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Abstract

We investigate the dynamic assembly and swarm translocation of anisometric colloidal particles
dispersed in a nematic liquid crystal and driven above a photosensitive surface. We use liquid crystal-
enabled electrophoresis to propel these particles via an alternating electric field perpendicular to the
sample cell. By manipulating the anchoring conditions on one surface of the experimental cell, we
obtain a spatially extended spiral pattern of the liquid crystal orientation that induces the dynamic
assembly of a rotating colloidal mill. This structure can be transported by translocating the topological
defect above the photosensitive surface. We complement our findings with a theoretical model that
captures the basic physics of the process, by formulating an analytic equation for the director field
above the surface. Our reconfigurable nematic assemblies may be used as a test bed for complex
swarming behaviour in biological and artificial microscale systems.

1. Introduction

The formation of coherent structures from a disordered array of interacting, self-propelling elements is
currently an active research topic in different fields of science [ 1-4]. The interest arose from both a fundamental
and an applied point of view. On the one hand, monitoring and controlling the transport properties of large
populations of artificial micromachines may help understanding the underlying mechanisms that govern
spontaneous formation of coherent structures from self-propelled units, as observed in disparate biological
systems [5—11]. On the other hand, these investigations have also direct technological applications related with
the field of drug delivery in microfluidic and vein networks. In particular, examples include the controlled
release of biochemical cargos attached to functionalized colloidal particles [12—15], the miniaturization of
simple operations in lab-on-a-chip devices [16—20] or the realization of different functional tasks at the
microscale [21-23].

The formation of particle swarms from ensembles of artificial prototypes driven by an external field has been
recently reported by different research groups who use electric [24, 25], optic [26] or magnetic fields [27, 28]. In
most of the cases, the driven particles are dispersed in an isotropic fluid such as water, and are propelled through
lithographic structures or assembled along a circular confinement. An alternative approach that is gaining
interest in the community is the use of photosensitive surfaces in a nematic liquid crystal matrix, where the
dispersed particles can be driven by an electric field along predefined tracks [29-33]. The use of an anisotropic
medium for the particle motion may provide different advantages to self-propelling particle systems. For
example the possibility of controlling the mean molecular orientation of the dispersing medium via an external
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Figure 1. (a) Schematic of the experimental cell showing one anisometric particle enclosed between two ITO plates and dispersed ina
nematic liquid crystal of negative dielectric anisotropy. An AC voltage is applied between both plates. The colloid can be characterized
by two lateral dimensions (d,, d,). (b) Sequence of microscope images showing the controlled propulsion of one particle when
subjected to an AC field with amplitude E = 0.76 Vum ™' and frequencyf = 10 Hz. The corresponding video (Video1) can be found
in the supporting information which is available online at stacks.iop.org/NJP /20/075006 /mmedia. (c) Speed, v, versus amplitude, E,
of the applied electric field for an individual anisometric particle. Scattered points are experimental data, continuous red line is a
quadratic fit to the data.

field, the ability of switching from an anisotropic to an isotropic medium by varying the system temperature, or
finally the absence of hard walls or confinements that may alter the particle motion due to steric constraints.

Motivated by these prospects, in this article we investigate the dynamics of an ensemble of anisometric
colloidal particles that are dynamically assembled into a rotating mill organized around a single topological
defect of aliquid crystal on a surface that imposes planar alignment. In addition, we study the translocation of
the colloidal swarm when the topological defect is relocated on the surface. In this case we observe that the
condensed pattern disassembles, forming a polarized phase that moves along the director field. To understand
the system dynamics, we theoretically determine the director field in contact with the photosensitive surface,
and show that a simple simulation scheme describes well the observed phenomena. Our colloidal model system
may be used to explore the rich many-body physics of collective organization and swarming in microscale driven
systems, and may also inspire the use of similar strategies to control and guide biological entities along pre-
designed paths [33, 34].

