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Abstract. We consider a suspension of polarizable sub-micron particles under
the action of a traveling wave dielectrophoresis (DEP). Our focus is specifically
on particle-induced effects. When no external forces are exerted on the fluid and
the particles are driven only by a DEP force, the joint motion of the particles can
induce a steady fluid flow, leading to particle entrapment. The particle feedback
effect is proven to be non-negligible even for a small volume concentration of
particles.
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1. Introduction

Particle dynamics in fluid flows has been the focus of attention for a long time, in various
contexts and at different scales. These studies range from general problems of chaotic advection
[1, 2], including passive [3, 4] and active [5] mass transfer in geophysical flows, to the problems
of mixing [6] and the dynamics of complex fluids at microscales.

The fundamental aspects of particle dynamics in fluid flows at small scales are of great
interest for numerous applications in medicine, biotechnology and pharmaceutical research [7].
The ability to manipulate particles is of particular importance for micro- and nanofluidics [8].
In these applications, the particles can be physical (colloids, liquid droplets in microemulsions,
or small bubbles) or biological (cells, bacteria, or biopolymers) objects manipulated with
electrokinetic [9, 10] or magnetic [11] forces, ultrasound [12], or optical tweezers [13].

Despite noticeable progress in understanding the impact of hydrodynamic [10, 14] and
stochastic [15, 16] forces on the dynamics of the particles, the opposite problem of backward
coupling, i.e. the influence of particle dynamics on the fluid, or particle feedback, is not fully
understood. Especially challenging in the context of laminar flows is the problem of integral
feedback effects, which are conventionally neglected. These effects are induced by a collection
of jointly moving particles and can be non-negligible even for a small volume concentration
of particles. A remarkable example is the particle entrapment under gravity first reported by
Stommel [17], where the sedimenting under gravity particles are trapped by a macroscopic
vortex flow. A long-living cloud formed by the trapped particles stays suspended for a very long
time. As has been recently demonstrated [18], the particle feedback for such system results in a
very strong suppression of the carrier vortex flow.

Further efforts in understanding particle entrapment involve problems such as the impact of
particle inertia [19], non-spherical form of particles [20] and additional non-uniform forces [21].
Small inertia makes the cloud of heavy trapped particles unstable, whereas for light particles
accumulation effects take place [19]. The particle non-sphericity changes the form of the trapped
cloud [20] and an additional dielectrophoretic (DEP) force allows to control the entrapment
process, which is combined with accumulation effects [21].
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In the present paper, we systematically address the general problem of particle feedback at
small scales, where diffusion of particles becomes non-negligible. In contrast to the entrapment
in macroscopic flows [17]–[20], we focus on the situation where the classical Stommel
mechanism of entrapment is no longer efficient, as the cloud of trapped particles is rather
quickly smeared out by diffusion. Moreover, all these previous studies including [21] are based
on the existence of a vortex flow. This flow is a necessary ingredient for entrapment and it exists
irrespective of the particles. What is important in our study is that such vortex flow is induced by
the particles and cannot arise otherwise. We introduce an original theoretical model and apply it
to a physically realistic problem. We predict a novel mechanism of particle entrapment, which
is not only fundamentally different from the one conventionally known [17, 19, 21] but also is
proven to be efficient at small scales.

2. Theoretical model

2.1. General approach allowing for particle feedback

We start by formulating a continuum model for spherical noninteracting particles of radius a
suspended in a fluid having viscosity η and density ρ. To focus only on feedback effects, we
impose a nonuniform external force F̄(r̄) on the particles, which does not directly influence the
carrier phase. Hereafter, the bars are used to denote the dimensional variables. If both the size of
the particles relative to the length scale L of the flow (a/L) and the volume fraction of particles
ϕ̄ are small, a model allowing for the feedback describes the dynamics of the two-phase system:

ρ

(
∂ū
∂ t̄

+ ū · ∇̄ū
)

= −∇̄ p̄ + η∇̄
2ū + ϕ̄F̄, (1)

∇̄ · ū = 0, v̄ = ū +
2a2

9η
F̄, (2)

∂ϕ̄

∂ t̄
+ ∇̄ · j̄ = 0, j̄ = ϕ̄v̄ − D∇̄ϕ̄, (3)

where ū and v̄ are the fluid and particle velocities, respectively, p̄ is the pressure, ϕ̄ is the volume
fraction of particles, j̄ is the particle flux and D is the diffusivity of particles.

