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The averaged dynamics of various two-phase systems in a high-frequency vibration field is studied
theoretically. The continuum approach is applied to describe such systems as solid particle
suspensions, emulsions, bubbly fluids, when the volume concentration of the disperse phase is small
and gravity is insignificant. The dynamics of the disperse system is considered by means of the
method of averaging, when the fast pulsation and slow averaged motion can be treated separately.
Two averaged models for both nondeformable and deformable particles, when the compressibility
of the disperse phase becomes important, are obtained. A criterion when the compressibility of
bubbles cannot be neglected is figured out. For both cases the developed models are applied to study
the averaged dynamics of the disperse media in an infinite plane layer under the action of transversal
vibration. © 2006 American Institute of Physics. �DOI: 10.1063/1.2204057�
I. INTRODUCTION

Oscillatory processes can be found in a sheer uncount-
able number of situations in nature at various time and length
scales: from subatomic to astronomic scales. Vibration is a
mechanical oscillatory process with an amplitude that is
small compared to the characteristic length scale of the sys-
tem. Often, as in our study, it is assumed that the inherent
time scale of the system is much larger than the period of the
oscillation. Vibration mechanics has been studied for a long
time; general concepts of this nonlinear phenomenon have
been put into practice. It is widely used in industry for trans-
portation and separation of granular matter such as powders
and grains, to enhance mixing and reaction rates of different
species. In medicine, ultrasound is applied for diagnostics
and healing. In microfluidics and biotechnology it serves as a
means to manipulate physical �colloidal particles, fine-
dispersed powders, liquid drops in microemulsions� and bio-
logical objects �cells, microorganisms, and micromolecules�
suspended in liquids. Quite a broad spectrum of applications
has motivated a great interest in the fundamental problems of
vibration dynamics. The present work is aimed at studying
the dynamics of two-phase media in a high-frequency vibra-
tion field.

There has been much effort to understand the impact of
vibration action on the behavior of systems of a different
nature. Particularly, it has been understood that vibration can
substantially influence the dynamic and rheologic properties
of systems. An outstanding example is the Kapitza pendulum

with a periodically moving point of support,1 where the up-
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per vertical state of the pendulum becomes stable. Other
known effects are a metal ball that lifts in ambient sand
medium under vibration,2 granular matter that liquidizes3 or
demonstrates the formation of oscillons4 in a vibration field.
As typical hydrodynamic examples we mention excitation of
a steady relief at the oscillating interface pure liquid-particle
suspension,5,6 and thermal vibration convection,7 where the
action of vibration on the nonuniform fluid results in genera-
tion of a slow macroscopic motion even in the absence of
gravity.

The behavior of a single solid inclusion in fluid environ-
ment under vibration has attracted much attention since a
long time ago. As far back as 1831, Faraday used particles to
visualize standing acoustic waves and observed the effect of
particle localization in the acoustic field.8 The dynamics of a
solid particle suspended in a vertically oscillating fluid was
studied in Ref. 9. It was shown that vibration results in an
average force, which can be used to affect particle dynamics.
Granat10 considered theoretically a motion of a solid sphere
in a periodically oscillating flow of a viscous fluid. For the
fluid with the density higher than that of the sphere, the latter
oscillates with a smaller amplitude and a lag in phase. Con-
versely, in a relatively less dense fluid the oscillation of the
sphere occurs with a larger amplitude with respect to the
flow and leads in phase. In an experimental study by
Chelomey,11 the behavior of solid bodies in a vertically vi-
brated vessel with a fluid was investigated. It was observed
that under vibration action, bodies with higher than ambient
density could rise to the surface, whereas light bodies could
sink. Theoretically, the averaged behavior of a solid sphere
suspended in an oscillated fluid near a wall was discussed in
Ref. 12 and has been recently generalized.13,14 It has been

demonstrated that in addition to the gravity and Archemedian
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forces there appears an averaged force that attracts the body
to the wall due to vibration. This vibration force can lead to
ascent of heavy or settling down of light bodies, as was
observed experimentally.11

The dynamics of a single compressible bubble in vibra-
tion fields has been studied by many authors. The first analy-
sis of the bubble dynamics was made by Rayleigh15 �see also
Ref. 12�. A nonlinear equation that couples the radius of a
bubble to the pressure in the liquid at a large distance from
the bubble, known as the Rayleigh-Plesset or Rayleigh-Lamb
equation, was obtained and the eigenfrequencies of the small
oscillations were determined. Since then, many important as-
pects of nonlinear bubble dynamics and cavitation have been
studied, e.g., natural and forced oscillations, parametric in-
stability, which causes the oscillation of the bubble shape
against a background of spherical pulsation, the influence of
heat exchange between bubbles and ambient fluid and non-
ideality of the gas filling the bubble, the behavior of bubbles
in nonuniform flows �see reviews in Refs. 16 and 17�.

In the context of the time-averaged dynamics of a bubble
an important problem is obtaining the force exerted on the
bubble due to vibration. The behavior of a single bubble in a
standing acoustic wave is determined by “the primary
Bjerknes force” after Bjerknes,18 who proposed its qualita-
tive explanation. The effect is quite general: the bubbles mi-
grate to the nodes of the pressure wave at high frequencies
���0 and to antinodes at low frequencies ���0, where �0

is the frequency of natural oscillation of the bubble. The
average force on a particle, called the force of radiation pres-
sure, was obtained by Yosioka and Kawasima.19 The consid-
ered setup comprised a liquid drop in another liquid in a
standing acoustic wave, where both liquids were assumed to
be compressible. A generalization for the case of an arbitrary
nonuniform oscillating flow has been provided by
Alekseev.20 These results can be applied to analyze both lim-
iting cases: the primary Bjerknes effect for deformable
bubbles and the behavior of a solid particle in nonuniform
pulsating flows.

