mass action.
The theoretical expressions are shown to accurately match the power spectra determined from stochastic
simulations of mitotic and circadian oscillators. Furthermore it is shown how recently acquired single cell
rhythmic fibroblast data displays all the features predicted by our theory and that the experimental
spectrum is well described by our theory but not by the conventional linear noise approximation.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Cellular rhythms are ubiquitous throughout many tissues of the
body (Mohawk et al., 2012). The central pacemaker of the
mammalian circadian clock located in the suprachiasmatic nucleus
is thought to be entrained to a light-dark cycle and to reset the
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expression of clock genes in peripheral tissues in vivo (Mohawk
et al., 2012). For example, 10% of the transcriptome and 20% of the
proteome in mouse liver are expressed rhythmically (Panda et al.,
2002; Reddy et al., 2006). Similar fractions have been found to be
under circadian control in the human metabolome indicating that
rhythmic expression of clock genes controls many downstream
pathways (Dallmann et al., 2012).

In the absence of pacemaker control, isolated peripheral clocks
function as sustained but independently phased cell autonomous
24 h-oscillators under constant light conditions (Welsh et al.,
2004; Nagoshi et al., 2004). In consequence initially synchronized
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Fig. 1. Single cell circadian oscillations in individual fibroblast cells over two weeks after medium change reproduced from experimental dataset S1 in Leise et al. (2012).
(a–c) Single time course of protein luminescence of first three individual fibroblast cells shows sustained oscillations. (d) Population average over the first 20 cells shows a
dampening of the oscillations due to dephasing of individual cell rhythms.
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cell cultures display only damped oscillations on the ensemble
level due to a gradual dephasing of individual cellular clocks
(Welsh et al., 2004; Westermark et al., 2009). Fig. 1 illustrates this
phenomenon by comparing three time traces of protein lumines-
cence (a–c) from single fibroblast cells against the averaged
response of a culture of 20 cells shown in (d). The images have
been reproduced from dataset S1 in Leise et al. (2012).

It is still under debate what is the underlying single cell
mechanism responsible for producing oscillations. In the absence
of noise, populations of synchronized self-sustained oscillators
exhibit in-phase oscillations of constant amplitude while popula-
tions of damped oscillators show an in-phase decaying amplitude.
In both cases, taking into account the molecular fluctuations
stemming from the stochastic nature of the underlying biochem-
ical reactions leads to a population of cells with sustained (noisy)
oscillations and with cell-to-cell variation in the phase. Hence
presently experimental single cell data can be explained by both
noisy self-sustained and damped oscillator models (Westermark
et al., 2009).

The fact that molecular noise induces a deterministically
damped oscillator to exhibit sustained oscillations has led to this
phenomenon being called noise-induced oscillations (NIOs) (Vilar
et al., 2002; McKane et al., 2007). The amplitude of these
oscillations is proportional to 1=

ffiffiffiffi
N

p
where N is the mean number

of molecules. Hence NIOs have been deemed important for
reactions involving a typically small number of molecules such
as those occurring inside cells (Grima and Schnell, 2008). Similar
mechanisms to generate NIOs have been described as coherence
resonance with non-excitable dynamics in the contexts of epi-
demics (Kuske et al., 2007), predator–prey interactions (Rozenfeld
et al., 2001) and lasers models (Ushakov et al., 2005).

The power spectrum of concentration fluctuations has been the
main measure used to quantify NIOs, both experimentally and
theoretically, to date (Gang et al., 1993; Hou and Xin, 2003; Welsh
et al., 2004; Davis and Roussel, 206; Li and Lang, 2008; Geva-
Zatorsky et al., 2010; Ko et al., 2010). Briefly speaking the power
spectrum measures how the square amplitude of a signal is
distributed with frequency. In particular, peaks in the power
spectrum indicate the presence of NIOs. For systems composed
of purely first-order reactions, exact expressions for the power
spectrum of concentration fluctuations can be derived from the
chemical master equation (CME) (the accepted mesoscopic
description of biochemical kinetics) (Warren et al., 2006;
Simpson et al., 2004). However, most biochemical systems of
interest do not fall in the latter category since they are composed
of a large number of bimolecular reactions arising from oligomer
binding, cooperativity, allostery or phosphorylation of proteins
(Novák and Tyson, 2008). A popular means to obtain approximate
expressions for the power spectra of systems composed of both
unimolecular and bimolecular reactions is the linear noise approx-
imation (LNA) of the CME (Van Kampen, 1976; Dauxois et al., 2009;
McKane et al., 2007; Qian, 2011; Toner and Grima, 2013) whereby
the probability distribution solution of the CME is approximated
by a Gaussian. It is, however, the case that the LNA provides a good
approximation to the CME only in the limit of large volumes at
constant concentrations, i.e., the limit of large molecule numbers.
Given that molecule numbers of several key intracellular players
are in the range of few tens to several thousands (Schwanhäusser
et al., 2011), it is plausible that the predictions of the LNA maybe
limited in scope for biological systems. Indeed recent studies
(Grima, 2009, 2010, 2012; Thomas et al., 2010; Ramaswamy
et al., 2012) have shown that the mean concentrations and
variances of interacting chemical species present in low molecule
number can be considerably different than those given by the LNA;
these effects originate from the combination of intrinsic noise and
nonlinearity in the law of mass action. Similarly analytical studies
of two-variable epidemic (Chaffee and Kuske, 2011) and predator–
prey models (Scott, 2012) revealed NIOs with more than one
frequency that are not captured by linear analysis. While it is clear
that the LNA must miss some of the crucial features of single cell
NIOs, athorough investigation of these effects has not been carried
out to-date.

In this paper we obtain the leading order correction to the
LNA's prediction of the power spectrum of the fluctuations for a
general biochemical reaction pathway whose corresponding deter-
ministic system is just below a super-critical Hopf bifurcation. We
show that this novel nonlinear contribution to the power spec-
trum yields additional peaks at zero frequency and at twice the
frequency of the peak predicted by the LNA. The analytical results
are verified by comparison with experimental single cell data of
rhythmic fibroblast cells and with detailed stochastic simulations
of an oscillator controlling mitosis and of a transcriptional feed-
back oscillator.
2. Preliminaries: linear theory of noise-induced oscillations

2.1. The standard description of stochastic chemical kinetics

We consider a general chemical system consisting of a number
N of distinct chemical species interacting via R chemical reactions
of the type

s1jX1 þ⋯þ sNjXN-
kj
r1jX1 þ⋯þ rNjXN ð1Þ

occurring in a volume of mesoscopic size Ω. Here j is an index
running from 1 to R, Xi denotes chemical species i, sij and rij are the
stoichiometric coefficients and kj is the rate constant of the jth
reaction. Under well-mixed conditions there are two descriptions
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that have been commonly employed to describe such systems. In
the first approach the time-dependent concentrations
ϕ¼ ðϕ1;…;ϕNÞT are obtained from the solution of deterministic
rate equations (REs):

∂
∂t

ϕ¼ f ðϕÞ: ð2Þ

In the second approach the mesoscopic state is given by a vector of
population numbers n¼ ðn1;…;nNÞT drawn from a probability
distribution. The time evolution equation of this probability
Πðn; tÞ is given by the CME (Gillespie, 2007; van Kampen, 2007):

∂Πðn; tÞ
∂t

¼ ∑
R

j ¼ 1
ðajðn�μjÞΠðn�μj; tÞ�ajðnÞΠðn; tÞÞ: ð3Þ

where ajðnÞdt is the probability that the jth reaction occurs within
infinitesimal time dt and the state n changes to nþ μj where
μj ¼ ðr1j�s1j; r2j�s2j;…; rNj�sNjÞ. Following Gillespie (2007) we shall
refer to μj as the state-change vector for the jth reaction. It has
been shown that the relation between the functions f and the
propensities aj is given by the macroscopic limit f ðϕÞ ¼ limΩ-1
∑jμjajðΩϕÞ=Ω in which both descriptions, Eqs. (2) and (3), are
equivalent (van Kampen, 2007; Thomas et al., 2012). It is, however,
well appreciated that this limit does not accurately capture the
dynamics of biochemical reactions in individual cells but rather
resembles more closely the average over populations of
identical cells.

The discrepancy between the two approaches stems from the
fact that the deterministic approach assumes the molecule num-
bers in a cell to be sufficiently large while the stochastic one
suffers no such restriction. A popular method to simulate stochas-
tic time traces distributed according to the solution of Eq. (3) is the
stochastic simulation algorithm (SSA) as introduced by Gillespie.
Such simulations are widely used to show off qualitative devia-
tions from the deterministic description such as the existence of
noise-induced oscillations which were indeed observed in Gilles-
pie's seminal paper introducing the SSA (Gillespie, 1977).