The proposed model (1)–(3) is a natural generalization of the theory developed in [18].
Compared to the previous analysis valid for a constant external force, we now allow for an
arbitrary spatially dependent F̄(r̄). Another distinction that significantly changes the physics
behind the entrapment effect is taking into consideration the diffusion of particles. The
corresponding contribution now enters the particle flux j̄ in equation (3). On the other hand, in
the partial case of ū = 0 our model is in agreement with the study [10] and correctly reproduces
the known results. Here, the model (1)–(3) is reduced to the equation that describes a mechanical
equilibrium distribution of polarizable particles under DEP force, see section 3.2.

Of special emphasis is taking into consideration the particle feedback. In contrast to [18], in
our study only the particles are able to cause the fluid to move, which is an advantageous feature
because the fluid flow itself becomes a perfect indicator for the particle feedback. The feedback
is described by the last term in the Navier–Stokes equation, see equation (1). Physically, this
term originates from the Stokes drag, γ ϕ̄(v̄ − ū), where γ = 9η/2a2. For small a/L , this
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contribution dominates in the interphase force [19, 22] and is balanced by F̄. At the same time,
this type of balance results in a distinction between the velocities of the two phases, where
inertia corrections are negligible, see the second relation equation (2). As a result, the feedback
term turns out to be proportional to ϕ̄ and F̄, which reflects an intuitively clear expectation.
The particle feedback effects are more pronounced for a bigger number of particles and higher
intensity of the external force. Note, that a very similar approach has been recently applied to
describe the dynamics of magnetized ferrofluids in magnetic fields [23] and suspensions under
vibrations [24].

Let us now formulate our model (1)–(3) in terms of dimensionless variables. First, by
presenting the volume fraction of particles and the external force as ϕ̄ = 80ϕ and F̄ = F0F,
we introduce their reference values 80 and F0, respectively. Here, the factor 80, which can be
thought of as the space-averaged volume fraction of particles, ensures the smallness of ϕ̄ so that
the rescaled field ϕ takes finite values. The value of F0 and the dimensionless field F are problem
dependent, we specify them later, in section 3. Next, we use the scales of L , L2/D, D/L , ηD/L2

and 80 for the length, time, velocity, pressure and particle volume fraction, respectively. As a
result, we arrive at the dimensionless equations

1

Sc

(
∂u
∂t

+ u · ∇u
)

= −∇ p + ∇
2u + Qs〈8〉ϕF, (4)

∇ · u = 0, v = u + QsF, (5)

∂ϕ

∂t
+ ∇ · j = 0, j = ϕv − ∇ϕ. (6)

Here, Qs = 2a2L F0/9ηD represents the intensity of the external field, Sc = η/Dρ is the
Schmidt number, and a ratio of two asymptotically small parameters 〈8〉 = 9L280/2a2 is the
feedback parameter, which is assumed to be finite.

To stress the relevance of our approach, we provide estimations for a realistic system.
We use parameters, which are relatively close to the specific setup data [10, 25, 26]. For a water
(η ' 10−2 g cm−1 s−1, ρ ' 1.0 g cm−3) suspension with particle size a ' 200 nm and 80 ' 3%
in a container of a characteristic size 2L ' 25 µm at 300 K one obtains 〈8〉 ' 500, and,
according to Einstein’s formula, D ' 10−8 cm2 s−1 and Sc ' 106. Although in most
conventional situations Sc � 1, it becomes necessary to account for the diffusion of particles.
The reason is twofold: (i) even small diffusion becomes non-negligible at small scales, e.g.
when the diffusion time is of the order of L2/D ' 100 s and (ii) it prevents from unbounded
accumulation of particles by the external field. For a wide range of dielectric fluids, the situation
which is also addressed next, the densities and viscosities are close to those of water. For
instance, for carbon tetrachloride (CCl4) ρ ' 1.59 g cm−3, η ' 0.73 × 10−2 g cm−1 s−1 and for a
hydrocarbon liquid such as decane we have ρ ' 0.73 g cm−3, η ' 0.92 × 10−2 g cm−1 s−1. Thus,
the arguments and estimations provided remain perfectly valid for these organic fluids.