Generalization of the description of a separate particle
suspended in a fluid to the case of a disperse medium �en-
semble of many particles� requires space averaging. The pre-
cise description of all the disperse particles becomes redun-
dant and unfeasible. There are basically three possibilities to
obtain a reasonable model: �i� statistical approach, concerned
with averaging over the ensemble of particles; for solid par-
ticles and bubbles such a procedure is carried out in Refs.
21–23; �ii� derivation of a kinetic equation �see, e.g., Refs.
24–26�; �iii� continuum models, where after the space-
averaging the disperse particles are treated as a separate
continuum.27,28 In our study, we apply the last approach.

Although, wave propagation in disperse media is well
understood, the problem of the time-averaged dynamics for
such systems has received relatively little attention and re-
mains unexplored. Most of the studies deal with acoustic
vibration, when the compressibility of carrier fluid is of
crucial importance; the feedback of particles on the flow
is conventionally neglected. For instance, Ganiev and
Lapchinsky29 studied averaged collective behavior of

bubbles and solid particles suspended in fluids in acoustic
fields. The analog of the primary Bjerknes effect was ob-
served and a simple explanation was provided. In the present
study, we concentrate on the averaged effects in various dis-
perse media under the action of high frequency, but suba-
coustic vibration field, i.e., when the fluid is incompressible.
We also take into account the feedback of particles on the
carrier fluid and demonstrate that this is an important factor,
which can lead to nontrivial effects.

The paper is outlined as follows. In Sec. II the theoreti-
cal model is developed for a suspension of nondeformable
particles. The equations describing the pulsation and aver-
aged dynamics are obtained. On the basis of this model the
stability of a quasiequilibrium state in a plane layer is ana-
lyzed in Sec. III. Section IV addresses the vibrational dy-
namics of bubbly fluids. An averaged model accounting for
the compressibility of bubbles is obtained. Particularly, it is
shown that in the limit of weak compressibility this model
reduces to the model for nondeformable particles, obtained
in Sec. II. In Sec. V, the developed model is applied to
investigate the dynamics of a bubbly fluid in a plane layer
under vibration action. The results are summarized in
Sec. VI.

II. THEORETICAL MODEL OF A NONDEFORMABLE
PARTICLE SUSPENSION IN A VIBRATION
FIELD

A. Governing equations and basic assumptions

Consider the behavior of an isothermal fluid �liquid or
gas� laden with disperse particles �solid particles, small drop-
lets of another liquid or bubbles� under the action of high
frequency vibration. We assume that all the particles are
monodisperse spheres of a radius rd and the amplitude of
vibration a is small compared to this size: a�rd �for viscous
pulsation a milder restriction is enough to be held, see Sec.
II B�. The frequency of vibration � is assumed to be so high
that the size of a viscous boundary layer �=�� /� �� is the
kinematic viscosity of the fluid� near the walls of a container
with the suspension is small with respect to the characteristic
scale L of a flow. On the other hand, the scale L is considered
to be small compared to the acoustic wavelength �a

=2�va /� �va is the acoustic speed�, which leads to a twofold
inequality � /L2���va /L.

We start with a two-fluid model valid for dilute suspen-
sions, when one can neglect interparticle interactions and
interactions between the particles and walls of a container.
We assume that the size rd is large enough to neglect diffu-
sion of particles, but small with respect to L. On a scale
much greater than rd the particles are regarded as a con-
tinuum with the volume fraction �=4/3�rd

3n �the volume
fraction of the fluid phase is 1−��, where n is the number of
particles per unit volume of the medium. It is also supposed
that the particles can neither deform nor combine into ag-
glomerates; the carrier and the disperse phases have constant
densities 	 and 	d �hereafter, the subscript “d� stands for the
disperse phase�. Since � differs from n by a constant factor,
in the following � is called concentration. After averaging
over space the equations for mass and momentum of the

28
phases read



053303-3 Averaged dynamics of two-phase media Phys. Fluids 18, 053303 �2006�
div�1 − ��U + div �Ud = 0, �1a�

d�

dt
+ � div Ud = 0, �1b�

�1 − ��	
DU

Dt
= − �P + 
 � · �1 − ��� − �F , �2a�

	d
dUd

dt
= F , �2b�

where U and Ud are the velocities of the phases, P is the
pressure in fluid, 
 is the fluid viscosity, the shear rate tensor
is given by �ij =�iUj +� jUi. Derivatives D /Dt=� /�t+U ·�
and d /dt=� /�t+Ud ·� are taken along the Lagrangian path
of the elements of the fluid and the disperse phase, respec-
tively.

The interphase interaction force can be written as
follows:28,30,31

F = 	
DU

Dt
−

9

2rd
2�2/3 + �

1 + �
�W

−
9

2rd
� �

1 + �
��	


�
�

0

t dW�
�
d


d


�t − 

−

1

2
	

dW

dt

− Fm. �3�

Here, the relative velocity of phases W=Ud−U and the ratio
of viscosities of phases �=
d /
 are introduced. The first
term in �3� is a force due to pressure gradient, the next forces
are the Stokes �Hadamard-Rybczynski� drag,12 and three un-
steady forces: the Basset history force, the added mass force,
allowing for the inertia of the surrounding fluid, and a second
memory force that is essential for nonsolid particles.31 We do
not consider the effects that can be initiated by rotation of
particles, therefore the Magnus force is not taken into ac-
count.