The paper is outlined as follows. After the description of the experimental system, in section 2, we discuss the
propulsion of a single colloidal particle, section 3. In section 4 we describe the formation of the experimentally
observed mill pattern and quantify its properties, which is then followed in section 5 by a comparison with a
simple numerical model. An analytic expression for spiral pattern is derived in the appendix. The process of
translocation is discussed in section 6, in which we compare the results of the measurements with the predictions
of the numerical model. We summarize the results and draw the conclusions in section 7.

2. Experimental system

We prepare thin cells enclosing a solution of colloidal particles dispersed in a nematic liquid crystal (MLC-7029,
Merck) characterized by a negative dielectric anisotropy Ae = —3.6 (at 1 kHz). As shown in figure 1(a), these
cells are composed by two microscope slides with an area of 15 x 25 mm?, 0.7 mm thickness, and coated with a
thin layer of indium-tin oxide (ITO) with a sheet resistance of ~100 €2 sq (VisionTek Systems). The plates are
cleaned by sonication in a 1% Micro-90 (Sigma-Aldrich) solution, rinsed with ultrapure water (18.2 M2 cm,
Millipore Milli-Q), and dried at 80 °C for 30 min. Afterwards, the plates are introduced in a plasma surface
treatment equipment (ZEPTO, Diener Electronic). One of the plates is functionalized with a photosensitive
surface in a toluene medium (peptide synthesis grade, Scharlau) by mixing two silanes in a ratio 5:1,
(3-aminopropyl)triethoxysilane (APTES, Sigma-Adrich) and an azosilane compound, (3)-4-(4-((4-octylphenyl)

2


http://stacks.iop.org/NJP/20/075006/mmedia

10P Publishing

New J. Phys. 20 (2018) 075006 AV Straube et al

diazenyl)phenoxy)-N-(3-(triethoxysilyl)propyl)butanamide (GalChimia). Butylamine is added as catalyzer. The
other plate is coated with a thin layer of a polyimide compound (0626 from Nissan Chemical Industries), after
plasma surface activation, in order to achieve a strong homeotropic anchoring of the liquid crystal at the surface.
Both plates are disposed with the ITO facing inwards and are glued together with a separation of about 23 m
using Mylar spacers (Goodfellow). The anisometric particles used in this work have a pear-like shape with two
connected spherical lobes (Magsphere Inc). The particles are made of polystyrene and have lateral dimensions
d, = 4 pm, d, =3 jm, see figure 1(a).

The experimental system is composed of an upright optical microscope (Nikon Eclipse 50iPol) containing
two collimated epi-illumination LED light sources of wavelength 455 nm (Thorlabs M455L3, 900 mW) and
365 nm (Thorlabs M365L2, 190 mW). Brightfield illumination for microscopy was performed with a red
longpass filter (Lambda 645 nm) to avoid perturbing the azosilane coating [31, 35-37]. The microscope
objective is also used to focus light coming from the LEDs onto the sample cell projecting a Gaussian intensity
profile. Images of the particle dynamics are recorded with a CMOS camera (AVT Marlin F-131B). The external,
alternating current (AC) is applied with a voltage amplifier (TREK model PZD700) controlled by a function
generator (Agilent DSOX2002A).

3. Single particle transport

We start by describing the transport properties of an individual anisometric particle. Figure 1(b) illustrates
different experimental snapshots of a single particle driven in the liquid crystal (LC). To understand the
mechanism of motion, one has to consider the experimental geometry, as schematically depicted in figure 1(a).
In the absence of an external field, the homeotropic alignment at the surface of the two cells forces the nematic
director n to point along the z-axis. Since the LC has a negative dielectric anisotropy, under the applied field n
orients perpendicular to the field direction, say along the x-axis. As a consequence, also the main axis of the
dispersed particle aligns along . Inside the LC, the colloidal particle distorts the nematic matrix creating
topological defects around its surface [38]. For our pear-shaped colloids we find two point defects located at both
apexes of the particle, in the form of a non-symmetric ‘double-boojum’ [39].