2.2. DEP force

We now focus on an example of a DEP force exerted on polarizable particles under an ac
electric field E(r, t) = Re[Ẽ(r) exp(iωt)]. Hereafter, ω is the angular frequency, Re[z] ≡ zr and
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Im[z] ≡ zi denote the real and imaginary parts of z. The time-averaged force (per unit volume)
is [10, 27]

F̄ =
3
2εmRe

[
K̃ (ω)Ẽ · ∇̄Ẽ∗

]
, (7)

where ‘∗’ indicates the complex conjugate. The complex frequency-dependent function K̃ (ω) =

(ε̃p − ε̃m)/(ε̃p + 2ε̃m) is a measure of the effective polarizability of the particle, known as the
Clausius–Mossotti factor. Here, ε̃p and ε̃m are the complex permittivities of the particles and
the fluid medium, respectively. The complex permittivity is defined as ε̃ = ε − iσ/ω (where ε

is the permittivity and σ is the conductivity of the medium). The DEP force (7) comprises two
independent contributions:

F̄ =
3

4
εm K̃r ∇̄|Ẽ|

2
−

3

2
εm K̃ i ∇̄ ×

(
Ẽr × Ẽi

)
. (8)

The first term relates to the in-phase component of the induced dipole. This force points toward
the domains of higher field strength for K̃r > 0 or, conversely, toward the domains of weaker
fields for K̃r < 0, which is referred to as positive-DEP (p-DEP) or negative-DEP (n-DEP),
respectively [28]. Accordingly, the particles are either attracted or repelled by the electrodes.
The second term arises owing to the out-of-phase component of the dipole and is nonvanishing
if the phase is spatially varying [29, 30], e.g. for traveling wave DEP. This term causes the
particles to move parallel to the electrodes.

It is necessary to ensure that the feedback effects are not hindered by other possible sources
of fluid motion. Applied electric fields induce temperature gradients through Joule heating
and therefore create nonuniformities in the conductivity, permittivity and density in the fluid,
which can lead to electroconvection and/or natural convection [10]. The temperature differences
produced by the electric field in the fluid is δT̄ ∼ σmU 2

0 κ−1 and the typical electrothermal force
on the fluid can be evaluated as [10, 25]:

F̄ET ∼ εm
U 2

0

L3
δT̄ max (βε, βσ ) , βε =

1

εm

dεm

dT̄
, βσ =

1

σm

dσm

dT̄
, (9)

where κ is the thermal diffusivity of the liquid and U0 is a characteristic value of the electric
potential. This force is negligible compared to the feedback term in equation (4) F̄ fb ≡ 80 F0 ∼

εm80U 2
0 L−3 (see equation (7)), provided that

F̄ET

F̄ fb
∼

σmU 2
0

κ80
max (βε, βσ ) � 1 (10)

is satisfied. To guarantee predominance of the feedback effects we restrict our analysis by
consideration of dielectric fluids. For instance, for decane with σm ' 10−12 S m−1, βσ < βε '

0.6 × 10−3 K−1, κ ' 0.15 Wm−1K−1 and for U0 ' 2 V we obtain a value for F̄ET/F̄ fb of the
order of 10−12. For carbon tetrachloride the estimation results in an order of magnitude higher
ratio. Moreover, even for deionized water (σm ' 2 µS cm−1, βσ ' 0.02 K−1, βε ' −0.004 K−1,
κ ' 0.58 Wm−1 K−1) as applied in [21], and for U0 ' 0.3 V, which corresponds to desirable
values of Qs (see section 3), we obtain a value for F̄ET/F̄ fb of the order of 5 × 10−5. These
estimations clearly indicate the prevalence of particle feedback over the thermal effects, which
is valid not only for dielectric fluids.

Next, as we claim below, weaker voltage is enough to cause the feedback-induced flow
(as compared with conventionally applied U0 ' 5–10 V in [10, 21, 26]). Although the low
conductivity assumption is of no principal significance, it simplifies the forthcoming analysis.
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Figure 1. Problem geometry. A sketch of a typical experimental setup on
traveling wave DEP (a) with electrode arrays (in black), see, e.g. [10, 26]. The
simplified geometry used in our theoretical study (b).

Within this approximation, natural convection and ac electro-osmosis are even weaker effects
than electroconvection and therefore can be neglected as well.