As mentioned in the Introduction, NIOs are quantified by
means of the power spectrum of concentration fluctuations. This
is formally defined as follows. The autocorrelation function of the
sth species is given by

ΣsðτÞ ¼ nsðtÞ�〈ns〉
Ω

� �
nsðt þ τÞ�〈ns〉

Ω

� �� �
; ð4Þ

which allows to identify periodicities present in individual realiza-
tions ns(t) of the stochastic process. Note that the angled brackets
denote the ensemble average and t is any time for which the
system has achieved steady-state. The power spectral density of
fluctuations is then defined by the Fourier transform of the
autocorrelation function

PsðωÞ ¼
Z 1

�1
dτ e�iωτΣsðτÞ; ð5Þ

such that PsðωÞdω=ð2πÞ is the power contained in the infinitesimal
frequency interval dω=ð2πÞ. For brevity we refer to Eq. (5) simply as
the power spectrum of the concentration fluctuations of species s.
2.2. Power spectra within the linear noise approximation

While the power spectrum Eq. (5) is easy to obtain experimen-
tally or to calculate from stochastic simulations using the SSA, it is
not generally possible to obtain exact expressions for it unless the
system is composed of only unimolecular reactions (Warren et al.,
2006). The use of the LNA bypasses this difficulty, and we next
briefly review this approach (for more details see the section
Methods).
The LNA has been derived by van Kampen using the system size
expansion (van Kampen, 2007) and has been subsequently exten-
sively used to quantify NIOs by others. The LNA result states that in
the limit of large molecule numbers, the fluctuating concentration
predicted by the CME for a single cell is approximately equal to a
sum of two terms: a contribution describing the population
average ϕðtÞ given by the REs, Eq. (2), and another contribution
describing fluctuations ϵðtÞ about them in a single cell:

nðtÞ
Ω

¼ϕðtÞ þ ϵðtÞ; ð6Þ

where the time-evolution of the fluctuations ϵðtÞ is given by the
linear Langevin equation

d
dt

ϵðtÞ ¼ JðϕðtÞÞϵðtÞ þΩ�1=2BðϕðtÞÞΓðtÞ; ð7Þ

where the matrix J denotes the Jacobian of the deterministic
equation, Eq. (2), the elements of the matrix B read
Bij ¼Ω�1=2μij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ajðΩϕÞp

where μij is the ith component of the vector
μj and the R-dimensional vector Γ is Gaussian white noise satisfy-
ing 〈ΓiðtÞΓjðt′Þ〉¼ δijδðt�t′Þ for each pair of reactions. Note that
underlined symbols represent matrices throughout the paper.
Note also that our notation is slightly different than the one used
by van Kampen where the quantity ϵðtÞ has been rescaled by a
factor of Ω1=2 (see van Kampen, 2007, Chapter X).

It can be shown by taking the Fourier transform of Eq. (7) that
the power spectrum of fluctuations in species s is given by

PLNA
s ðωÞ ¼ 1

Ω
½ðJ�iωÞ�1BBT ðJT þ iωÞ�1�ss; ð8Þ

which can be more usefully written using the eigenrepresentation
of the Jacobian

PLNA
s ðωÞ ¼ 1

Ω
∑
ij
U�1

si

½ ~B ~B
† �ij

ðλi�iωÞðλnj þ iωÞU
�†
js ; ð9Þ

where U�1 is the matrix of eigenvectors of J and the λ's are its
eigenvalues, as given by the relationship UJU�1 ¼ diagðλ1; λ2;…; λNÞ.
The matrix ~B is defined as equal to UB. Note that U�† is shorthand
notation for ðU�1Þ†. By inspection of the above equation one can
deduce that when there exists a pair of complex conjugate eigenva-
lues the dependence of the denominator can yield a Lorentzian peak
at a nonzero frequency which is the signature of a NIO (McKane et al.,
2007).

In what follows we assume that the eigenvalue spectrum of
the Jacobian J is composed of a pair of conjugate eigenvalues
λ1 ¼�γ þ iω0, λ2 ¼�γ�iω0 and N�2 real negative eigenvalues λi
where i¼ 3;…;N. The deterministic dynamics then corresponds to
a focus which becomes unstable as γ-0, i.e., the Hopf bifurcation
point. In particular, by considering the dominant term in Eq. (9)
(corresponding to i¼ j¼ 1), one can deduce that the power
spectrum has a peak at ω≈ω0 whenever
γ

ω0
51; ð10Þ

i.e., the phenomenon of NIO becomes particularly conspicuous
when the deterministic dynamics is close to a critical point giving
rise to a limit cycle through a Hopf bifurcation (Ushakov et al.,
2005). In this case the total power is concentrated in the peak and
can be approximated by the peak height ð∼G=ðΩγ2ÞÞ, where
G¼ ½ ~B ~B

†�11, multiplied by its spectral width ð∼γÞ, is of the order

G
Ωγ

: ð11Þ

Since the total power is equal to the variance of the NIO it follows
that Eq. (11) needs to be sufficiently small for the LNA to hold.
Similar criteria have been obtained using multiple scale analysis in
Kuske et al. (2007) (see Eq. (24) therein). In the same limit the
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sample paths of Eq. (7) can be interpreted as given by a fast oscillation
with frequency ω0 whose amplitude is stochastically modulated on
the slow timescale 1=γ (Baxendale and Greenwood, 2011).
3. Results: nonlinear theory of noise-induced oscillations

Biochemical networks are typically composed of nonlinear
(bimolecular) reactions whose stochastic kinetics is not accounted
for insufficiently by linear analysis; in particular the first and
second moments of intrinsic noise as given by the LNA become
inaccurate for nonlinear systems with small molecule numbers
(Grima, 2010, 2012; Thomas et al., 2012). In this section we sketch
the derivation of an approximate equation for the power spectrum
of concentration fluctuations close to the bifurcation point using a
nonlinear stochastic differential equation (SDE) which predicts
behavior qualitatively different from that obtained by linear
theory. In Fig. 2 we illustrate the main steps to arrive at the
central result Eq. (20) by graphic means, in particular we empha-
size how distinct features of the power spectrum arise from
different orders of approximation. For a complete derivation we
refer the reader to the section Methods.

Our starting point is the chemical Langevin equation (CLE)

d
dt

xðtÞ ¼ f ðxðtÞÞ þΩ�1=2BðxðtÞÞΓðtÞ; ð12Þ

which is the nonlinear (Ito) SDE derived from a normal approx-
imation of the Poisson increments of the underlying discrete
process sampled by the SSA (Kurtz, 1976; Gillespie, 2000; Allen
et al., 2008). Note that here x¼ n=Ω is the vector of mesoscopic
concentrations, f ðxÞ ¼Ω�1∑R

j ¼ 1μjajðΩxÞ is the drift vector, B is the
noise matrix with elements BijðxÞ ¼Ω�1=2μij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ajðΩxÞp

and the vector
Γ is Gaussian white noise as before. The use of the nonlinear SDE
as a means to go beyond the linear SDE of the LNA is further
motivated by a recent study showing that the relative error
between the first two moments of the nonlinear SDE and of the
SSA is merely of the order of a few percent for monostable systems
with few tens of molecules (Grima et al., 2011). In the section
Applications we have verified the validity of this approximation by
comparing its estimates for the power spectrum against that
obtained from the SSA for two biologically relevant examples.
Fig. 2. Schematic illustrating how different levels of approximation lead to distinct featu
LNA describes sustained NIOs at a frequency ω0 which is the same as the frequency of th
leads to an additional second harmonic of the fundamental frequency and a diffusion o
In the limit of large molecule numbers (the limit of large
volumes at constant concentration), the CLE reduces to the
conventional deterministic REs given by Eq. (2) and the LNA, Eq.
(7), accounting for the fluctuations (Grima et al., 2011; Wallace
et al., 2012). As previously mentioned, for intermediate molecule
numbers, Eq. (12) has been shown to be more accurate than the
LNA, however, the nonlinear character of the equation which is
responsible for its higher accuracy, also prevents one from finding
an exact solution. Nonlinearity enters the CLE through two
coefficients accounting for drift and noise amplitude. We now
seek a small noise expansion which is different from the usual LNA
by the fact that it retains enough terms to ensure both coefficients
remain non-singular as the bifurcation point is approached.

Assuming steady state conditions we can make a small noise
ansatz xðtÞ ¼ ϕþ ϵðtÞ which separates the dynamics into determi-
nistic and stochastic parts and which is valid since the determi-
nistic system is monostable (van Kampen, 2007). In order to
investigate the dependence of the drift term in Eq. (12) close to
the bifurcation point we make use of the transformation matrix U
to obtain the expansion in the eigenrepresentation of the Jacobian.
Including terms up to quadratic order in ~ϵ ¼Uϵ the result is
given by

∑
α
Uiαf αðxÞ ¼∑

α
Uiαf αðϕÞ þ λi ~ϵ i þ

1
2
∑
αβ

~J
αβ

i ðϕÞ~ϵα ~ϵβ þ⋯ ð13Þ

where the new symbol introduced in the third term is given by

~J
rs
i ðϕÞ ¼ ∑

αμν
U�1

μr U
�1
νs Uiα

∂2f αðϕÞ
∂ϕμϕν

: ð14Þ

Note that the tilde stands for quantities in the eigenrepresentation
of the Jacobian. Note also that the above expression is a function of
the Hessian of the rate equations, Jμνα ¼ ∂2f αðϕÞ=ð∂ϕμ∂ϕνÞ, and hence
is non-zero whenever f αðϕÞ is nonlinear; this is the case when the
αth species is involved in bimolecular or higher-order reactions.
Considering Eq. (13) we note that the first term is zero because we
are in steady state conditions, i.e., f ðϕÞ ¼ 0. In the vicinity of the
Hopf bifurcation, for i¼1,2, the real parts of the eigenvalues of the
Jacobian given by �γ entering the second term become very small
res in the power spectrum of single cell noise-induced oscillations. In particular, the
e damped oscillations in the deterministic description. The nonlinear SDE approach
f the baseline of oscillations close to the Hopf bifurcation.
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and hence the real parts of the third term dominate. Thus up to
second-order terms must be retained to guarantee that the drift
coefficient is not singular as the bifurcation point is approached. In
contrast, for the noise coefficient the leading order contribution is
sufficient since the first term in its expansion, ~BiαðϕÞ is non-zero at
the bifurcation. Hence using the eigenrepresentation of the Jaco-
bian the nonlinear Langevin equation, Eq. (12), can be approxi-
mated as