The relative contribution of the Stokes drag FS, the
Basset FB, and the added mass FM forces to the interphase
force �3� is governed by an “unsteadiness parameter”
K=rd /��t*:

FB

FS
	 K,

FM

FS
	 K2,

where t* is the time scale of the variation of the relative
velocity of phases. Note, that the pressure gradient term and
the added mass force in �3� are of the same order. The same
argument can be applied to the memory forces, except for the
limiting cases of an inviscid bubble ��=0� and a solid par-
ticle ���1�, when, either the Basset term or the second
memory force vanish, respectively.

For quasisteady flows �K�1� and the flow regimes with
finite K, the result �3� holds provided that the particle
Reynolds number Red is small and gradients of the velocity

30
U are not too large:
Red =
rdW

�
� 1,

rd
2U

�L
� 1. �4�

In the case of substantially unsteady flows �K�1�, the force
�3� has inviscid nature and the validity criterion does not
depend on the viscosity. The restrictions �4� should be re-
placed with the conditions

Wt*

rd
� 1,

Ut*

L
� 1, �5�

which arise from linearization requirements. Note, that in
this limit, Red is not necessarily small and for finite and large
Red the forces depending on viscosity in expression �3� have
to be modified.32 However, for the flow with K�1, these
terms �irrespective of the modification� are small compared
to the leading pressure gradient and added mass forces and
therefore can be neglected.

The governing equations are formulated in an inertial
reference frame; the influence of vibration should be taken
into account through boundary conditions.

B. Pulsation velocities

The presence of two considerably different time scales,
namely, the characteristic oscillation time 1/� and the dissi-
pative time scale L2 /�, makes it reasonable to use the mul-
tiscale technique:34 the “fast” and the “slow” averaged mo-
tions are treated separately. So, the operator of time
differentiation is replaced by a sum of two operators � /�t
→�� /��+� /�t, where �=�t is the fast time; the actual fields
of the velocities, the pressure, and the concentration are rep-
resented by sums of the averaged �over the fast time �� and
the fast, or pulsation, components, respectively: U=u+V,
Ud=ud+Vd, P= p+q, �=c+�.

Let us substitute this ansatz into the governing equations
and obtain the pulsation parts of the momentum equation �2�.
We retain only the leading terms and take into account a
smallness of the concentration pulsation, �	�a /L�c, which
follows from Eq. �1b�. The dimensionless variables are intro-
duced using the following units: 1 /� and L2 /� for the fast
and the averaged time, a� and � /L for the pulsation and the
averaged velocities of the phases, 	a�2L and 	�2 /L2 for the
pulsation and the averaged pressure, respectively. It is as-
sumed that the space derivatives can be evaluated with the
scale L, which means that the small scale dynamics in
boundary layers near solid walls and turbulent pulsations are
not considered. As a result, we arrive at the equations for the
fast dynamics:

div�1 − c�V + div cVd = 0,
��

��
+ div cVd = 0, �6�

�V
= − �q + cf, �

�Vd =
�V

− f , �7�

�� �� ��
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f =
1

K2�2/3 + �

1 + �
�w +

1

K��
� �

1 + �
��

0

� �w�
�
�


d


�� − 


+
1

2

�w

��
+ fm, �8�

where the relative pulsation velocity w=Vd−V and a dimen-
sionless parameter �=	d /	, which is the ratio of densities of
the phases, are introduced; the pulsation component of the
memory force Fm is denoted by fm. For the case of pulsation
motion, the unsteadiness parameter K=rd /� has the meaning
of the ratio of the particle radius to the size of a viscous
boundary layer around it.

The restrictions for the amplitude of vibration a are im-
posed by the inequalities �4� and �5�, and the necessity of
linearization of the pulsation problems �6�–�8�. For the mo-
tion with finite K and in the limit of inviscid pulsations,
K�1, the vibration amplitude is required to be small in the
sense a�rd. However, in the limit of viscous pulsation,
K�1, a much milder restriction for the vibration amplitude
is enough to be held: a�min�L ,K−2rd�.

Let us restrict our consideration to the case of the mono-
chromatic vibration and proceed to complex amplitudes:

F�r , t�=Re�F̂�r�exp�i���. For such a vibration process, f̂ co-
incides �in dimensionless form� with the Fourier transform of
the pulsation force f and can be represented as �cf. Refs. 31
and 33�

f̂ = �ŵ , �9�

� =
9

2K2�1 + � +
�2

9

−
�1 + ��2f���

���3 − �2 tanh � − 2f���� + �� + 3�f���� , �10�

where f���=�2 tanh �−3�+3 tanh � and �= �1+ i�K /�2.
As follows from Eqs. �6� and �7�, and relation �9�,

the pulsation velocities are not independent, therefore the
problem can be expressed in terms of an auxiliary field

v= �1−c�V̂+cV̂d having the meaning of the amplitude of the
volume-weighted velocity of the medium:

� � Sv = 0, div v = 0, �11�

S =
�	m + i�

� + i�/	e
, �12�

where 	m=1−c+c� is the density of the medium and 1/	e

=1−c+c /� is the specific volume. The pulsation velocities
expressed in terms of v are as follows:

V̂ =
� + i�

� + i�/	e
v , �13�

V̂d =
� + i

� + i�/	e
v . �14�

Note, that except for the limiting cases of viscous �K�1�

and inviscid �K�1� vibration regime, there appears a phase
shift in the pulsation velocities of the particles and carrier
fluid.