3. Traveling-wave DEP in a rectangular container

3.1. Problem statement

We now turn to the analysis of a typical system for experiments on traveling wave DEP [10, 26].
To focus solely on the mechanism of particle feedback, in this study we perform a simplified
analysis. As has been justified before, see, e.g. [9, 31], we ignore the electrode micro-structure
(see figure 1) and approximate the traveling wave by a one-harmonic signal. Thus, we consider
a two-phase medium filling a rectangular container of sides L x , L y ≡ 2L , L z and impose a
traveling electric-potential wave at the boundaries ȳ = ±L : φ̄ = U0 exp[i(ωt̄ − qx̄)], where q is
the wave number and U0 is the amplitude. The complex amplitude φ̃(r̄) (where Ẽ = −∇̄φ̃) obeys
the Laplace equation, ∇̄

2φ̃ = 0, which is readily solved. Assuming that L y � L x , L y � L z and
that the sidewalls are electrically passive, we obtain φ̃(r̄) = U0 exp(−iqx̄)(cosh q ȳ)/ cosh q L
and evaluate

F(r) = (−K i cosh by, sinh by, 0). (11)

Here, we define F0 = 3εmU 2
0 q3 K̃r/2 cosh2(b/2) and introduce a dimensionless parameter K i =

K̃ i/K̃r and the dimensionless wavenumber b = 2q L . A traveling wave of period 50 µm leads
to b ≈ 3 and |Qs| ≈ 0.37 for decane and |Qs| ≈ 0.29 for deionized water (these estimations are
based on the specific setup data as used before). Next, we restrict our consideration to the case of
K i > 0, which holds for any dielectric fluid. This restriction is made for the sake of simplicity
and is not principal because for a conductive fluid the sign reversal of K i changes only the
direction of the induced flow.

3.2. Mechanical equilibrium

We first point out the partial case of K i = 0, which corresponds to the limit of perfectly
dielectric particles. According to (11), there is no force allowing for particle transport along
the plane boundaries y = ±1, thus, only transversal redistribution occurs. The particles tend to
migrate either toward or away from these boundaries, which is counterbalanced by diffusion;
longitudinal nonuniformities are smeared by diffusion. Thus, the case K i = 0 admits a state of
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(a)

(b)

Figure 2. Contourplots of the streamfunction (a) and particle concentration (b)
in the steady state for Sc = 2, Qs = −0.2, K i = 1, b = 3 and 〈8〉 = 575. Lighter
(clockwise rotation for vortices) and darker (counterclockwise rotation) colored
domains refer to higher and lower values of the plotted fields, respectively. The
distribution of particles away from the sidewalls corresponds to solution (12), the
maximum of the concentration close to the sidewalls is up to 10% higher than
away from them.

mechanical equilibrium described by the quiescent fluid u0(r) = 0, a vanishing particle flux
j0(r) = 0, and a nonuniform distribution of particles

ϕ0(r) = C090(y), 90(y) = exp
(
Qsb

−1 cosh by
)
, (12)

where C0 = [
∫ 1

0 90(y) dy]−1, as by definition the averaged ϕ is unity. The concentration
profile (12) describes the accumulation of particles near the boundaries for Qs > 0, or in the
center plane for Qs < 0, which correspond to p-DEP or n-DEP, respectively. The solution (12) is
in agreement with the concentration profile obtained in [10]. Analytical and numerical treatment
of the linearized problem as well as a direct numerical simulation of the nonlinear model (4)–(6)
with (11) indicate that the state of mechanical equilibrium is stable for any values of the
governing parameters.

3.3. Mechanical non-equilibrium state: particle entrapment

What happens in a more general case of conductive particles in which K i 6= 0 and longitudinal
transport is allowed, is a simple question to pose, but is remarkably difficult to answer. In
the limiting case of no feedback, i.e. where 〈8〉 � 1, there is no source for fluid motion and
the problem is reduced to finding a distribution ϕ0(r) = ϕ0(x, y) as governed by equations (5)
and (6) with u(r) = 0. In the presence of the feedback, the problem becomes highly nontrivial,
because the system is no longer in mechanical equilibrium. To get an impression of possible
scenarios, we have numerically integrated equations (4)–(6) with (11) in a two-dimensional
rectangular box with the no-slip condition for u and a vanishing normal component for j at the
solid walls. A typical steady-state solution for a fixed value of Sc is presented in figure 2. Steady
states corresponding to different Sc values are similar in appearance: a slight distinction comes
from the nonlinear term, which is nonvanishing only near the sidewalls. What is general is that
the flow is large-scaled and closed. The particles are involved in vortical motion, reminiscent of
particle entrapment under gravity, which was first shown by Stommel [17] (see also [18]–[21]).

