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We study spectral and correlation properties for tracer particles in steady two-
dimensional flows of incompressible viscous fluids past doubly periodic arrays of solid circular
cylinders. It is demonstrated that in a class of such flows, the Fourier spectrum is neither
discrete nor absolutely continuous, and the autocorrelation decays in accordance with the
power law.

§1. Introduction

It has been long recognized that irregular transport of passive tracers by viscous
flows can have well-ordered flow patterns as its background.1) The origin of this
phenomenon is rooted in the distinction between the Eulerian description of the flow
and the Lagrangian description of individual tracer particles: the former character-
izes the fluid motion in a fixed point of the physical space, whereas the latter is
bound to the moving particle which is advected by the fluid and explores different
regions of the physical space. Chaotic advection (known also as “Lagrangian chaos”)
has been detected in steady or time-periodic flows on micro-, meso- and macroscopic
scales, from nanotechnology to astrophysics.2) If particle paths are viewed as phase
trajectories, the volume filled with fluid turns into the phase space; from this point
of view it is clear that in order to exhibit Lagrangian chaos, a flow pattern must be
either three-dimensional, or time-dependent, or both.

Since the geometry of a two-dimensional phase space precludes chaos, the con-
ventional examples of advection in time-independent two-dimensional flows have
simple dynamical characteristics: motions of typical tracer particles are stationary
or (quasi)-periodic in time; they are well correlated, and the power spectra of such
motions are discrete. Here, we present a class of time-independent two-dimensional
flows for which the Fourier spectrum sits on the fractal set, and the correlation decays
in accordance to the power law.

§2. Problem formulation

We consider a steady flow of a viscous incompressible fluid through the square
lattice of parallel solid circular cylinders. Let the flow be perpendicular to the axes of
cylinders. Assuming that the Reynolds number is small, we neglect nonlinear terms
in the Navier-Stokes equation and reduce it to the Stokes equation for the velocity
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V and pressure p:
−∇p + η∆V = 0, div V = 0, (1)

where η is the viscosity of the fluid. As boundary conditions, we impose periodicity
on the borders of the elemental cell of the lattice. Choosing the size of this cell as the
length unit and directing the axes x and y along the axes of the lattice, we obtain

V (0, y) = V (1, y), V (x, 0) = V (x, 1). (2)

Along the boundary ∂Γ of the solid cylinder Γ the velocity vanishes, ensuring the
no-slip condition:

V
∣∣
∂Γ

= 0. (3)

To compensate the viscous dissipation, external factors (e.g. in the form of mean
gradients of pressure) must be present; we ensure this balance by prescribing the
components of mean flow along both axes:

∫ 1

0
Vxdy = α,

∫ 1

0
Vydx = β. (4)

Incompressibility allows to introduce in the standard way the stream function
Ψ(x, y): Vx = ∂Ψ/∂y and Vy = −∂Ψ/∂x. In this terms, Eq. (1) is reduced to the
biharmonic equation ∆2Ψ = 0. Vanishing of velocity on the border of the cylinder
turns into ∂Ψ/∂x

∣∣
∂Γ

= ∂Ψ/∂y
∣∣
∂Γ

= 0. Conditions for mean flow and periodicity can
be satisfied simultaneously by putting Ψ(x, y) = αy−βx+Φ(x, y) where Φ has period
1 with respect to both of its arguments. Since the flow is steady, the fluid particles
move along the streamlines. Notably, description in terms of Ψ is tantamount to
the Hamiltonian formalism; therefore the transport of particles is governed by the
integrable Hamiltonian system with one degree of freedom.

Fig. 1. Flow pattern with inclination α/β =

(
√

5 − 1)/2.