∂t ~ϵiðtÞ ¼ λi ~ϵi þ
1
2
∑
αβ

~J
αβ

i ðϕÞ~ϵα ~ϵβ þΩ�1=2∑
α

~BiαðϕÞΓαðtÞ; ð15Þ

close to the bifurcation point. Still, the power spectrum of the
above Langevin equation cannot be obtained straightforwardly
since the nonlinear character of the equation is retained and hence
to proceed further an approximation method becomes indispen-
sable. We now substitute the Fourier transform

~ϵ iðtÞ ¼
Z 1

�1

dω
2π

eiωt ϵ̂ iðωÞ; ð16Þ

into Eq. (15) and expand ϵ̂ i in powers of the inverse square root of
the system size

ϵ̂ iðωÞ ¼Ω�1=2ϵ̂ð0Þi ðωÞ þΩ�1ϵ̂ð1Þi ðωÞ þ OðΩ�3=2Þ: ð17Þ

After equating terms of order Ω�1=2 and subsequently those of
order Ω�1 one finds that the power spectrum of the sth species
expressed in the eigenrepresentation of the Jacobian is given by

PsðωÞ ¼ PLNA
s ðωÞ

þ 1
Ω2 U

�1ð〈ϵ̂ð1ÞðωÞϵ̂ð1Þ†ðωÞ〉�δðωÞ〈~ϵð1Þ〉〈~ϵð1ÞT〉ÞU�† ; ð18Þ

where the first term is related to the spectrum of ϵ̂ð0Þi ðωÞ by
PLNA
s ðωÞ ¼U�1〈ϵ̂ð0ÞðωÞϵ̂ð0Þ†ðωÞ〉U�† and is exactly equivalent to Eq.

(9) obtained by the LNA while the second is a correction term
related to the spectrum of ϵ̂ð1Þi ðωÞ accounting for nonlinear effects
in Langevin equation (15).

As shown in the Methods section, Eq. (18) simplifies to

PsðωÞ ¼
1
Ω
∑
ij
U�1

si

½ ~B ~B
† �ij

ðλi�iωÞðλnj þ iωÞU
�†
js

� 1
2Ω2 ∑

ij
∑
αβμν

U�1
si

~J
αβ

i ~sαμ

ðλi�iωÞ
1

λα þ λβ�iω
þ 1

λnμ þ λnν þ iω

 !

�
~J
nμν

j ~sn
νβ

ðλnj þ iωÞU
�†
js þ OðΩ�5=2Þ; ð19Þ

where ~sij ¼�½ ~B ~B
†�ij=ðλi þ λnj Þ is the LNA covariance matrix of the

eigenmodes. The above expression is the spectrum of the non-
linear Langevin equation (15) accurate to order Ω�2. The latter as
we have argued approximates the CME in the limit of large
population numbers close to the Hopf bifurcation point. In the
Methods section we have shown that close to the bifurcation,
the covariance of the near-critical eigenmodes is diagonally
dominant, i.e., ~s ij≃δijG=ð2γÞ (for i and j equal to 1 or 2) with
G¼ ½ ~B ~B

†�11 ¼ ½ ~B ~B
†�22 and hence these yield the major contribu-

tions to the sum. Given this reasoning we can write the power
spectrum of the concentration fluctuations of species s close to the
bifurcation:

PsðωÞ≈PLNA
s ðωÞ þΩ�2G2

2γ
jM11

s ðωÞj2
ðω�2ω0Þ2 þ ð2γÞ2

þ 2
jM12

s ðωÞj2
ω2 þ ð2γÞ2

 !
; ð20Þ

where non-resonant contributions have been omitted. The coeffi-
cients in the above expression are given by

Mij
s ðωÞ ¼ ∑

αμν
½ðJ�iωÞ�1�sαU�1

μi U
�1
νj

∂2f αðϕÞ
∂ϕμ∂ϕν

: ð21Þ
The first term in Eq. (20) is the prediction of the LNA which
leads to a peak at ω≃ω0. Specifically, the second term in Eq. (20)
leads to a peak at twice the LNA frequency ω≃2ω0, and the third
term leads to a peak at zero frequency ω≃0 whenever we are close
to the Hopf bifurcation point. These extra peaks are due to the
combined influence of noise and nonlinearity of the chemical
reactions. As argued in the previous section the fundamental peak
gives a contribution of order G=ðΩγÞ to the overall variance;
similarly it can be shown that the total power concentrated in
the additional two peaks is of order

G
Ωγ

� �2

: ð22Þ

It hence follows that the corrections in Eq. (20) become significant
when G=Ω≃γ, i.e., when there exists a balance between the
noise coefficient G=Ω and the distance from the bifurcation
point γ. The conditions for the observability of the additional
peaks at twice the frequency of the principal peak and at zero
frequency require

jM11
s ð2ω0Þj≠0; jM12

s ð0Þj≠0; ð23Þ

respectively. Using the above together with Eq. (21) it follows that
the Hessian of the corresponding deterministic system ∂2f αðϕÞ=
ð∂ϕμ∂ϕνÞ needs to be non-zero at the bifurcation point; however,
this condition is not sufficient. Assuming that jM11

s ð2ω0Þj is a
continuous function of ω0 then clearly the first condition in Eq.
(23) is fulfilled for all values of 2ω0 except the zeros of M11

s which
depend on the specific rate constants of the network under
consideration. The second condition in Eq. (23) is independent of
ω0 and is as we show in the next section not generally true for all
biochemical processes of interest.

The physical meaning of the peak at zero frequency is not as
intuitive as the peaks at non-zero frequency and requires further
explanation. Given that γ is very small (since we are close to the
Hopf bifurcation) and assuming that M12

s ð0Þ≠0 then it follows that
the spectrum associated with the last term on the right hand side
of Eq. (20) is approximately proportional to jM12

s ð0Þj2ω�2 for
ω0⪢ω⪢γ. A spectrum characterized by this scaling form is asso-
ciated with random walk noise; to be more precise, given a
Langevin equation ∂txðtÞ ¼

ffiffiffiffiffiffiffi
2D

p
ΓðtÞ where D is the diffusion

coefficient and ΓðtÞ is white noise, then the power spectrum of
the signal x(t) is equal to 2D=ω2. Thus it follows that the fluctuat-
ing signal whose spectrum is given by Eq. (20) can be interpreted
as the sum of the three components: (i) a component which
fluctuates about the mean with diffusion coefficient jM12

s ð0Þj2G2=

ð2Ω2γÞ; (ii) a noisy component with power concentrated at a
frequency of ω0; (iii) another oscillatory component as (ii) but
with power concentrated at a frequency of 2ω0. These components
are, respectively, associated with the spectra given by the last
term, the first term and the second term on the right hand side of
Eq. (20). We also note that the integral of Eq. (20) over ω gives the
variance of the fluctuations in species s close to the bifurcation;
this is a sum of the variance predicted by the LNA and a correction
term of order Ω�2. The latter is always positive and hence it can be
stated that to the order of the approximation used, the LNA
invariably underestimates the variance close to a Hopf bifurcation.

In the next section we apply our theory to the three cases of
biological interest. In particular we show how the theory can be
used to explain recently obtained experimental single cell rhythm
data and also illustrate by means of two examples how one
calculates Eq. (20) for a given system of interest. Stochastic
simulations using the SSA are used to verify the accuracy of our
theory for intermediate volumes and also to probe small volume
phenomena which are beyond its predictive power.
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4. Applications

4.1. Noise-induced oscillations observed in individual fibroblast cells

Recently, Leise et al. (2012) reported experimental protein
luminescence data from cultures of 80 highly rhythmic fibroblast
cells. Single cell spectra were obtained from individual observa-
tions over a six week period and averaged over the cell population.
This data (see dataset S1; also shown in Leise et al. (2012, Fig. 6(b))
has the main features predicted by our theory, namely a peak at
zero frequency, a dominant peak at the circadian frequency and a
second harmonic. We therefore investigate if the experimental
data can be fit by our proposed theoretical expression for the
power spectrum, Eq. (20). Our strategy is as follows: (i) we
propose a biologically plausible network motif explaining the
observed oscillatory single cell dynamics, (ii) we fit the principal
peak of the experimental power spectrum using the LNA for this
motif and (iii) we refine our fit by taking into account the
additional peaks in the spectrum using our main result, Eq. (20),
applied to the motif.