However, there are two principal differences to the previous studies. First and most
important, the conventional entrapment implies the existence of a vortex flow irrespective of
whether there are any particles or not [17]–[21]. The fluid flow in our system can be induced
only by the particles. In contrast to previous studies, particle entrapment arises as a generic
particle feedback effect, which also provides a way to generate a flow. The second important
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distinction is that we carefully account for the effects of diffusion. These nontrivial diffusion
effects have been systematically addressed neither in studies performed in a pure Hamiltonian
framework [17, 18], nor in a non-Hamiltionan studies [19, 21].

A closer inspection of figure 2 shows that the flow and concentration patterns are one-
dimensional everywhere except for in the vicinity of the sidewalls. This situation allows for
a one-dimensional analysis of equations (4)–(6) with (11) away from the sidewalls, which is
valid for systems with a high aspect ratio. Accordingly, we apply the ansatz ϕ0(r) = ϕ0(y),
u0(r) = (u0(y), 0, 0). Because the flow does not influence the distribution of particles, ϕ0(y) is
given by formula (12) with the same C0. To determine the fluid velocity, we account for the no-
slip conditions at the solid walls u0(±1) = 0 and a condition of no mean fluid flux

∫ 1
−1 u0 dy = 0,

which implies that the flow is closed. As a result, we obtain:

u0(y) = αV0(y), V0(y) = V01(y) + V02(y), (13)

V01(y) = I2(1) − I2(y), V02(y) = −β(1 − y2), (14)

where α = C0〈8〉|QsK i| > 0, β = 3[I2(1) − I3(1)]/2 > 0, I1(y) =
∫ y

0 90(ξ) cosh bξ dξ and
Il+1(y) =

∫ y
0 Il(ξ) dξ (l = 1, 2); because of symmetry, V0(y) is an even function. Next, we

impose the condition of particle entrapment
∫ 1

−1 j0 · ex dy = 0 and ex = (1, 0, 0), which ensures
no mean particle flux [18]. We arrive at

〈8〉 = I1(1)

(
C0

∫ 1

0
V090 dy

)−1

≡ 〈8〉c, (15)

which represents a formal restriction on 〈8〉. For every set of governing parameters, only a
specific number of particles defined by (15) can be trapped by the flow. In practice, however,
e.g. for a closed rectangular box, such a restriction is not stringent. For 〈8〉 different from
〈8〉c, the solution away from the sidewalls still corresponds to (12), as 〈8〉 = 〈8〉c. Their actual
distinction is balanced in the vicinities of the sidewalls, where a lack or excess of particles
emerges, leading to local gradients of concentration on top of (12). This is clearly seen in
figure 2(b), where for the chosen set of parameters 〈8〉c = 442. In most of the domain the
solution is one-dimensional and corresponds to the entrapped state (12) with 〈8〉 = 〈8〉c. The
noticeable distinction between 〈8〉 = 575 and 〈8〉c has led to a local redistribution of particles:
a relatively smaller lack of particles near the left wall and a larger excess near the right wall.

Of special attention is the case in which 〈8〉 is considerably smaller than 〈8〉c. Here,
although there are not enough particles to excite a flow in the whole domain, entrapment still
occurs. As before, it is accompanied by the birth of a steady vortex flow, but of a smaller
longitudinal extension. With the decrease of 〈8〉, the vortices gradually shrink and no longer
exist at the limit 〈8〉 � 1.

The characteristics of the one-dimensional state (12)–(15) are presented in figure 3. The
particles tend to move along the x-axis; faster near the boundaries and slower at the center of
the channel (see equations (5) and (11)). Because of viscous drag, the fluid is towed by the
particles, which has two consequences. Firstly, this motion contributes in a positive fluid flux,
defined by V01(y). Secondly, it creates a longitudinal gradient of pressure that gives rise to an
opposite Poiseuille flow V02(y), with a maximal velocity at y = 0. The velocity profile V0(y)

is a superposition of these counterflows, such that the net fluid flux is vanishing. It is worth
noting that profile (13) qualitatively resembles the one in the convective flow in a vertical slot
induced by internal sources of heat [32]. In our case, the role of the heat sources is played by
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Figure 3. Characteristics of the one-dimensional state of entrapment (12)–(15)
for b = 3: velocity profiles (a), maximal absolute velocity Vm = maxy|V0(y)| and
〈8〉c as functions of Qs (b).