The applied AC electric field induces electroosmotic flows around the particles. The anisometric shape of
particles breaks the symmetry of these flows leading to net phoretic propulsion at speed v[29]. Given the
confined geometry, the motion is quasi-two-dimensional, and thermal fluctuations of the particle are negligible
due to its relative large size and the high viscosity of the LC medium. Most particles move with their large lobe
ahead, and exhibit a ballistic-like trajectory as shown by the sequence of images in figure 1(b) (see also Videol in
the supporting information). Further, we note that, since the AC field is applied perpendicularly to the plane of
motion, linear (DC) electrophoretic effects resulting from the attraction toward the two electrodes are also
negligible.

The particle phoretic speed v can be controlled by varying the amplitude E of the applied AC field, as shown
in figure 1(c). Similarly to [29], we detect a quadratic dependence of v on E typical of electroosmotic flows
developing around the particle, v = 3(E — E;)?. Note that the propulsion velocity is independent of the
polarity of the field, which enables the application of AC fields. From the fit to the experimental data, we
determine the threshold field for motion, E, = 0.16 4 0.06 Vum ', figure 1(c). Here E, represents the
minimum field required to generate enough ionic flow around the particle to provide propulsion.

In the collective particle dynamics we will keep the field parameters fixed to E = 0.76 Vum ™ 'andf = 10
Hz, which results in an averaged single particle speed of v = 15.1 yms ™. Finally, we note that at a fixed
amplitude, the frequency dependence v = v(f) is even more complex, due to the nature of the ionic motion
within the LC, as reported in previous works [29, 40]. We, therefore, keep the frequency constant through all
experiments.

4. Dynamic assembly on a spiral pattern

Controlling the orientation of the director, n, allows steering the trajectory of the colloidal particles that are
propelled in the LC by the applied AC field. We investigate the collective dynamics of the anisometric particles
above a spiral pattern characterized by a central topological defect, which is shown in figure 2(a) under crossed
polarizer and analyzer. This complex pattern was obtained with the following steps. First we use UV light to
irradiate a large, circular region of the surface coated with the azosilane (see section 2), which forces the dye
molecules there to be in the cis configuration, i.e. to orient parallel to the surface. Thus, the LC director n
acquires a planar anchoring on this area. After that, we irradiate a smaller central spot with blue light, forcing the
azosilane layer to revert to the trans-configuration. In this situation, the director 7 acquires a homeotropic
alignment inside and outside a circular corona of planar molecules. When the AC field is applied, the LC
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Figure 2. (a) Polarized microscope image taken under crossed polarizer and analyzer, showing the spiral pattern induced by light on
the nematic LC due to the irradiated azosilane layer. The small inset at the top shows a photoaligned corona before the application of
the AC field. (b) Sequence of experimental images of a mill pattern composed by anisometric colloidal particles assembled around a
topological defect (black spots). The applied field has a frequency f = 10 Hzand an amplitude E = 0.76 Vum ™. Scale bars for all
images are 25 ym, and all are separated by 37 s. The corresponding video (Video2) can be found in the supporting information, which
is available online. (c) Particle image velocimetry of the largest nematic colloidal mill shown in panel (b). The color bar on the right
side shows the amplitude of the velocity field.

molecules with planar alignment in this corona extend inwards and outwards, and n forms a spiral pattern with
acentral topological defect of charge +1, figure 2(a). Indeed, the LC used here is characterized by a bend elastic
constant smaller than the splay one, and thus bend distortions are favored during orientation of the LC matrix.