The ability of biological systems to oscillate is often associated
with the presence of a negative feedback loop in the underlying
biochemical network (Novák and Tyson, 2008). Given the fact that
any biochemical oscillator must be composed of at least three
components we propose a negative feedback motif involving
mRNA (M) and two forms of a protein (P and Pn) as a candidate
for explaining the experimental rhythmic fibroblast data (see Fig. 3
(a) for an illustration). The dynamics for this motif could for
example be deterministically described by the set of coupled rate
equations

∂tϕM ¼ k0
k1 þ ϕP

�α1ϕM ; ð24Þ

∂tϕPn ¼ β1ϕM�α2ϕPn ; ð25Þ

∂tϕP ¼ β2ϕPn� k2ϕP

k3 þ ϕP
; ð26Þ

where ϕM , ϕPn and ϕP are the concentrations of mRNA and the two
proteins. The Jacobian for these rate equations is given by

J ¼
�α1 0 �χ

β1 �α2 0
0 β2 �α3

0
B@

1
CA; ð27Þ

where α1;2;3, β1;2 and χ are positive constants. Note that χ measures
the strength of the negative feedback loop and is equal to
k0=ðk1 þ ϕPÞ2 whereas α3 is a measure of the nonlinear protein
Fig. 3. Least squares fit of the experimental power spectrum of circadian rhythm in fibro
explaining the single cell dynamics observed in Leise et al. (2012). (b) Fit of the experime
and by the proposed nonlinear theory (magenta solid line) is shown. Note that the LNA c
and at a second harmonic frequency. The nonlinear theory is in excellent quantitativ
theoretical curves are given in the main text. (For interpretation of the references to co
degradation rate and is equal to k2k3=ðk3 þ ϕPÞ2. Indeed it can be
shown that this is a generic form for the Jacobian of all negative
feedback motifs with three components (Tyson, 2002). The only
entries of the Jacobian which are functions of a concentration are
J13 and J33 which are functions of ϕP , the concentration of protein.
Hence the only non-zero Hessian elements are J331 and J333 ; this is
since we assumed that feedback repression and protein degrada-
tion steps occur via bimolecular (nonlinear) mechanisms. The
Routh–Hurwitz theorem implies that the steady state is stable
provided ðα1 þ α2 þ α3Þðα1α2 þ α2α3 þ α3α1Þ4α1α2α3 þ β1β2χ. If
equality holds the system undergoes a Hopf bifurcation. Close to
the bifurcation the system has a pair of complex conjugate
eigenvalues with dominant imaginary part which can be approxi-
mated by ω0≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1α2 þ α2α3 þ α3α1

p
; this determines the frequency

of the principal peak of the power spectrum of the negative
feedback loop close to the bifurcation.

We now use the functional form of the LNA power spectrum,
Eq. (8) together with Eq. (27), to obtain a fit of the protein species
P's spectrum to the principal peak of the experimental power
spectrum. Since our proposed oscillator is composed of three
components but the available experimental data is for only one
of these components, we reduce the number of free parameters to
fit the LNA by setting α1;2 ¼ β1;2 and assuming the noise matrix BBT

is proportional to the unit matrix, i.e., a total of four free
parameters since the Jacobian has three parameters and the
diagonal noise matrix has one parameter. We then use a least
squares nonlinear fitting procedure to obtain these four para-
meters; the result is shown as a gray dashed line in Fig. 3(b) where
the parameters are α1;2 ¼ β1;2 ¼ 0:51, α3 ¼ 0:82, χ ¼ 5:99 and
Ω�1½BBT �11 ¼Ω�1½BBT �22 ¼Ω�1½BBT �33 ¼ 0:01. The solid blue line
in Fig. 3(b) shows the power spectrum reproduced from the
experimental dataset obtained by Leise et al. (2012).

We next refined our fit by using Eq. (20) in the previous section.
To compute this we need the two parameters determining the
critical eigenmodes of the Jacobian (γ and ω0), the noise coefficient
G=Ω, the matrix U of eigenvectors of the Jacobian and the Hessian.
All of the latter except for the Hessian can be computed from the
four free parameters previously determined by fitting the LNA
spectrum since these completely determine the Jacobian and the
noise matrix. We use a nonlinear fitting procedure as before to
determine the two non-zero components of the Hessian matrix
and find J331 ¼ 16:20 and J333 ¼ 2:23. The spectrum given by Eq. (20)
and using the total of six parameter values determined by the
fitting procedure is shown as a magenta line in Fig. 3(b). The
agreement between the experimental data (blue line) and our
theory is remarkable when considering that we required only two
additional parameters to fit the two new features predicted by our
blast cells by the LNA and our nonlinear theory. (a) A biologically plausible motif for
ntal power spectrum (solid blue line) by the linear (LNA) theory (gray dashed line)
aptures well the principal peak while it misses the appearance of the peaks at zero
e agreement with all features of the experimental data. The parameters for the
lor in this figure caption, the reader is referred to the web version of this article.)
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theory, namely the peak at zero frequency and the second order
harmonic. Subtracting a constant background of 0.001% of the
central peak height from the experimental spectrum improved the
agreement, presumably because this eliminates measurement
noise which our theory does not describe.

We shall next consider two theoretical models of biochemical
relevance and show in detail how one calculates the analytical
power spectrum Eq. (20) for these systems. We also verify
all our predictions by detailed stochastic simulations using
the SSA.

4.2. Oscillator control of mitosis

Here we investigate the effect of NIOs on a simple model
proposed by Tyson and Kauffman (1975) for the control of the
mitotic phase of the cell cycle

∅-X-Y-∅; 2Y þ X-3Y ; ð28Þ
where the species X and Y are the forms of inactive and active
proteins, respectively. In the following we give a detailed step-by-
step derivation how the power spectrum given by Eq. (20) is
obtained for the model under consideration. For the above set of
reactions, the state-change vectors are given by

μ1 ¼ ð1;0ÞT ; μ2 ¼ ð�1;1ÞT ; μ3 ¼ ð0;�1ÞT ; μ4 ¼ ð�1;1ÞT ; ð29Þ
where the first and second entries in these vectors represent the
change in the number of X and Y molecules for each reaction,
respectively. Note that the reactions are here numbered from 1 to 4,
where the order follows that in which they appear in (28). The
associated propensities are

aðμ1; xΩÞ ¼Ωk; aðμ2; xΩÞ ¼Ωbx; aðμ3; xΩÞ ¼Ωy; aðμ4; xΩÞ ¼Ωy2x:

ð30Þ
We have here used x and y to denote the number of molecules per
unit volume of the respective species. The constants k and b denote
the rate constants of the first and second reaction in (28), respec-
tively, while the remaining reactions are assumed to occur with
unit rate. Note also that the last propensity has been approximated
by its large concentration limit, namely the same limit by which the
CLE is valid. The corresponding CLE for this set of reaction is then
given by

d
dt

x¼ k�bx�y2xþΩ�1=2ð
ffiffiffi
k

p
Γ1ðtÞ�

ffiffiffiffiffi
bx

p
Γ2ðtÞ�

ffiffiffiffiffiffiffiffi
y2x

q
Γ4ðtÞÞ; ð31aÞ

d
dt

y¼ bxþ y2x�yþΩ�1=2ð
ffiffiffiffiffi
bx

p
Γ2ðtÞ�

ffiffiffi
y

p
Γ3ðtÞ þ

ffiffiffiffiffiffiffiffi
y2x

q
Γ4ðtÞÞ: ð31bÞ

The analysis will be carried out in two steps: first we work out the
power spectrum within the LNA and next we compute the novel
higher-order corrections. An inspection of Eq. (8) shows that to
calculate the LNA, we need the Jacobian of the REs, J, and the noise
matrix, B. The REs are obtained from the nonlinear Langevin
equations (31) above by taking the limit Ω-1. These are found to
have a steady state solution ϕX ¼ k=ðk2 þ bÞ and ϕY ¼ k. We make the
following convenient definitions: k¼ 2�1=2ω0ð1þ ω2

0Þ1=2 and
b¼ ðθ2 þ γ�k2Þ where θ2 ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γðγ�1Þ þ ð1þ 2ω2

0Þ2
q

�1Þ=2; it then
follows that at steady state we can write the Jacobian as

J ¼ �γ�θ2 γ�1�θ2

γ þ θ2 �γ þ θ2

 !
; ð32Þ

whose eigenvalues can be found analytically as in Tyson and
Kauffman (1975) and are given by

λ1;2 ¼�γ7 i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γð1�γÞ þ θ2

q
: ð33Þ
We observe that the Hopf bifurcation is approached as γ-0 with
ω0 ¼ limγ-0 θ being the NIO frequency. We next systematically
approximate the inverse ðJ�iωÞ�1 which becomes singular at ω0 as
the bifurcation is approached and hence has to be handled with extra
care. Therefore using the Jacobian in Eq. (32) we write

ðJ�iωÞ�1 ¼ C�1ðωÞ
ω2
0�iω 1þ ω2

0

�ω2
0 �ðω2

0 þ iωÞ

 !
ð34Þ

which is simply the matrix of cofactors of Eq. (32) evaluated at the
bifurcation point divided by the full determinant CðωÞ ¼ γ þ 2iγωþ
θ2�ω2 of ðJ�iωÞ which denotes the singular part. The noise matrix is
computed using the definition after Eq. (12) together with the state-
change vectors and propensities given by Eqs. (29) and (30),
respectively, and substituting the steady state concentrations.
The result after taking the limit γ-0 is given by

BBT ¼ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ ω2

0Þ
q 1 � 1

2

� 1
2 1

 !
: ð35Þ

Using Eq. (8) together with Eqs. (34) and (35) the LNA power spectra
can be expressed as

PLNA
X ðωÞ ¼ 1

Ω

ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ ω2

0Þ
q

ð1þ ω2 þ ω2
0 þ ω4

0Þ
ðγ þ θ2�ω2Þ2 þ ð2γωÞ2

; ð36aÞ

PLNA
Y ðωÞ ¼ 1

Ω

ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ ω2

0Þ
q

ðω2 þ ω4
0Þ

ðγ þ θ2�ω2Þ2 þ ð2γωÞ2
; ð36bÞ

which have a resonance at ω≃ω0 in both variables due to the
dependence of the denominator.