Now restrict our theory to the case of a closed nonde-
formable cavity, filled entirely with the two-phase medium.
Equation �11� should be supplemented with the boundary
conditions. The smallness of the vibration amplitude allows
us to prescribe the boundary conditions at the average posi-
tion. Because of incompressibility of the medium, the normal
component of the velocity v has to coincide with that of the
boundary velocity � at every point of the boundary �:

n · 
v
� = n · � , �15�

where n is the unit normal to the average position of the
boundary.

Assume that the system is subjected to translational, lin-
early polarized vibration. In this case the boundary velocity
of the cavity is a constant vector: �= j �j is the unit vector
aligned along the vibration axis�.

Since the particle concentration is small, the solution to
the pulsation problems �11� and �15�, is sought as a series in

c: v=v0+v1+¯ with v1	c �and analogously for V̂, V̂d�.
Then, to the leading order we obtain

v0 = V̂0 = j , �16�

i.e., the pulsation field is constant in the entire cavity; uni-
form fluid moves together with the cavity as a solid. Hence,
to this approximation, the vibration does not influence the
system, therefore it is necessary to obtain a nonuniform cor-
rection to the pulsation field.

Taking into account Eqs. �11� and �15�, and the result
�16�, to the next order we arrive at a problem

� � v1 = S1j � �c, div v1 = 0, �17�

n · 
v1
� = 0,

S1 = �� − 1�
� + i

� + i�
,

where S1 is a coefficient in a corresponding expansion of
�12�: S=1+S1c+O�c2�. It becomes clear from Eq. �17�, that
a nonuniformity of the pulsation field v1 is caused by inter-
action of vibration with inhomogenieties in the particle con-
centration. We make a note, that an explicit solution for the
field v1 is not needed while obtaining the averaged equations
of motion: only the vorticity and divergency of v1 are further
used.

C. Averaged equations: Single-fluid approximation

We now turn to averaging of the governing equations.
Let us write out the averaged parts of Eqs. �1� and �2� and
retain only the leading terms. Note, that averaged dynamics
can be described in terms of a single-fluid model. In contrast
to the pulsation motion, relative contributions of the Stokes
drag, the memory forces, and the added mass force to the
averaged dynamics are defined by a small parameter rd /L;
the unsteady forces turn out to be small compared with the
Stokes force and therefore can be neglected. Because the

difference in the averaged velocities of the phases ud−u is of
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order rd
2 /L2, we neglect it everywhere, except for the inter-

phase force. In the latter, this difference must be retained:
despite its smallness, it is multiplied by a vibration parameter

R̃v=a2�2L2 /�2, which can be large, and a corresponding
contribution in the averaged equations is generally finite. As
a result, we obtain the following equation of motion:

	m� �u

�t
+ u · �u� + R̃v � · ��1 − c�VV + �cVdVd�

= − �p + � · �1 − c�� . �18�

Here, � is the averaged shear rate tensor; overlines are used
to denote averaging over time. The accepted approximation
means, that the particles are “frozen” in the averaged carrier
flow.

It is important to note, that the nonuniformity of the
pulsation field can be caused not only by the considered
mechanism, when vibration interacts with nonuniformity of
the medium due to admixture. Another reason for a nonuni-
formity in the pulsation field is interaction of vibration with
the vorticity of the averaged flow. A contribution to the av-
eraged equations due to the second mechanism is defined by
the vector of pulsation transport �see discussion in Ref. 7�.
However, for the linearly polarized vibration, the case under
consideration, this vector vanishes. Quite a similar situation
takes place in thermal vibrational convection.7 The only dif-
ference is that there the nonuniformity of density is caused
by nonisothermality of fluid, but not due to the presence of a
disperse phase.

Using �13� and �14�, we calculate the averaged Reynolds
stress

�1 − c�VV + �cVdVd = G Re�vv*� , �19�

G =
1

2
�1 − c�� � + i�

� + i�/	e
�2

+
1

2
�c� � + i

� + i�/	e
�2

. �20�

Taking into account smallness of the particle concentration,
the result �16�, and Eq. �11�, we evaluate the “vibration
force”

R̃v � · �G Re�vv*�� = − R̃vBjj · �c + ¯ ,

�21�

B =
�� − 1�2 Im �

2
� + i�
2
,

where dots denote the omitted gradient terms. Such terms
lead only to a renormalization of the pressure, which is not
important in the framework of our consideration.

In the vein of the Boussinesq approximation, we neglect
the nonuniformities of the density everywhere except for the
vibration force, where the small concentration is multiplied

by the vibration parameter R̃v, which is generally large. Such
a transformation corresponds to a limiting transition, when

R̃v→�, c→0, but their product R̃vc* is finite �here c* is the
reference value of the particle concentration�.

Averaging of the mass balance equations is straightfor-
ward. Finally, we end up with a set of the averaged equations
describing the behavior of a suspension of nondeformable

particles in a high frequency vibration field:
�u

�t
+ u · �u − Rvjj · �c = − �� + �2u , �22�

�c

�t
+ u · �c = 0, div u = 0, �23�

where � is the renormalized pressure, the concentration is
normalized by c*, and the vibration parameter is redefined
Rv=a2�2L2Bc* /�2.

The vibration force, appearing as a result of averaging of
the equations, is caused by interaction of the monochromatic
linearly polarized vibration with the inhomogeneity of the
medium due to a nonuniform distribution of particles; for the
uniform distribution of particles it vanishes. The force is di-
rected along the vibration axis and takes on maximal values
in the domains of the flow where the gradient of particle
concentration coincides with the direction of the vibration
axis. For the initial state with a nonuniform distribution of
particles and the vanishing averaged velocity the action of
the vibration force can result in generation of an averaged
motion.