A solution of Eqs. (1) - (4) as se-
ries in elliptic functions of coordinates
was obtained for the arbitrary inclina-
tion α/β of the flow by H. Hasimoto.3)

This allowed to estimate the drag on
an individual cylinder and, further, to
calculate the permeability of the array
of cylinders.4) For our studies of spec-
tral and correlation properties of passive
tracers carried in the velocity field, we
used the numerical solution of the bi-
harmonic equation which was computed
on the polar grid with 600×1200 nodes;
between the nodes, the field was inter-
polated by the scheme of the 2nd or-

der. Figure 1 presents four adjacent cells of the flow pattern with inclination
α/β = (

√
5 − 1)/2 and radius of the cylinder 1/6.
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§3. Fractal nature of the Fourier spectrum

Viewed as a dynamical system, the velocity field of Eqs. (1) - (4) is the area
preserving vector field with rotation number α/β on the 2-torus. Spectral properties
of flows on 2-tori were first studied by Kolmogorov;5) for nowhere vanishing fields and
typical irrational rotation numbers he found the discrete spectrum. In the absence
of fixed points the return time (duration of one turn around the torus) is bounded.
If isolated non-degenerate fixed points (stagnation points for the fluid) are present,
return time has logarithmic singularities; they are too weak to ensure mixing.6)
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Fig. 2. Power spectrum for the tracer velocity;

sample length 213, α/β = (
√

5 − 1)/2.

A peculiarity of the vector field in
the considered problem is its identical
vanishing on the cylinder border where
every point is the fixed point of the flow.
The collective effect of this continuum of
equilibria produces a strong, power-like
singularity of return time: close to the
border, the return time diverges as ξ−1/2

where ξ is the minimal distance between
the streamline and the cylinder. Since
under irrational rotation numbers every
streamline is dense on the torus, each
fluid particle repeatedly passes arbitrar-
ily close to the cylinder and exhibits a
strong slowdown. This has a noticeable effect on the observables associated to such
particles. A numerical estimate of the power spectrum of the velocity of the moving
fluid particle is shown in Fig. 2. The discrete set of delta-peaks, typical for quasiperi-
odic dynamics, is apparently absent; the spectrum looks rather like a continuous one
or a mixed one. Logarithmic presentation of abscissa is more illuminating (Fig. 3):
in the low-frequency part a distinct self-similar pattern is shaped.

A comparison of Figs. 3(a) and (b) shows that increase of the length of sample
over which the spectrum is evaluated, does not ensure convergence to the limit
spectral curve. Instead, the peaks become higher, the valleys lower and narrower, and

10-4

10-2

1

102

0.01 0.1 1

po
w

er
 s

pe
ct

ru
m

ω

(a)

10-4

10-2

1

102

0.01 0.1 1

po
w

er
 s

pe
ct

ru
m

ω

(b)

Fig. 3. Estimates of power spectrum. (a) Sample length 213; (b) sample length 215.
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the whole plot is getting more dense. This process of “fractalization” of spectral curve
reminds of “structure intermediate between quasi-periodic and random”.7) The
power spectrum is singular continuous: neither discrete nor absolutely continuous
with respect to the Lebesgue measure; the spectral measure is supported by the dense
fractal set. It corresponds to dynamics intermediate between chaos and order.8)
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Fig. 4. Autocorrelation and integrated auto-

correlation for the velocity of the tracer.

The unusual nature of the Fourier
spectrum is reflected by the behavior
of the autocorrelation C(τ): in con-
trast to conventional examples of two-
dimensional dynamics, autocorrelation
decays. This decay is slower than ex-
ponential: the highest peaks of C(τ),
which form a log-periodic lattice, de-
crease in accordance with the power
law C(τ) ∼ τ−0.28. Such “long-range
correlations” are widespread in physics
of critical phenomena, but here we
encounter them in an integrable two-
dimensional dynamical system where
the correlations are usually supposed

not to decay at all. Quantitative information on the fractal characteristics of the
spectrum is delivered by the “integrated autocorrelation” Cint(t) = 1

t

∫ t
0 C(τ)2dτ :

the decay of Cint(t) indicates to the absence of the discrete component in the Fourier
spectrum. Further, the rate of this decay characterizes the fractal component:
Cint(t) ∼ t−D2 where D2 is the correlation dimension of the fractal set which supports
the spectral measure.9) According to our estimations, D2 ≈ 0.82.

Our result shows that viscous steady flows past periodic arrays of solid obstacles
possess the fractal spectral component. As a consequence, these flows should display
mixing. Of course, such mixing is slower and less intensive than in the case of chaotic
advection; however, on the large timescale it leads to the same effect.
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