Next we calculate the corrections accounting for nonlinear
effects close to the bifurcation; an inspection of Eq. (20) shows
that we need to compute the Hessian of the REs and the matrix of
eigenvectors of the Jacobian. The former is obtained by differen-
tiating the right hand side of the rate equations (the nonlinear
Langevin equations (31) with Ω-1) twice and substituting the
steady state concentrations

∂2f 2ðϕÞ
∂α∂β

� �
¼� ∂2f 1ðϕÞ

∂α∂β

� �
¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ ω2

0Þ
q 0 1

1 ðγ þ θ2Þ�1

 !
; ð37Þ

where ∂2f 1=ð∂α∂βÞ is the Hessian of the deterministic equation for
x, ∂2f 2=ð∂α∂βÞ is the Hessian for the corresponding equation for y
where α and β can be either x or y.

Using the eigenvalues, Eq. (33), and the Jacobian Eq. (32), we
can compute U by means of the definition after Eq. (9) and obtain
in the limit γ-0

U ¼
ω0 iþ ω0

ω0 �iþ ω0

 !
: ð38Þ

Using Eq. (38) together with Eq. (35) we find

~B ~B
† ¼ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ ω2

0Þ
q 1þ ω2

0 ω2
0�1þ iω0

ω2
0�1�iω0 1þ ω2

0

 !
; ð39Þ

and hence we have G¼ ½ ~B ~B
†�11 ¼ ½ ~B ~B

†�22 ¼
ffiffiffi
2

p
ω0ð1þ ω2

0Þ3=2. Sub-
stituting Eqs. (34), (37), (38) into Eq. (21) and taking the limit γ-0,
we obtain the Hessian coefficients in the eigenrepresentation:

M11
1 ðωÞ ¼ C�1ðωÞ

ð1þ iωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

0

q
ð2ω2

0�2iω0�1Þ
2
ffiffiffi
2

p
ω0

; ð40aÞ

M12
1 ðωÞ ¼ C�1ðωÞ

ð1þ iωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

0

q
ð1�2ω2

0Þ
2
ffiffiffi
2

p
ω0

; ð40bÞ
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Fig. 4. Noise-induced oscillations in the mitosis control mechanism (28). We compare the predictions of our theory of the power spectra, Eqs. (41) (solid magenta line) to
those obtained from stochastic simulations using the SSA (blue dots) for the inactive X and active protein Y as shown in (a) and (b), respectively. Note that our theory
accurately predicts the peak at the zero frequency in (a) (see also the inset for a magnified view) and the peaks at twice the fundamental frequency in (a) and (b) which are
missed by the power spectra predicted by the LNA (gray dashed line). The parameters used are k¼0.3953, b¼0.0946 and Ω¼ 2:5� 105 which yield γ ¼ 0:0025 and ω0 ¼ 0:5.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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M11
2 ðωÞ ¼ C�1ðωÞ

iωð1þ 2iω0�2ω2
0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

0

q
2
ffiffiffi
2

p
ω0

; ð40cÞ

M12
2 ðωÞ ¼ C�1ðωÞ

iω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

0

q
ð2ω2

0�1Þ
2
ffiffiffi
2

p
ω0

: ð40dÞ

Note that CðωÞ is given by the determinant after Eq. (34). Finally
substituting these coefficients and G (given after Eq. (39)) into Eq.
(20), we find the corrections to the LNA spectrum of fluctuations

PXðωÞ ¼ PLNA
X ðωÞ þΩ�2

8γ
ð1þ ω2Þð1þ ω0Þ3

ðγ þ θ2�ω2Þ2 þ ð2γωÞ2
1þ ðω0 þ 2ω3

0Þ2
ðω�2ω0Þ2 þ ð2γÞ2

þ 2�6ω2
0 þ 8ω6

0

ω2 þ ð2γÞ2

 !
;

ð41aÞ

PY ðωÞ ¼ PLNA
Y ðωÞ þΩ�2

8γ
ω2ð1þ ω0Þ3

ðγ þ θ2�ω2Þ2 þ ð2γωÞ2
1þ ðω0 þ 2ω3

0Þ2
ðω�2ω0Þ2 þ ð2γÞ2

þ 2�6ω2
0 þ 8ω6

0

ω2 þ ð2γÞ2

 !
:

ð41bÞ
From the form of Eqs. (41) one can deduce that the theory predicts
a second harmonic peak for both species but only a peak at zero
frequency in the spectrum of species X (compare Fig. 4(a) and (b)).
The good quantitative agreement between theory and simulations
verifies the accuracy of the proposed novel theory.

4.3. Genetic oscillator with transcriptional feedback

Finally, we demonstrate the nonlinearity induced effects for the
modified Goodwin model involving non-elementary reactions
(Tyson, 2002; Bliss et al., 1982). This model is based on a negative
loop and is widely used to describe many transcriptional oscilla-
tors such as circadian clocks (Roenneberg et al., 2008). The model
comprises three chemical constituents M, P1 and P2 denoting
mRNA, cytosolic and nuclear protein species, respectively. Sche-
matically, such reaction network may be represented as

G⟶

P2

⊥
GþM; M-∅; M-M þ P1; P1-P2-∅: ð42Þ

From the above reaction scheme, one can construct the state-
change vectors

μ1 ¼ ð1;0;0Þ; μ2 ¼ ð�1;0;0Þ; μ3 ¼ ð0;1;0Þ; μ4 ¼ ð0;�1;1Þ; μ5 ¼ ð0;0;�1Þ;
ð43Þ

where the first, second and third entries in these vectors represent the
change in the number of M, P1 and P2 molecules for each reaction,
respectively. Note that the reactions are here numbered from 1 to 5,
where the order follows that in which they appear in (42). The
associated propensities are aðμ1; xΩÞ ¼Ωk=ð1þ xP2 Þ, aðμ2; xΩÞ ¼
ΩbxM , aðμ3; xΩÞ ¼ΩbxM , aðμ4; xΩÞ ¼ΩbxP1 , and aðμ5; xΩÞ ¼ΩcxP2=
ð1þ xP2 Þ. We have here used xM ; xP1 ; xP2 to denote the number of
molecules per unit volume of the respective species. Note that the
repression and protein degradation steps (first and last reactions) are
modeled by non-elementary reactions. The constant k gives the mRNA
production rate in the absence of repression, c is the rate of enzymatic
degradation of protein P2 at low protein concentrations while the
remaining first-order reactions in (42) are assumed to occur with rate
b. The CLE for this system is given by

d
dt

xM ¼ k
1þ xP2

�bxM þΩ�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

1þ xP2

s
Γ1ðtÞ�

ffiffiffiffiffiffiffiffiffi
bxM

p
Γ2ðtÞ

 !
; ð44aÞ

d
dt

xP1 ¼ bxM�bxP1 þΩ�1=2ð
ffiffiffiffiffiffiffiffiffi
bxM

p
Γ3ðtÞ�

ffiffiffiffiffiffiffiffiffi
bxP1

q
Γ4ðtÞÞ; ð44bÞ

d
dt

xP2 ¼ bxP1�
cxP2

1þ xP2

þΩ�1=2
ffiffiffiffiffiffiffiffiffi
bxP1

q
Γ4ðtÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cxP2

1þ xP2

r
Γ5ðtÞ

� �
: ð44cÞ

The analysis proceeds as in the previous example; one first obtains the
power spectrumwithin the LNA and then calculates the corrections to
the spectrum using the proposed theory. Both of these can be
computed from the state-change vectors and propensities given in
the beginning of this section and following the same steps as in the
previous example. We make a further simplifying assumption to make
the analysis more tractable: we assume that c4b and that k¼ c
ð
ffiffiffiffiffiffiffiffi
c=b

p
�1Þ. It can then be shown that to the LNA level of approxima-

tion, the power spectrum of mRNA and protein species is given by

PLNA
M ðωÞ ¼ 16ω0ð3ω2 þ ω2

0Þð3ω2 þ 65ω2
0Þffiffiffi

3
p

ΩjCðωÞj2
; ð45aÞ

PLNA
P1 ðωÞ ¼ 16ω0ð9ω4�15ω2ω2

0 þ 74ω4
0Þffiffiffi

3
p

ΩjCðωÞj2
; ð45bÞ

PLNA
P2 ðωÞ ¼ 16ω0ð9ω4 þ 6ω2ω2

0 þ 2ω4
0Þffiffiffi

3
p

ΩjCðωÞj2
; ð45cÞ

where CðωÞ ¼ ð2γ�
ffiffiffi
3

p
ω0�iωÞðω2

0�ω2�2
ffiffiffi
3

p
ω0γ þ 4γ2 þ 2iγωÞ with

ω0 ¼
ffiffiffi
3

p
b and γ ¼ bð1�ð

ffiffiffiffiffiffiffiffi
c=b

p
�1Þ1=3=2Þ. The form of CðωÞ implies

that the power spectra have a peak at ω≈ω0, the size of which
increases with decreasing γ. Thus the rate constant b controls the
frequency of the NIOs whereas the ratio of the rate constants c/b
controls how close is the system to the Hopf bifurcation and hence the
quality of the oscillations.
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According to our theory, Eq. (20), the power spectra corrected
for nonlinear effects are given by