It is important to make a note of the generic character of
the vibration force. The dependence on the parameters �, �,
K, i.e., on the nature of the particles, is gathered in the pa-
rameter B. This allows us to make two conclusions. First,
since B�0 for all values of these parameters, the direction of
the force is determined only by the concentration field and an
orientation of the vibration axis. Second, for different media
only the intensity of response towards vibration action
changes. However, such a quantitative distinction is worth
discussing for comparison with experiments, therefore prop-
erties of the function B=B�� ,� ,K� are discussed in the
Appendix.

The set of averaged Eqs. �22� and �23� must be supple-
mented with boundary conditions for the velocity. For the
considered case of vibration action, the Schlichting
mechanism35 of surface generation of averaged flow is ab-
sent. Therefore on a rigid surface � one should use the con-
ventional no-slip boundary condition


u
� = 0. �24�

Indeed, the intensity of the averaged flow caused by the
Schlichting mechanism is governed by the pulsation Rey-
nolds number7 Rep=a2� /�. Compared to the considered
bulk mechanism, which is governed by the parameter Rv, the
Schlichting mechanism can give a finite contribution to the
generation of averaged motion only if the leading part of the
pulsation velocity is nonuniform. In our case, this require-
ment is not satisfied; according to �16�, the leading part of
the pulsation velocity is uniform, a nonuniformity occurs
only as a small correction to the uniform term. Hence, the
Schlichting generation of averaged flow is negligible com-
pared to the contribution of the bulk mechanism. Rather, a
similar situation takes place in the thermal vibration convec-
tion: for the same kind of vibration action on weakly non-
uniform fluid, when the density nonuniformity is caused by
nonisothermality of fluid, the Schlichting mechanism does

not contribute to generation of an average flow.
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III. STABILITY OF A QUASIEQUILIBRIUM
IN A VIBRATION FIELD

A. Basic quasiequilibrium state

Let a suspension fill an infinite plane layer −1�z�1 �of
a dimensional width 2h� in weightlessness. Consider the in-
fluence of the transversal linearly polarized vibration on the
stability of a quasiequilibrium. A quasiequilibrium is thought
of as a state in which the averaged velocity vanishes in the
entire volume of the system, whereas the pulsation velocity
is different from zero.

This problem is described by Eqs. �22� and �23� with
j= �0,0 ,1� and boundary conditions �24�. By setting u=0 in
the equations, we obtain the conditions defining the quasi-
equilibrium state

Rvjj · �c0 = ��0, c0 = const�t� ,

where the subscript “0” indicates the state of quasiequilib-
rium. Integration of the first equation leads to a condition

Rvc0�x,y,z� = �0�z� + f�x,y� . �25�

Here f�x ,y� is an arbitrary function of longitudinal coordi-
nates. Thus, there is a set of possible quasiequilibrium distri-
butions of particles that is defined by a sum of a function of
only transversal coordinate and a function of longitudinal
coordinates.

As a quasiequilibrium concentration we choose a linear
function of the transversal coordinate

c0 = � + �z, � � 0, 
�
 � � �26�

and investigate its stability. Although gravity is unimportant
in the framework of our theory, in a quiescent fluid �in the
absence of vibration� it ultimately leads to stratification of
particles. For this reason, the choice of the initial distribution
of particles in the form �26� is rather natural for a narrow
layer. Further, as a reference value for the particle concen-
tration we use �h, therefore Rv=a2�2h3B� /�2.

B. Statement of linear stability problem

To investigate the stability of the quasiequilibrium state
we introduce perturbations of the velocity u, the pressure q,
and the concentration �, and substitute the disturbed fields u,
�0+q, c0+� into the problem �22�–�24�. We linearize the
equations near the quasiequilibrium and obtain a set of equa-
tions and boundary conditions for small perturbations

�u

�t
− Rvjj · �� = − �q + �2u ,

��

�t
+ u · �c0 = 0, div u = 0,

z = ± 1:u = 0.

Since the quasiequilibrium state is uniform and isotropic
in a plane of the layer, we can restrict our stability analysis to
the case of the two-dimensional perturbations in the form of
rolls. Assuming all the perturbations to be proportional to

exp��t− iky�, where �=�r+ i�i is the complex growth rate
and k is the real wave number, we rewrite the problem for
one variable. Eliminating the pressure from the equation of
motion and taking into account the continuity equation, we
obtain for the amplitude �̂ of the concentration perturbation
�the perturbations of the concentration and the transversal
component of the velocity differ only by a constant factor�

�2D2�̂ − Rvk2�̂� = �D4�̂ , �27�

z = ± 1:�̂ = 0, �̂� = 0, �28�

where a differential operator D2=d2 /dz2−k2 is introduced.
While obtaining �27� and �28� it was assumed that ��0.
In the opposite case, �=0, there exist obvious solutions
�̂=const for k�0 and �̂= �̂�z� for kRv=0; the perturbations
of the velocity vanish for both these cases. The existence of
these neutrally stable solutions is easy to explain: although
the mentioned perturbations deform the concentration field
�26�, it still belongs to the set of quasiequilibrium solutions
�25�.

The boundary value problem �27� and �28� is a spectral
amplitude problem, and the condition of nontrivial solution
defines the growth rate � as a function of parameters Rv, k. In
the absence of vibration �Rv=0�, besides the discussed solu-
tions for �=0, the problem admits an explicit solution,36 ei-
genvalues of which belong to a spectrum of real negative
values; all the perturbations decay and the system is stable.
Further we are interested in the nontrivial case of Rv�0. In
this case the problem �27� and �28� is no longer self-adjoint,
therefore the spectrum of growth rates can be complex.