the nonuniform distribution of particles and the DEP force instead of gravity. Note that the state
of entrapment exists only for Qc < Qs < 0, see figure 3(b). Beyond this range, equation (15)
prescribes negative values of 〈8〉c, which is physically irrelevant. In particular, the condition
Qs < 0 manifests that the entrapment can be observed only for n-DEP. From the experimental
point of view, the flow can be easily controlled by tuning the frequency of the imposed traveling
wave. We also indicate that for |Qs| < |Qc| ≈ 1.2 and b 6 3 the particle distribution possesses
no steep gradients, which directly follows from equation (12). The maximal value of the
concentration ϕm = max(ϕ0) is not large: ϕm < 2. For a sharper distribution of particles no
entrapped state is possible.

3.4. Stability of the entrapped state

To explore the stability of the solution (12) and (13), we have introduced perturbations of
the form f (r) = f̂ (y) exp(λt − ikx x − ikzz) and linearized equations (4)–(6) near this solution.
Here λ = λr + iλi is the complex growth rate, kx and kz are the wave numbers along the x- and
z-axes. The analysis has shown that the modes with the largest λr correspond to the perturbations
in the form of rolls, kz = 0. We have checked a wide range of Schmidt numbers, the stability
maps are presented in figure 4. The regions of stability and instability are separated by two
curves K (c)

i (Qs) of neutral behavior, for which λr = 0 (see figure 4(a)). These lines refer to a
pair of competing modes of the largest λr and have different asymptotes for Sc � 1.

For the branch with higher |Qs| the scaling law is K (c)
i = K1

√
Sc. The concentration

perturbations are localized close to the center plane y = 0. For the branch with lower |Qs|,
we have the asymptotics K (c)

i = K2 Sc. Here, the concentration perturbations are maximal in
vicinities of the critical points where the particle velocity equals the phase velocity of the
perturbations. A boundary layer arises near these critical points and even small diffusivity must
be taken into account without compromise. This situation is akin to the well-known problem
concerning the stability of the Poiseuille flow at large values of the Reynolds number [33],
where the role of diffusivity is played by viscosity. As clarified by Lin, small viscosity cannot
be neglected near the critical points, in which the flow velocity coincides with the phase velocity
of perturbations.
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Figure 5. Breakdown of the one-dimensional state beyond the stability threshold,
Sc = 2, Qs = −0.2, K i = 7, b = 3, 〈8〉 = 450: streamfunction (a) and particle
concentration (b). The coloring scheme is as in figure 2.

The dependencies K (c)
i Sc−1/2 and K (c)

i Sc−1 for different values of Sc are plotted in
figure 4(b). With the growth of Sc, these dependencies converge to master curves K1(Qs) and
K2(Qs). Because of the different scaling, the convergence of K (c)

i /
√

Sc to K1 is slower whereas
the master curve K2 is approached already at Sc = 100.

The results of the linear stability analysis were confirmed by numerical integration of the
nonlinear model (4)–(6) with (11). Note that for large values of Sc, the value K (c)

i is high and
the instability in this particular situation is difficult to achieve experimentally. Indeed, high K i

means that K̃r → 0 and hence Qs → 0. As we see from both figure 3(b) and formula (13), the
intensity of the one-dimensional flow becomes very high. However, instability can be found for
moderate Sc. We have studied the breakdown of the one-dimensional state, which is found to
occur supercritically. The patterns beyond the threshold (see figure 5 for a snapshot) travel along
the x-axis with a speed of λi/kx . For the different branches, the patterns look similar, but have
distinct spatial periods and travel in opposite directions.

4. Conclusions

In conclusion, we have studied the role of the particle feedback in a two-phase system under
the action of a traveling wave DEP. In a situation in which the particles are driven by the DEP
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force but where no external forces are exerted on the fluid, the joint motion of the particles can
induce a steady fluid flow, which is accompanied by a novel particle entrapment. In contrast to
the conventional mechanism, diffusion of the particles becomes a necessary ingredient of the
entrapment. This particle feedback effect has been proven to be non-negligible even for small
volume concentration of particles. We note that similar phenomena are expected in various
physical systems. Indeed, the set of equations (4)–(6) with a force in the form of equation (7)
describe a wide class of problems, e.g. magnetized ferrofluids [23], particles driven by optical
tweezers [13] and bubbly fluids under vibration [24], where the field Ẽ entering (7) is of a
different nature.
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