PMðωÞ ¼ PLNA
M ðωÞ þ 36992

2187Ω2

ω4
0ω

2ðω2
0 þ 3ω2Þ

γjCðωÞj2
1

ðω�2ω0Þ2 þ ð2γÞ2
þ 2

ω2 þ ð2γÞ2

 !
;

ð46aÞ

PP1 ðωÞ ¼ PLNA
P1

ðωÞ þ 36992
2187Ω2

ω6
0ω

2

γjCðωÞj2
1

ðω�2ω0Þ2 þ ð2γÞ2
þ 2

ω2 þ ð2γÞ2

 !
;

ð46bÞ

PP2 ðωÞ ¼ PLNA
P2

ðωÞ

þ 578
2187Ω2

ω4
0ð27ω4

0�14ω2
0ω

2 þ 3ω4Þ
γjCðωÞj2

1
ðω�2ω0Þ2 þ ð2γÞ2

þ 2
ω2 þ ð2γÞ2

 !
:

ð46cÞ
In Fig. 5, we compare the theoretical spectra obtained from

our theory and the LNA with spectra obtained from stochastic
simulations using the SSA for three different values of the volume
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Fig. 5. Noise-induced oscillations of a negative feedback loop, see mechanism (42). We
have been obtained from the analytic theory (solid magenta line), i.e., using Eqs. (46a) a
we also plot the LNA (dashed gray line). Panels (a) and (b) show that the simulation p
except at zero frequency (dashed lines) as well with the predictions of our theory. For int
well as a zero frequency peak in the protein power spectrum (panels (c) and (d)). The
shown in panels (e) and (f), our theory predicts the existence of a second harmonic in th
misses the attenuation of the second harmonic and the amplification of a third harmonic
nor the LNA matches the frequency dependence of the power spectrum very well. In
ω0=ð2πÞ ¼ 2:8: (a) Ω¼ 105; (b) Ω¼ 105; (c) Ω¼ 103; (d) Ω¼ 103; (e) Ω¼ 5; and (f) Ω¼
referred to the web version of this article.)
Ω. Our theory is in excellent agreement with simulations for
the largest volume (see Fig. 5(a) and (b)); the corresponding
LNA prediction is also in good agreement except for ω close to
zero. The spectra at intermediate volumes are in very good
quantitative agreement with those from the proposed theory
whereas the LNA misses the main features (see Fig. 5(c)
and (d)). In particular we see that the simulations verify the
predictions given by Eqs. (46a)–(46c) namely that the corrections
to the LNA spectra exhibit a second harmonic for all three
species, however, an additional peak at zero frequency is only
predicted for protein P2. The simulation data shows two contrast-
ing types of phenomena as the volume is decreased further: (i) for
the mRNA spectrum, in addition to the second harmonic, a third-
order harmonic becomes conspicuous and (ii) for the protein
spectrum, the second harmonic which was visible at intermediate
volumes disappears (see Fig. 5(e) and (f)). Both of these phenom-
ena cannot be explained by the present theory, but rather come
within the scope of the next higher-order corrections to the LNA
(order Ω�3).
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nd (46c), and from stochastic simulations using the SSA (blue line). For comparison
ower spectra for large volumes ðΩ¼ 1� 105Þ are in good agreement with the LNA
ermediate volumes ðΩ¼ 1000Þ both spectra show a peak at the second harmonic as
latter peaks are well reproduced by our theory. For very small volumes ðΩ¼ 5Þ as
e mRNA concentration and a zero frequency peak in the protein concentration but
in protein and mRNA spectra, respectively. In this case neither the proposed theory
all panels we have used the parameter values c¼765, b¼10 yielding γ ¼ 0:1 and
5. (For interpretation of the references to color in this figure caption, the reader is
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5. Discussion

In summary, we have developed a nonlinear theory of NIOs in
biochemical networks. Our analysis is valid in the vicinity of a
Hopf bifurcation where the oscillations are most pronounced.
We showed that while the linear response (LNA) leads to the
principal peak in the spectrum, it is the nonlinear response
which accounts for the second harmonic and for the peak
at zero frequency. Our results are supported by stochastic simula-
tions using the SSA of mitotic and Goodwin oscillators; the
results can also explain rhythmic single cell experimental data
which as we have shown cannot be understood within the
conventional LNA.

Deriving explicit analytical expressions for the power spectra of
NIOs is desirable for various reasons: (i) to deduce the existence of
NIOs, (ii) to study the parametric dependence of the NIO quality on
the biochemical mechanism, and (iii) to estimate rate constants
characterizing biochemical oscillators from single-cell data. While
all of these can in principle be obtained from stochastic simula-
tions the procedure is very time-consuming in practice because
the large amount of ensemble averaging required to obtain
statistically meaningful results.

Our results are of particular importance for understanding the
origin of ultradian (12 h) rhythms inside single cells. It has been
known that such rhythms accompany circadian (24 h) rhythms
(Dowse, 2008), however, their origin is still a matter of debate. We
have shown that ultradian rhythms can arise as second harmonics of
the circadian oscillation in a population of damped and uncoupled
single cell circadian clocks. Our hypothesis is supported by the fact
that the average experimental power spectrum of autonomous
rhythms in fibroblast cells (Leise et al., 2012) is remarkably well fit
by the theoretical spectrum derived from our nonlinear theory.

We note that higher order harmonics have been described early
in the theory of small amplitude self-sustained oscillators subject to
weak noise (Stratonovich, 1967). The concept of the existence of
such harmonics in damped oscillators subject to weak noise is not
as intuitive as for self-sustained oscillators since such oscillations do
not exist in the absence of noise. Indeed this phenomenon has to
date received only scant attention. Previous studies showed the
presence of higher order harmonics of NIOs for specific models by
means of simulations (Li and Lang, 2008; Rozhnova and Nunes,
2009; Li and Zhu, 2001; Zhong et al., 2001) and a case study
through a system size expansion analytic approach (Scott, 2012).
Particular progress towards a nonlinear theory of NIOs has recently
been obtained using multiple scale analysis for a model of epidemic
oscillations in two variables by Chaffee and Kuske (2011). The
proposed method separates the dynamics into a fast oscillation
(of frequency ∼ω0) and its slowly varying stochastic amplitude
(on a timescale ∼1=γ); the same condition is met in the vicinity of a
Hopf bifurcation. The exemplary application highlights the emer-
gence of a second harmonic by providing a set of nonlinear SDEs for
the amplitudes of the fundamental mode and its higher harmonic.
An analytical expression of the power spectrum, however, has not
been reported presumably because of the nonlinearity of the
resulting equations. Since the method has been applied only to
few variable examples it remains unclear how it generalizes to
biochemical systems which are typically large (Schwikowski et al.,
2000).

Our analysis improves over previous work by deriving for the
first time an approximate closed form expression for the power
spectrum of NIOs for all monostable biochemical networks
operating close to a Hopf bifurcation. This is achieved by calculat-
ing an asymptotic expansion of the power spectrum in two
parameters: the system size and the distance to the bifurcation
point. In particular, our theory shows that the previously observed
second harmonic is universally true for all nonlinear damped
biochemical oscillators of arbitrary dimension subject to weak
noise. We also derive an explicit condition for the existence of the
zero frequency peak in the power spectrum. Note that such a
phenomenon is consistent with the ansatz used by Chaffee and
Kuske (2011), see also Klosek and Kuske (2005), but has not
been explicitly observed for the particular examples studied
therein. We show that this phenomenon stems from the fact that
the baseline of the oscillation undergoes a Brownian motion on
timescales much longer than the period of the oscillations and
demonstrate the effect for two biologically relevant models and
experimental data of a circadian rhythm in single cells. The
biological relevance of this phenomenon is that close to the
bifurcation, the baseline of single cell NIOs may vary widely
among genetically identical cells and hence is a significant source
of cell-to-cell variability.

We conclude by noting that our results show that the conventional
linear analysis of biochemical systems using the LNA is limited in
scope and that higher-order corrections are important and relevant for
understanding and explaining experimental single cell data.
6. Methods

6.1. Linear noise approximation of power spectra

In this section we briefly review the LNA and derive prelimin-
ary results which will be useful for the nonlinear analysis in the
following section. Within this approximation the mean concentra-
tions as predicted by the CME are equal to those given by the
deterministic REs, and the fluctuations about these concentrations
are given by a linear SDE of the form

d
dt

ϵðtÞ ¼ JðϕÞϵðtÞ þΩ�1=2BðϕÞΓðtÞ; ð47Þ

where Ω is the volume of the compartment in which the
biochemical pathway is confined, and ϵ is a vector of concentration
fluctuations about ϕ, the concentration vector solution of the REs,
Eq. (2). The remaining quantities are defined after Eq. (7) in the
main text.