Because the parameter � is not of the fixed sign, the
vibration parameter can take on both positive and negative
values. However, the problem is invariant with respect to the
mutual change of sign of the transversal coordinate and the
vibration parameter. Such a symmetry is caused by the ab-
sence of gravity, which allows us to restrict our analysis to
the case Rv�0.

C. The case of small values of vibration number Rv

Consider the case of small intensities of vibration action.
We look for a solution to the problem �27� and �28� in the
form of series in small Rv

�̂ = �̂0 + Rv�̂1 + Rv
2�̂2 + ¯ ,

�29�
� = �0 + Rv�1 + Rv

2�2 + ¯ .

Substituting these expansions into Eqs. �27� and �28�, we
find that �̂0 and �1 are defined by the following problem:

�1D4�̂0 + k2�̂0� = 0, �30�

�̂0�±1� = 0, �̂0��±1� = 0. �31�

Let us multiply Eq. �30� by the complex conjugate �̂0
*

and integrate by parts across the layer. Taking into account
�31�, after straightforward transformation we recognize that
�1= i�1, where �1 is a real number. To the second order we

obtain the problem
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�1D4�̂1 + k2�̂1� = �1
2D2�̂0 − �2D4�̂0, �32�

�̂1�±1� = 0, �̂1��±1� = 0. �33�

Let us formulate the solvability condition for problem �32�
and �33�. We multiply Eq. �32� by �̂0

*, the solution of the
problem adjoint to �27� and �28�, and integrate across the
layer. Taking into account boundary conditions �31� and �33�,
we end up with

�2 =
�1

2�
�̂0�

2 + k2
�̂0
2


�
�̂0�

2 + 2k2
�̂0�


2 + k4
�̂0
2

� 0, �34�

where �¯
=�−1
1
¯dz.

Thus, for any value of the wave number k the growth
rate �2 is real and positive, and hence for any arbitrarily
small value of the vibration parameter Rv there appears os-
cillatory instability.

D. The case of finite values of vibration number Rv

In the case of arbitrary values of the vibration parameter
Rv the boundary value problem �27� and �28� was solved
numerically. First, the spectrum of eigenvalues was analyzed
by the Galerkin method with a basis given by the
eigenfunctions36 of the problem �27� and �28� at Rv=0, �
�0. Next, the behavior of the mode with the largest �r was
specified by the standard shooting method.37 It was found
that in all the range of the parameters k and Rv�0 there
exists a growth rate with the positive real part �r�0; the
system turns out to be unstable for any intensity of vibration
action. The real part of the growth rate as a function of the
wave number �the branch with the maximal �r� is plotted in
Fig. 1 for different values of vibration parameter Rv. For any
value of the vibration parameter Rv the real part of the
growth rate �r has a maximum at some value k* of the wave
number. This critical value k* defines the perturbation with
the fastest growth rate, whose dependence on the vibration
parameter is given in Fig. 2. At small values of Rv the curve
is outgoing from a point with a finite value of k*. With the

FIG. 1. The real part of the growth rate �r as a function of the wave
number k.
growth of vibration intensity the characteristic length scale
k*
−1 of hydrodynamic patterns developing as a result of insta-

bility of a quasiequilibrium state monotonically decreases.
Figure 3 demonstrates the eigenfunction �̂, which corre-

sponds to the breakdown of the quasiequilibrium and differs
from the transversal velocity component by a constant factor.
Under vibration action a nonuniformity of the quasiequilib-
rium distribution of particles leads to generation of the aver-
aged fluid motion, which, in its turn, deforms the initial dis-
tribution of particles.

IV. AVERAGED DYNAMICS OF A BUBBLY FLUID

A. Basic equations

So far, the disperse phase was assumed to be nondeform-
able. However, the description of a bubbly fluid in vibration
field requires a closer look. The presence of the disperse
phase that is able to change its volume under the action of an
external periodic field, can drastically influence the pulsation
and the averaged dynamics of the system. Next, the case of a
monodisperse bubbly fluid is studied and the criterion when
compressibility of the disperse phase cannot be neglected is
provided. Assuming the concentration � of bubbles to be
small, we formulate the equations for the momentum of the
liquid carrier phase and the bubbles �2� together with �3�,
where for our particular consideration �=0. An essential

FIG. 2. The critical value k* of the wave number versus vibration
parameter Rv.

FIG. 3. Streamlines of the averaged flow for the perturbation with the fastest

growth rate, Rv=10.
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modification that has to be taken into account here concerns
an additional contribution to the interphase force28

Fc = − 	
3b

2rd
W ,

where b is the space-averaged radial velocity of bubbles.
Further, assuming that the size of the viscous boundary

layer � is small compared to the time-averaged radius R of a
bubble ���R�, we can neglect the memory forces.31 Indeed,
in the frames of the accepted approximation the leading con-
tribution to the pulsation motion is made by the inertia forces
�the first and the fourth terms in �3��, whereas for the aver-
aged motion the Stokes force and Fc are dominant. We sup-
pose the density of the gaseous phase to be much smaller
than the density of the fluid and neglect the left-hand side in
Eq. �2b�, i.e., the force on the bubbles vanishes. The equa-
tions defining the kinematics read28

div�1 − ��U + div �Ud =
3�

rd
b , �35�

d�

dt
+ � div Ud =

3�

rd
b , �36�

d	d

dt
= −

3

rd
b	d,

drd

dt
= b . �37�

The pressure in the fluid P, the pressure in a bubble Pg and
the velocity of the radial oscillation of a bubble are coupled
through the Rayleigh-Plesset equation,28,38

rd
db

dt
+

3

2
b2 −

1

4
W2 =

1

	
�Pg −

2�

rd
− P� , �38�

where � is the surface tension.
According to the procedure laid down in Sec. II, we

introduce the time hierarchy, splitting all the fields into the
pulsation �depending on the fast time �� and the averaged
parts. The notation and units for the pulsation and averaged
components of the velocities, the pressure, and the concen-
tration are the same as used before, in Sec. II. Hereafter, b is
the pulsation velocity of radial motion.