In figure 2(b) we show the dynamic assembly of an ensemble of anisometric particles following this spiral
pattern. As shown by the corresponding Video2 in the supporting information, once the external field is applied,
particles move towards the topological defect, which appears as a small black spot at the center of the image.
Particles follow a spiral trajectory, and once close to the defect they start orbiting around it at a constant distance.
As more particles arrive from outside, the density of the rotating cluster increases, until reaching a size of
N = 1000 particles after t = 113 s, figure 2(b). The cluster rotates as a solid body around the topological defect,
and is completely dynamic in nature, since its structure can be easily disassembled by switching off the field or
reducing its strength below E (see section 3). The cluster’s rotational motion follows the chirality of the
underlying pattern, which is randomly selected upon irradiation, while the particles located in the central denser
region keep a constant inter-particle distance larger than the particle diameter. This indicates the presence of a
long range repulsive interaction that may arise from the electrostatic dipoles induced by the applied AC field.
Another interesting feature is the formation of chains at the periphery of the core. This chaining arises from the
LC-mediated quadrupolar elastic interaction induced by the double-boojum defects located at both apexes of
the particles. The chains tend to spiral at a certain angle to minimize the elastic energy and ensure the relocation
of the incoming particles [38].

In order to analyze the dynamic state, we show in figure 2(c) particle image velocimetry analysis of the
colloidal pattern. Indeed, we find that, after a short transient, the cluster of particle organizes into a rotating mill
pattern, with an almost constant linear velocity everywhere in the cluster and, thus, with an angular velocity that
decays with the distance to the center of the cluster.

5. Theoretical description of the colloidal mill

To model the dynamics of particles assembled in the colloidal mill, we apply the minimal scheme able to capture
all the general trends of the dynamic assembly. We consider particles to be spherical with a prescribed phoretic
speed and restrict our consideration to the two-dimensional (x, y) plane, which is parallel to the electrodes. The
overdamped motion of an ensemble of N colloidal particles with positions 7; (i = 1, ..., N) ina LC matrix is
described by the following equations of motion
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Figure 3. (a) Vector field of the spiral pattern calculated following the model in the text over an area of 300 x 300 yzm>. (b) Results of
numerical simulations showing the assembly of N = 800 particles above the spiral pattern. Scale bar is 20 jum, see also corresponding
Video3 in the supporting information.

L (s, Bt 0 + ' S5 M
where the first term on the right hand side of equation (1) describes the phoretic propulsion of individual
particles whose direction is along the local LC director, the second one is a force that accounts for interactions
with other particles, and ¢ denotes the friction coefficient of the particle moving along the director field. This
model implies that particles propel strictly along the director field n(r, t) (n| = 1), and the strength of
propulsion generally depends on the field parameters (E, f). Since we are only interested in describing the particle
dynamics at fixed fand E, we set the strength of propulsion as

v; = vo(1 + 0.28), (2)

where v, is the constant deterministic mean speed of the particles and £ is a Gaussian random variable with zero
mean and unit variance. The noise distribution has been measured in experiments, and it is about 20% of the
mean particle speed, which is reflected on the weight of this term. This distribution resulted from the presence,
in the experimental system, of disorder, surface inhomogeneities and other sources of noise. For the values used
in the experiments, f = 10 Hzand E = 0.76 Vum ™', we have set vy ~ 15.1 ums ™"

The director field is modeled as a spiral pattern
n(r, 1) = n(Y(r — q)), 3)

defined by the function 1, which is obtained in the appendix by minimizing the energy functional of the nematic
liquid crystal, and which is given in equation (A.7). In polar coordinates, the director field spirals out of the
origin accordingto n = (n,, ng) = (cos?), sin1)). Since we are interested in patterns that spiral in, we flip the
sign of the radial component of the director, #, — —n,and then pass to Cartesian coordinates (x, y). As a result,
the components of the director field, n(r) = (n,, n,), canbe presented as 1, (r) = —cos0n, — sinOny =
—cos(0(r) — (r)), n,(r) = —sin0n, + costng = —sin(f(r) — P(r)).