The linear SDE constitutes what is commonly called the
LNA of the CME. Essentially it approximates the trajectories of
the CME by those of a multivariate Ornstein–Uhlenbeck process
(Gardiner, 2007) which can be solved exactly. Its solution being a
multivariate Gaussian distribution and hence all information about
the fluctuations are obtained from the knowledge of the correla-
tion matrix 〈ϵðtÞϵT ðt þ τÞ〉≡ΔðτÞ which can be found analytically
from
Eq. (47) as shown in Gardiner (2007). The result is

ΔðτÞ ¼HðτÞeJτs þ Hð�τÞse�JT τ; ð48Þ

where HðτÞ is the Heaviside step function (with Hð0Þ ¼ 1=2) and s
is the covariance matrix satisfying

Js þ sJT þ BBT ¼ 0: ð49Þ

Note also that s equals the correlation matrix ΔðτÞ evaluated at τ¼ 0.
However, the identification of periodicities is not immediately
obvious from the matrix equation (48). Therefore we diagonalize
the Jacobian by the transformation UJU�1 ¼ diagðλ1; λ2;…; λNÞ. The
Langevin equation then becomes

∂t ~ϵiðtÞ ¼ λi ~ϵ i þΩ�1=2∑
α

~BiαΓαðtÞ; ð50Þ

where ~ϵ iðtÞ ¼∑jUijϵjðtÞ. The autocorrelation matrix transforms
accordingly ~Δ ðτÞ ¼U ΔðτÞU† and its matrix elements read

~Δ ijðτÞ ¼HðτÞeλiτ ~s ij þ Hð�τÞ ~sije
�λnj τ: ð51Þ
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From Eq. (49), it can be shown (Elf and Ehrenberg, 2003) that ~s ij is
given by

~sij ¼� ½ ~B ~B
† �ij

λi þ λnj
: ð52Þ

Hence, from Eq. (51), we observe that the autocorrelation will exhibit
damped oscillations when there is at least one pair of complex
conjugate eigenvalues. Using Eqs. (5) and (6), we canwrite the power
spectrum of concentration fluctuations for species s as

PLNA
s ðωÞ ¼

Z 1

�1
e�iωτ〈ϵsðtÞϵsðt þ τÞ〉dτ: ð53Þ

The power spectrum can be computed straightforwardly by sub-
stituting Eq. (48) in the above equation to obtain (Gardiner, 2007)

PLNA
s ðωÞ ¼ 1

Ω
½ðJ�iωÞ�1BBT ðJT þ iωÞ�1�ss: ð54Þ

However, such an expression is not particularly useful since the
existence of NIOs is not obvious from it. We therefore use the
eigenrepresentation to write

PLNA
s ðωÞ ¼ 1

Ω
∑
kl
U�1

sk Δ̂klðωÞU�†
ls ; ð55Þ

where Δ̂klðωÞ is the Fourier transform of ~ΔklðτÞ which can be
computed from Eq. (51) and found to be

Δ̂ ijðωÞ ¼
Z 1

�1
dτ e�iωτ ~Δ ijðτÞ ¼

½ ~B ~B
† �ij

ðλi�iωÞðλnj þ iωÞ : ð56Þ

where we have used Eq. (51) together with (52). Noting that ~B ¼UB
and

½ðJ�iωÞ�1�ij ¼∑
k
U�1

ik ðλk�iωÞ�1Ukj; ð57Þ

we verify that Eq. (55) together with Eq. (56) is indeed equivalent to
Eq. (54).

6.2. Power spectra of nonlinear SDEs

In the main text we have argued that close to the bifurcation
point the linear Langevin equation given by the LNA, Eq. (7), is
insufficient to capture the dynamics of NIOs and has to be replaced
by the following nonlinear Langevin equation in the eigenrepre-
sentation of the Jacobian:

∂t ~ϵiðtÞ ¼ λi ~ϵi þ
1
2
~J
αβ

i ðϕÞ~ϵα ~ϵβ þΩ�1=2 ~BiαðϕÞΓαðtÞ; ð58Þ

where the tilda denotes variables expressed in the eigenbasis of
the Jacobian. Note that, for notational convenience, we have here
used the Einstein summation convention where all twice repeated
Greek indices are summed over all allowable values; this will be
used in the rest of the paper. The above stochastic differential
equation differs from the eigenrepresentation of the LNA, Eq. (50),
by the second term which takes into account the nonlinearity of
the drift and which is important whenever the first term in Eq.
(58) is small. Applying the Fourier transform ~ϵ iðtÞ ¼R ðdω=2πÞeiωt ϵ̂ iðωÞ to the above equation we find

iωϵ̂ iðωÞ ¼ λiϵ̂iðωÞ þΩ�1=2 ~BiαΓ̂αðωÞ

þ1
2
~J
αβ

i

Z
dω′
2π

Z
dω″
2π

δðω�ω′�ω″Þϵ̂αðω′Þϵ̂βðω″Þ; ð59Þ

where the delta function is defined by
R ðdω=2πÞf ðωÞδðωÞ ¼ f ð0Þ for

any function f. Note also that it is implied that the integration
range extends over the full domain ð�1;1Þ of the integration
variables if not otherwise stated. Now we define the spectral
matrix of the fluctuations in the eigenrepresentation of the
Jacobian by

~PijðωÞ ¼ 〈ϵ̂iðωÞϵ̂nj ðωÞ〉�δðωÞ〈~ϵ i〉〈~ϵ j〉; ð60Þ

which is related to the power spectrum of species s by
PsðωÞ ¼∑ijU

�1
si

~PijðωÞU�†
js . Note that here 〈~ϵ i〉 denotes the stationary

mean of Eq. (58). An inspection of Eq. (59) shows that it cannot be
solved exactly since the two-variable correlation function needed
to compute Eq. (60) is coupled to higher order correlators and
hence to proceed further an approximation method becomes
indispensable.

6.2.1. Expansion of the nonlinear power spectrum
We start by expanding in powers of the inverse square root of

the system size

ϵ̂i ¼Ω�1=2ϵ̂ð0Þi þΩ�1ϵ̂ð1Þi þ OðΩ�3=2Þ: ð61Þ
This allows us to write Eq. (60) as the series

~PijðωÞ ¼Ω�1ð〈ϵ̂ð0Þi ϵ̂nð0Þj 〉�δðωÞ〈~ϵð0Þi 〉〈~ϵð0Þj 〉Þ
þΩ�3=2ð〈ϵ̂ð0Þi ϵ̂nð1Þj 〉�δðωÞ〈~ϵð0Þi 〉〈~ϵð1Þj 〉Þ
þΩ�3=2ð〈ϵ̂ð1Þi ϵ̂nð0Þj 〉�δðωÞ〈~ϵð1Þi 〉〈~ϵð0Þj 〉Þ
þΩ�2ð〈ϵ̂ð1Þi ϵ̂nð1Þj 〉�δðωÞ〈~ϵð1Þi 〉〈~ϵð1Þj 〉Þ þ OðΩ�5=2Þ: ð62Þ

To evaluate these terms we need expressions for ϵ̂ð0Þi ðωÞ and ϵ̂ð1Þi ðωÞ.
These can be obtained by substituting Eq. (61) in Eq. (59) and
equating terms of order Ω�1=2 and order Ω�1, which leads to the
expressions

ðiω�λiÞϵ̂ð0Þi ðωÞ ¼ ~BiαΓ̂αðωÞ;

ðiω�λiÞϵ̂ð1Þi ðωÞ ¼ 1
2
~J
αβ

i

Z
dω′
2π

Z
dω″
2π

δðω�ω′�ω″Þϵ̂ð0Þα ðω′Þϵ̂ð0Þβ ðω″Þ: ð63Þ

By these two equations it is evident that 〈ϵ̂ð0Þi 〉¼ 0 and
〈ϵ̂ð1Þi ϵ̂nð0Þj 〉¼ 〈ϵ̂ð0Þi ϵ̂nð1Þj 〉¼ 0 which follows from the fact that all odd
moments of a Gaussian random variable are zero. Hence there
remain only two contributions to the power spectrum Eq. (62)

~PijðωÞ ¼Ω�1〈ϵ̂ð0Þi ϵ̂nð0Þj 〉þΩ�2ð〈ϵ̂ð1Þi ϵ̂nð1Þj 〉�δðωÞ〈~ϵð1Þi 〉〈~ϵð1Þj 〉Þ
þOðΩ�5=2Þ: ð64Þ

As we show now, the first term corresponds to the result given
by the conventional LNA and the second term is the correction that
we are seeking. Using Eq. (63) and

〈Γ̂ αðω′ÞΓ̂n

βðω″Þ〉¼
Z

dt′
Z

dt″e�iω′t′eiω″t″〈Γαðt′ÞΓβðt″Þ〉¼ δαβδðω′�ω″Þ

ð65Þ
it follows that the leading order contribution is given by the LNA
result

〈ϵ̂ð0Þi ðωÞϵ̂nð0Þj ðωÞ〉¼ Δ̂ ijðωÞ; ð66Þ

in agreement with Eq. (56) in the previous section. Next we
analyze the leading order correction to the LNA result, namely
the term proportional to Ω�2 in Eq. (64). Multiplying the second
equation in (63) with its complex conjugate we find