B. Pulsation motion

Consider vibration of a cavity entirely filled with a bub-
bly fluid. The principal assumptions introduced in Sec. II are
kept the same; the carrier phase is incompressible, the fre-
quency of vibration is high, but subacoustic, the size of the
bubbles and the vibration amplitude are small. On the other
hand, we impose stronger restrictions for the amplitude a and
the frequency � of vibration:

aL � R2, � �
max��,�,�d�

R2 , �39�

where � and �d are the thermal diffusivities of the phases.
The second inequality implies that dissipation is unimportant
for the pulsation motion, therefore the pressure oscillation of

gas obeys an adiabatic law.
Let us now formulate the equations for the pulsation
motion. The units for the pulsation velocity and the pressure
are kept the same as earlier �see Sec. II B�, as a unit for the
velocity of the radial motion we choose a�L /R. The equa-
tion for the pulsation of the concentration � splits off and
can be treated separately. For this field we obtain

��

��
= 3

aL

R2 �bc −
1

l
div cV�, l =

L

R
� 1. �40�

As it follows from Eq. �40�, the pulsation of the concentra-
tion is small compared to the averaged field c. Note, that the
second term in the right-hand side of Eq. �40� is, generally,
much smaller than the first one. However, under certain con-
ditions it becomes non-negligible �see Sec. IV D�.

It is convenient to write down the equations for the re-
maining pulsation fields in terms of amplitudes. Assuming
that all the fields are proportional to exp i�, we obtain

i�1 − c�V̂ = − �q̂, V̂d = 3V̂ , �41�

div�1 + 2c�V̂ = 3cl2b̂, q̂ = ib̂��2 − 1� , �42�

where V̂, V̂d, q̂, b̂ are the complex amplitudes of the veloci-
ties of the phases, the pressure, and the velocity of the radial
motion. Equations �41� and �42� contain the following di-
mensionless parameter:

�2 =
1

	�2R2�3�Pg −
2�

R
� . �43�

Here, � is the ratio of the eigenfrequency of the volume
oscillation of a bubble to the frequency of vibration �, the
parameter � is the adiabatic exponent, and Pg is the averaged
pressure inside a bubble. Note the known relation between
the velocities of the phases in a vibration field:39 the ampli-
tude of oscillation of a bubble in an inviscid fluid is three
times as much as that of the fluid.

Equation �42� contains a product of two asymptotic pa-
rameters: large l2 and small c. Depending on the relation
between these parameters, different solutions to the pulsation
problem are possible. Let us introduce a renormalized con-
centration ��r�= l2c�r�. Assuming that this field is finite,40

we obtain a Helmholtz equation for a potential � of the fluid
velocity and the impermeability boundary condition:

�2� +
3��r�
�2 − 1

� = 0, �44�

�n
�
� = jn. �45�

The amplitudes of the pulsation fields are expressed in terms
of the potential � as follows:

V̂ = ��, b̂ = −
�

�2 − 1
, q̂ = − i� . �46�

Equation �44� has a form of the stationary Schrödinger
equation, in which the role of the scattering potential is
played by the averaged concentration field ��r�—the waves
are scattered on the nonuniformities of the bubble distribu-

tion. The impermeability condition �45� should be imposed
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on the volume-weighted velocity �1−c�V̂+cV̂d, which by

virtue of �41� differs from V̂ only by a small term 2cV̂. Note
that as the frequency � gets closer to a resonant value
�=1, the susceptibility of the system to vibration action gets
much higher. At the point of resonance, the performed analy-
sis is no longer valid, because even weak dissipation be-
comes important and cannot be neglected.

Generally, Eq. �44� can be solved only numerically.
However, in the case of a small parameter �= ��
 / ��2−1�, it
is possible to obtain the leading part of the solution. Here,
��
 is the value of � averaged all over the volume of the
system. Note that the parameter � can be small for two dif-
ferent reasons: for small concentration ��
 or for small vi-
bration frequencies, ��1. Assuming that the z axis is
aligned along the direction of vibration, we can represent the
solution in the form

� = z − zc + �1,

where the term z−zc corresponds to the solution of �44� and
�45� for ��r�=0 and �1	� is defined by a boundary value
problem

�2�1 = −
3��r�
�2 − 1

�z − zc� , �47�

�n
�1
� = 0. �48�

Applying the solvability conditions for the problem �47� and
�48�, we find the constant

zc =

�
V

�zdV

�
V

�dV

, �49�

which has the meaning of the z coordinate of the center of
mass for the distribution of bubbles.

Thus, for the case of small � we obtain

V̂ = j + O���, b̂ = −
z − zc

�2 − 1
+ O��� . �50�

C. Averaged motion

We now proceed to the averaging of the governing equa-
tions. The equation of the momentum for the averaged mo-
tion of the fluid takes the following form:

�1 − c��Du

Dt
+ R̃vV · �V� − R̃v

L

a
�

�V

��

= − �p + � · �1 − c�� . �51�

Here, as in Sec. II, R̃v=a2�2L2 /�2 and � is the averaged
shear rate tensor. From the averaged equation for the bubbles

follows
2

3

rd
2

L2 R̃vV · �V + R̃vbV + ud − u = 0,

where the first term is small compared to the others. With
account of �46�, this equation provides a relation between the
averaged velocities of the phases:

ud = u + Q � �2, Q =
1

4

R̃v

�2 − 1
. �52�

Here Q is the vibration parameter, which is different to that
introduced in Sec. II.