The corresponding pattern generated by equation (3) in the domain 0 < x < L,,0 < y < L, with
L, = 300 pmand L, = 300 um and placed at the position g = (150 pum, 150 pzm) is shown in figure 3(a). The
spiral pattern is characterized by the parameters a; = —7/5, a, = —7/4 (see the appendix), and the inner and
outer radiiaresettor; = 2 yumand r, = 1000 pm, respectively. We note that although the pattern is derived for
the elastic constants Kg = 16.1 pN and Kz = 15.0 pN, which are close in value, equation (A.7), valid for
Ks = Kj, gives a slightly different pattern with respect to the one-constant approximation, equation (A.8), but it
represents a more accurate solution.

In figure 3(b) we show the result from a numerical simulation, where N = 800 particles are assembled above
the spiral pattern (see also the corresponding Video3 in the supporting information). In order to reproduce the
dynamic features observed in the experimental system, we introduce long-range repulsive interaction between
the colloidal particles. We have checked and found that different long-range repulsion potentials seem to work
fine to describe the dynamics of the colloidal assembly process. To be specific, in the control simulations we stick
to the repulsive potential of the form U (r;j) o< 1 / rg , which leads to the repulsive force exerted on particle i by
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where r;j = r; — 1}, r;j = |r;|. The constant C; /; is taken as 2000 pm?s~ ! in the simulations. We note that this
law of repulsion is a justified assumption because the particles are polarized in the applied AC field and acquire
an electric dipole moment [41, 42]. This dipole is always perpendicular to the electrodes and to the plane of
particles, and therefore all the dipole moments stay parallel to each other. As a result, they are expected to repel
according to the above dipolar interaction force.

To account for a finite size of particles, we also introduce a steep short-range repulsive potential of the form
Us(ry) o (0 /rj)* — (0/r;)* + 1/4,whichisapplied at distances r;; < r, = 2!/*¢ and is vanishing otherwise.
Here, o is an effective diameter of the particle. At short distances, r;; < 7o, this potential leads to the strictly
repulsive force

48 2
F = _IT) e, 2[1] - [1] b )
i Tij i) |7y

In our study, weset C, /(= 1 um* - s'and 0 = 5 um. Note that o is slightly larger than the actual size of

particles, d,, d,. To better replicate the experimental observations, we assume that defects in the liquid crystal in

the vicinity of particles prevent the direct contact of particles, leading to a larger effective hard core distance.
Finally, we also account for quadrupolar interactions, which cause a weak chaining of particles depending on

the underlying pattern. The corresponding force can be represented as [43]

_ OUs(ry)

F® =
v or;

, Us(ry) = C—53(3 — 30cos?V + 35co0s*?), 6)
ij

where 9 is the angle between the far-field orientation of the nematic director # and the vector connecting the
center of particles, r;;. In the simulations, we set Cs / C” = 500 um’ - s~!. Note that figure 3(b) reflects the
consequence of these interactions leading to spiral chaining at the periphery of the hard core.

The comparison between the experimental and numerical data is shown in figure 4, where we plot different
observables related with the dynamics of the colloidal mill as obtained in experiments (figures 4(a), (b)) and
simulations (figures 4(c) and (d)). In the former case, we use video microscopy and tracking routines [44] to
extract the positions (x;, y;) of each particle 7, and analyze the radial and azimuthal particle velocities averaged
over the ensemble, (v, vg) with v, g = >~ v/% / >_,|vil, as measured in polar coordinates from the central defect.
Both quantities are shown in figure 4(a) for the rotating mill, and compared with the numerical case in
figure 4(c). Both types of data present the same trend, with a vanishing radial velocity when the mill is formed
and an azimuthal component that approaches —1. Both quantities are negative since the particles are moving
toward the center thus against the radial direction, outwards by definition (v, < 0), and in a clockwise sense
(vg < 0). The main difference between experiments and simulations refer to transient states determined by
initial conditions, which are clearly different in both cases. As expected, the convergence to the final state shows
similar trends in the evolution of v,,and vy,

Apart from the instantaneous velocity, we characterize the dynamics in terms of two other order parameters
that describe, respectively, the degree of particle alignment and collective rotation. The first one is the
normalized polarity P of the pattern, defined as:

Z,’Vi
> vl

P—‘ )

with v; being the velocity of particle i at position r; from the center of mass of the ensemble, and the summation
is performed over all particles in the ensemble. The second parameter is the normalized angular momentum of
the particle ensemble, defined as

Mo Zir,‘ X Vi ' (8)
> lrivi

As described in [45], both order parameters are necessary to quantitatively determine whether the collection of
propelling particles is in a coherent flock state (high value of P, low M) or in a single-mill state (low P, high M). As
shown in figures 4(b) and (d), we find that in the experiments and simulations both assemblies show a negligible
polarity P, while the angular momentum M increases toward unity.
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Figure 4. (a)-(d) Comparison between results from experiments (a), (b) and numerical simulations (c), (d). The two top graphs (a), (c)
show the time evolution of the instantaneous azimuthal (vy) and radial (v,,) velocities averaged over the number of particles. The two
bottom panels (b), (d) show the normalized order parameters polarity P and angular momentum M versus time.

6. Colloidal translocation: experimental and numerical results

While we just described the formation of a colloidal mill, the photosensitive surface also allows to transport these
dynamic states everywhere within the cell. For a given assembly, particle speed due to liquid crystal-enabled
electrophoresis (LCEEP) drops down to zero at electric field frequencies of about 50 Hz. For greater stability, we
choose 1 kHz as the frequency to freeze the assembly in place, while we pull the topological defect from the initial
position (center of the formed colloidal mill) for a certain distance. This translocation is performed through a
disclination line that forms as the UV light spot is dragged between the initial and the final destination on the
photosensitive surface. We demonstrate this feature in the sequence of images in figure 5(a), where a mill pattern
is translocated a distance of 175 pum (see also Video4 in the supporting information). During translocation, the
colloidal swarm moves as a polarized pattern developing a leading edge that is followed by all other particles.
These dynamic features are reflected in figure 5(b), where we evaluate the corresponding two order parameters
M and P. A colloidal mill is initially assembled under f = 10 Hz. It is subsequently held in place by switching to
f=1 kHzanda UV light spot is dragged from the center of the mill to a destination spot (figure 5(a)). When the
frequency is switched back to 10 Hz, LCEEP becomes active again, dismantling the assembly as particles are
driven towards the destination spot. Both order parameters rapidly exchange values raising the value of Pand
reducing the rotational motion (thus M). The particles move at a constant speed towards the translocated
topological defect, raising the value of P to unity, while M vanishes. After 150 s, enough particles have gathered
around the destination spot for the mill pattern to form again, thus increasing the corresponding value of M and
reducing the degree of alignment of the propelled particles, thus lowering P.

In order to reproduce numerically the experimental situation illustrated in figure 5, we perform a procedure
similar to the experimental one. In particular, the operation of transferring one defect from one initial position
toanew one ata certain distance is obtained by switching from one spiral pattern to another one with a shifted
position after a time #;

t<t,

S 9
>tl) ()

we = (1A =, 0
T n(@a(r — qy), t

where the two patterns are determined by the functions ¢, and 1), and g, and g, specify their locations. The two
patterns in equation (9) are generated using equation (A.7) as shown in figure 6(a).
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Figure 5. (a) Images showing a colloidal mill that is translocated to a different place of the experimental cell due to in situ
reconfiguration of the LC field with UV light (365 nm). The blue disk in the first image indicates the location of the translocated
topological defect. The experiments were performed with an AC field of amplitude E = 0.76 Vum ™' and frequency f = 10 Hz. The
corresponding video (Video4) can be found in the supporting information. Scale bar is 20 ym. (b) Orders parameters Pand M
measured from the particle trajectories.

We then simulate the translocation process using equation (1) for N = 1000 particles in a simulation
domain corresponding to a rectangular box, 0 < x < L,,0 < y < L,with L, = 500 pmand L, = 675 pm.
Spiral patterns 1 and 2 in equation (9) are characterized by the functions v, with a; = 7/6, o, = 7/4located at
q, = (250 um, 250 pm) and ¢, with a; = 7/6, 0, = —7/10located at g, = (415 pom, 250 pm), respectively.
Other parameters are kept the same, as for the case of mill.