〈ϵ̂ð1Þi ðωÞϵ̂nð1Þj ðωÞ〉¼ 1
4DijðωÞ

~J
αβ

i
~J
nμν

j

Z
dω′
2π

Z
dω″
2π

Z
dω‴
2π

Z
dω⁗
2π

δðω�ω′�ω″Þ

�δðω�ω‴�ω⁗Þ〈ϵ̂ð0Þα ðω′Þϵ̂ð0Þβ ðω″Þϵ̂nð0Þμ ðω‴Þϵ̂nð0Þν ðω⁗Þ〉; ð67Þ

where we have abbreviated the denominator by DijðωÞ ¼
ðλi�iωÞðλnj þ iωÞ. The integrand on the right hand side of the above
expression is a Gaussian expectation value which can be evaluated
using Wick's theorem (Zinn-Justin, 2007). Specifically, the theorem
states that the four-point correlation of a centered Gaussian
random variable is given by a sum over all pairings of two-point
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correlations. The result is

〈ϵ̂ð0Þα ðω′Þϵ̂ð0Þβ ðω″Þϵ̂nð0Þμ ðω‴Þϵ̂nð0Þν ðω⁗Þ〉
¼ 〈ϵ̂ð0Þα ðω′Þϵ̂ð0Þβ ðω″Þ〉〈ϵ̂nð0Þμ ðω‴Þϵ̂nð0Þν ðω⁗Þ〉

þ 〈ϵ̂ð0Þα ðω′Þϵ̂nð0Þμ ðω‴Þ〉〈ϵ̂ð0Þβ ðω″Þϵ̂nð0Þν ðω⁗Þ〉
þ 〈ϵ̂ð0Þα ðω′Þϵ̂nð0Þν ðω⁗Þ〉〈ϵ̂ð0Þβ ðω″Þϵ̂nð0Þμ ðω‴Þ〉: ð68Þ

Making use of the stationarity of the process, i.e.,
〈ϵ̂ð0Þα ðω′Þϵ̂ð0Þβ ðω″Þ〉¼ 〈ϵ̂ð0Þα ðω′Þϵ̂ð0Þβ ðω″Þ〉δðω′þ ω″Þ and 〈ϵ̂ð0Þα ðω′Þϵ̂nð0Þβ ðω″Þ ¼
〈ϵ̂ð0Þα ðω′Þϵ̂nð0Þβ ðω″Þ〉δðω′�ω″Þ,we can simplify the above to read

〈ϵ̂ð0Þα ðω′Þϵ̂ð0Þβ ðω″Þϵ̂nð0Þμ ðω‴Þϵ̂nð0Þν ðω⁗Þ〉
¼ 〈ϵ̂ð0Þα ðω′Þϵ̂ð0Þβ ðω″Þ〉δðω′þ ω″Þ〈ϵ̂nð0Þμ ðω‴Þϵ̂nð0Þν ðω⁗Þ〉δðω‴þ ω⁗Þ

þ Δ̂αμðω′Þδðω′�ω‴ÞΔ̂βνðω″Þδðω″�ω⁗Þ
þ Δ̂ανðω′Þδðω′�ω⁗ÞΔ̂βμðω″Þδðω″�ω‴Þ; ð69Þ

and hence Eq. (67) is a sum of three terms. By taking the average of
Eq. (63) we find that

〈ϵ̂ð1Þi ðωÞ〉〈ϵ̂nð1Þj ðωÞ〉¼ 1
4DijðωÞ

~J
αβ

i
~J
nμν

j

Z
dω′
2π

Z
dω″
2π

δðω�ω′�ω″Þ〈ϵ̂ð0Þα ðω′Þϵ̂ð0Þβ ðω″Þ〉δðω′þ ω″Þ

�
Z

dω‴
2π

Z
dω⁗
2π

δðω�ω‴�ω⁗Þ〈ϵ̂nð0Þα ðω‴Þϵ̂nð0Þβ ðω⁗Þ〉δðω‴þ ω⁗Þ:

ð70Þ
Using the above expression together with Eq. (69) in Eq. (67) and
simplifying we obtain

〈ϵ̂ð1Þi ðωÞϵ̂nð1Þj ðωÞ〉�〈ϵ̂ð1Þi ðωÞ〉〈ϵ̂nð1Þj ðωÞ〉

¼ 1
2DijðωÞ

~J
αβ

i
~J
nμν

j

Z
dω′
2π

Z
dω″
2π

δðω�ω′�ω″ÞΔ̂αμðω′ÞΔ̂βνðω″Þ

¼ 1
2DijðωÞ

~J
αβ

i
~J
nμν

j

Z
dω″
2π

Δ̂αμðω�ω″ÞΔ̂βνðω″Þ: ð71Þ

Note that by the symmetry ~J
αβ

i ¼ ~J
βα

i the last two terms of Eq. (69)
give equal contributions to Eq. (71). Inserting the Fourier trans-
form Δ̂ ijðωÞ ¼

R
dτ e�iωτ ~Δ ijðτÞ we find the spectral matrix expressed

as the Fourier integral

~PijðωÞ ¼Ω�1Δ̂ ijðωÞ þ
Ω�2

2DijðωÞ
~J
αβ

i
~J
nμν

j

Z 1

�1
dτ e�iωτ ~ΔαμðτÞ ~ΔβνðτÞ; ð72Þ

which can be carried out analytically. Substituting the LNA auto-
correlation matrix given by Eq. (51) we findZ 1

�1
dτ e�iωτ ~ΔαμðτÞ ~ΔβνðτÞ

¼ ~sαμ ~sβν

Z 1

0
dτ e�iωτeðλαþλβ Þτ þ

Z 0

�1
dτ e�iωτe�ðλnμþλnν Þτ

 !

¼� ~sαμ ~sn

νβ

1
λα þ λβ�iω

þ 1
λnμ þ λnν þ iω

 !
: ð73Þ

Substituting the above result into Eq. (72) we conclude
that the power spectrum of the nonlinear Langevin Eq. (58) is
given by

~PijðωÞ ¼Ω�1Δ̂ijðωÞ�
Ω�2

2DijðωÞ
~J
αβ

i ~sαμ
1

λα þ λβ�iω
þ 1

λnμ þ λnν þ iω

 !
~J
nμν

j ~sn

νβ þ OðΩ�5=2Þ;

ð74Þ
which has been expressed in the eigenrepresentation of the
Jacobian.

6.2.2. Dependence close to the Hopf bifurcation point
The result of the preceding section, as we have argued,

approximates the CME in the limit of large population numbers
close to the Hopf bifurcation point. The correction term beyond
leading order is given by a sum weighted by the eigenmode
covariance ~s ij and can be simplified by taking into account the
dependence on the bifurcation parameter γ. Using the critical
eigenvalues λ1;2 ¼�γ7 iω0 in Eq. (52) we see that the components
belonging to the critical modes become singular at the critical
point, i.e., ~sij≃δijG=ð2γÞ þ Oðγ0Þ (for i and j equal to 1 or 2) and
hence yield the major contribution to the sum. Here we have
introduced the real quantity G given by

G≡½ ~B ~B
† �11 ¼ ½ ~B ~B

† �22 ð75Þ

when the critical eigenvectors are normalized such that U1α ¼ Un

2α .
We then have

~PijðωÞ ¼Ω�1Δ̂ ijðωÞ þ
Ω�2G2

2γDijðωÞ
∑

α;β∈f1;2g

~J
αβ

i
~J
nαβ

j

jλα þ λβ�iωj2 þ Oðγ0Þ

þOðΩ�5=2Þ: ð76Þ

Making use of relation (57) we can define the coefficients
Mkl

s ðωÞ ¼ ½ðJ�iωÞ�1�sαU�1
μk U

�1
νl ð∂2f αðϕÞ=∂ϕμ∂ϕνÞ which given U�1

i1 ¼
U�1n

i2 have the symmetries M11
s ðωÞ ¼Mn22

s ð�ωÞ and M12
s ðωÞ ¼

M21
s ðωÞ. Using these together with Eq. (76) we can express the

power spectrum of concentration fluctuations of species s close to
the Hopf bifurcation

PsðωÞ ¼∑
ij
U�1

si
~PijU

�†
js ð77Þ

rωÞ ¼ PLNA
s ðωÞ þΩ�2G2

2γ
∑

α;β∈f1;2g

jMαβ
s ðωÞj2

jλα þ λβ�iωj2 þ OðΩ�5=2Þ þ Oðγ0Þ: ð78Þ

Note that the first term is the prediction of the LNA of order Ω�1

which as previously discussed leads to a peak at ω≈ω0. The Ω�2

correction to the LNA can be understood using the explicit form of
the eigenvalues λ1;2 and expanding the denominator as

PsðωÞ ¼ PLNA
s ðωÞ þΩ�2G2

2γ
jM11

s ðωÞj2
ð2γÞ2 þ ð2ω0�ωÞ2

þ 2
jM12

s ðωÞj2
ð2γÞ2 þ ω2

þ jM22
s ðωÞj2

ð2γÞ2 þ ð2ω0 þ ωÞ2

 !

þOðΩ�5=2Þ þ Oðγ0Þ: ð79Þ

This implies that the first two terms of the corrections yield a peak
at twice the frequency of the LNA and another peak at zero
frequency whenever γ is small which is our central result. Note
that the last term is a non-resonant contribution which has been
omitted in our main result, Eq. (20).
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