Figure 6(b) shows the results of the numerical simulations (see also Video5 in the supporting information)
with the corresponding calculated order parameters M and P shown in figure 6(c). Attime t = 0, the particles
are uniformly distributed within a circle of radius 200 pm centered at (200 pzm, 200 pm). They start to move
along the spiral orbits towards the center of attraction, g, forming a rotating mill. During this process, both
parameters, P and M, are non-vanishing and their evolution have opposite tendencies following the previously
identified trends.

The switch from pattern 1 to pattern 2 occursat t = ¢; = 50 s, when the behavior of Pand M displays an
abrupt jump caused by the instant shift of the ‘center of attraction’ and particle propulsion towards position 2. In
contrast to this instantaneous switch, reconstruction of the destination mill is gradual, in analogy with the
experiments, as can be seen from the smooth decrease in P and increase in M. Eventually, the center of mass of
particles nearly reaches the position of the spiral pattern, g, and we observe another rotating mill. This state
approximately correspondsto P =~ O and M ~ 1.

7. Conclusions

In this article we have demonstrated a method to trap and transport a large ensemble of anisometric colloids
dispersed in a nematic liquid crystal matrix and driven by nonlinear electrophoresis. The particles are propelled
above a photosensitive surface where a topological defect generating a spiral pattern is created or erased by light.
The experiments are combined with a theoretical model that calculates the pattern topology and explains the
observed dynamic states and how they depend on the underlying pattern orientation. While our colloidal swarm
was transported along a simple track, namely a line connecting two topological defects, in principle more
complex patterns may be easily designed to steer the colloidal motion. The advantages of this method over other
strategies to propel microscale matter in viscous fluids are the possibility to control the mean molecular
orientation of the dispersing medium using an external field, and the independent control of the surface
topology through optical means. These two external fields are uncoupled and can be easily interchanged during
the experiments, a feature that gives further functionality to the transport in colloidal systems.
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Figure 6. (a) Top (Bottom) image shows the vector field of the spiral pattern obtained for a; = 7/6, 2, = 7/4 (o, = 7/6,

a, = —/10). Both vector fields cover the same area (500 x 675 ;im?) and are exchanged in the simulation after t; = 50 s.

(b) Sequence of images from numerical simulation showing the translocation process for N = 1000 particles. First (f < t;) a colloidal
mill is assembled above the pattern shown in the top figure 6(a), and later (¢ > t;) is translated by switching the underlying pattern,
bottom figure 6(a). Scale bars for all the images are 20 pm. See corresponding Video5 in the supporting information.

(c) Corresponding normalized order parameters M and P versus time.
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Appendix. Plane spiral patterns of the director field in a nematic liquid crystal

To model mill patterns, here we are interested in finding spiral solutions of the director field that are consistent
with the continuum theory of liquid crystals and at the same time can be adjusted to render the experimental
conditions. A simple ‘magic spiral’ solution for a nematic liquid crystal confined by two concentric cylinders of
radiir; < r,wasobtained by Parodi, see [46]:
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_ mIn(p/n)
P(p) = SOV (A.1)

showing a monotonic change of the angle made by the director with the radial direction. It is based on three basic
assumptions: (i) the director field is restricted to the plane normal to the axes of the cylinders; (ii) the anchoring
is homeotropic (normal director) at the inner cylinder and planar (tangential director) at the outer one; (iii) the
one-constant approximation, implying that the splay, Ks, and bend, K, constants are equal.

Later, Williams went beyond the one-constant approximation and also extended the analysis to an arbitrary
alignment at the outer boundary but kept it homeotropic at the inner one [47]. However, to achieve a reasonable
agreement with the experiment, it is crucial for us to be able to arbitrarily adjust the alignement of the director
field also at the inner border. Furthermore, the radial dependence of the angle 1/(r) can be non-monotonic even
at slightly different constants, which may become important for describing spiral patterns at large distances.
Therefore, for the sake of generality, we will stick to the case K5 = Kj and adapt the discussed solutions.

We start by formulating the Frank—Oseen free energy of the nematic liquid crystal. For the two-dimensional
case as in assumption (i) above (1, = 0), the corresponding energy expressed as a function of the director field
n = n(r) and written per unit length along the cylinder is

F— %fdr{Ks(V 1) + Kgln x (V x m)). (A2)

We now proceed to the polar coordinates (p, §) and represent the director field as (11, 19) = (cost), sint)) with
1 = 1(p). Using this ansatz in equation (A.2), integrating it over the polar angle § and introducing the
combinations of elastic constants, K, = (Kg = Kg)/2, we obtain

1) 2 . 2
F= 77]; pdp|:K+(¢f) + %) - K(1/J,23 cos 21) — i S;n L Cols)zwj)]'

This expression is simplified in terms of a rescaled radial coordinate, s(p) = In(p/r;), resulting in
S
F=r f " AS[KL (2 4+ 1) — K_(42 cos20) — 24 sin2p — cos 240)], (A.3)
0

where s(r;) = 0ands, = s(r,) = In(r,/r1). Here, the subscripts ‘p’ and ‘s’ denote the corresponding derivatives.
Applying a standard procedure to minimize the energy functional (A.3), we arrive at an ordinary differential
equation for (s)

(Ky — K_cos21p) 1) + K_ap?sin2¢p + K_sin2¢) = 0, (A.4)
which is supplemented by the boundary conditions
P(O0) =, P(s2) = . (A.5)

The values o and o, determine the arbitrary alignments of the director field at the inner (p = r;) and outer
(p = ry) borders, respectively.

The boundary value problem described by equations (A.4) and (A.5) admits two simple fundamental
solutions. One is given by (s) = a; = a, = 0, 7. The sink-like pattern with ¢)(s) = 7 corresponds to an aster,
n = (n,, ng) = (—1, 0), while the source-like pattern y(s) = 0 describes an antiaster, n = (n,, ng) = (1, 0).
Another important solution is given by ¥(s) = «; = a, = +m/2, which corresponds to a vortex,

n = (n,, ng) = (0, £1), where the upper and lower signs are for counter- and clockwise directions of rotation,
respectively. Because of nonlinearity of equation (A.4), it admits no exact analytic solution for a spiral pattern
and should be obtained numerically.

To make an analytical progress, we resort to the approximation of weak distortion, 1) < 1. By retaining the
leading terms only, we end up with the linear ordinary differential equation

wss + kzw =0, k? = 2K = Ks — KB- (A.6)
K. — K_ Ks
Solving equation (A.6) for the case Kg > Kg, asin the experiment, and satisfying boundary conditions,
equation (A.5), yields
oy — apcosksy .
V(p) = arcos(ks(p) + —————=sin(ks(p) (Ks > Kg). (A7)

SIN KS)

Note that the solution in the opposite case of Ks > Ky is given by equation (A.7) with trigonometric functions
replaced by their corresponding hyperbolic counterparts. The special case of ; = 01is in agreement with the
results of Williams [47].
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The partial case of one-constant approximation, Ks = Kg, follows from equation (A.7) in the limit k — 0,

In(p/n)
In(r, /1)

which can alternatively be figured out directly from equation (A.4) for K_ = 0. Again, the special caseof a; = 0
and o; = 7/2isin agreement with the results by Parodi [46], see equation (A.1). We finally stress that in contrast
to one-constant approximation solution (A.8) with a strictly monotonic dependence of ¢(p) for 0 < «a,

oy < /2,11 < p < 1y, the corresponding solution (A.7) is more general, leading to periodic radial undulations
of the director field for Kg > Kp.

PY(p) = a1 + (v — ) (Ks = Kp), (A.8)
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