To perform averaging in Eq. �51� we take into account
relation �46� and Eq. �40�. Retaining only the leading terms,
we arrive at the equation

�u

�t
+ u · �u = − �� + �2u + 3Q� � �2. �53�

While obtaining this equation, we neglect the terms propor-
tional to c and renormalize the pressure; the renormalized
variable is denoted by �. Variations of the averaged pres-
sure, having in dimensional units the order 	b2		�a�l�2, are
assumed to be much smaller than the averaged pressure Pg

inside a bubble. This assumption ensures that the averaged
radius of the bubbles keeps constant and equals R. The ab-
solute value of the averaged pressure becomes insignificant,
and only its gradient is of importance.

The averaging of the equation for the bubble concentra-
tion �36� is straightforward and results in

��

�t
+ div �ud = 0. �54�

The right-hand side of Eq. �54� vanishes, because the phases
of b and V are shifted with respect to � and rd by a quarter
period. For the same reason, there is no nontrivial contribu-
tion to the averaged mass balance equation, which trans-
forms to the incompressibility condition for the fluid

div u = 0. �55�

Equations �52�–�55� together with Eqs. �44� and �45�
defining the pulsation potential �, represent a set of equa-
tions for the averaged dynamics of a bubbly fluid.

In perfect analogy with the case of nondeformable par-
ticles, the averaged motion induced in a boundary layer is
negligibly small; the principal effect is caused by the consid-
ered mechanism of bulk generation. Thus, at rigid boundaries
the conventional no-slip boundary condition for the averaged
fluid velocity should be imposed. According to �52�, the ve-
locity of the bubbles at the boundaries does not turn to zero.
Thus, the boundary conditions for the concentration of
bubbles must be prescribed at the inflow boundaries, i.e.,
where n ·ud�0 �n is the outward normal to a boundary�.

Note that the intensity of the averaged flow of the bubbly
fluid is significantly �by a factor of l2 or c−1� higher than for
the medium with nondeformable particles �see Sec. II�. In
contrast to the case of nondeformable particles, the latter
circumstance enables us to consider the vibration parameter

R̃v to be finite for bubbly fluids. However, for low vibration

frequencies, ��1, this formalism is no longer valid. To ob-



053303-10 Straube, Lyubimov, and Shklyaev Phys. Fluids 18, 053303 �2006�
tain any nontrivial effects, it becomes necessary to consider

the vibration parameter R̃v as asymptotically large, when the
vibration mechanisms studied in Sec. II become important
and cannot be neglected any more. This situation is of spe-
cial consideration and is studied in the next section.

D. Low frequency approximation: Transition to a
suspension of nondeformable particles

The case of the low �with respect to the frequency of
natural oscillation of a bubble� vibration frequency, when
��1, should be treated separately. In this particular situa-
tion, it is convenient to choose the value a�l /�2 as a unit for
the velocity of the radial motion, the units for the other quan-
tities are kept the same. As a result, the pulsation equations
read

i�1 − c�V̂ = − �q̂, V̂d = 3V̂ , �56�

div�1 + 2c�V̂ = 3�l
2cb̂, q̂ = ib̂ . �57�

Here �l=� / l is the ratio of the two asymptotic parameters.
At large values of �l compressibility of the bubbles becomes
insignificant. We note, that a similar result has been found
out in Ref. 28: compressibility of a bubble can be neglected
only provided that the dimensionless frequency of the radial
oscillation of a bubble is large compared to l.

We represent the solution of the pulsation problem �56�
and �57� in the form of series in the small concentration of
bubbles

V̂ = V̂0 + V̂1 + ¯ , q̂ = q̂0 + q̂1 + ¯ ,

b̂ = b̂0 + b̂1 + ¯ ,

where V̂1, q̂1, b̂1	c.
To the zero order the pulsation problem reads

iV̂0 = − �q̂0, div V̂0 = 0, q̂0 = ib̂0,

n · 
V̂0
� = jn,

which admits an obvious solution

V̂0 = j, b̂0 = − �z − zc� . �58�

In the same way as in Sec. IV B, the constant zc is obtained
from the solvability condition in the next order and takes the
form �49�.

As in Sec. II, it is necessary to take into account a cor-

rection V̂1 to the pulsation velocity. For further purposes
only the vorticity of this field turns out to be important. Thus,
from �56� we obtain

� � V̂1 = �c � j . �59�

Equation �40� for the pulsations of concentration trans-

forms into
��

��
= 3

a

L
��l

−2bc − j · �c� . �60�

Here, in contrast to Eq. �40�, the terms in the right-hand side
are of the same order and therefore have to be retained.

Averaging of the equations is performed in the same way
as in Secs. II C and IV C. As a result we arrive at a set of the
averaged equations

�u

�t
+ u · �u = − �� + �2u + Rl�jj · �� + 3A� � b̂2� ,

�61�

div u = 0, ud = u + RlA � b̂2, �62�

��

�t
+ div �ud = 0, �63�

where A=1/ �4�l
2�, Rl= l−2R̃v.

In the limit of low vibration frequency, when A→0
��l�1�, the model reduces to the case of nondeformable
bubbles; Eqs. �61�–�63� yield the same model as has been
developed in Sec. II �cf. Eqs. �22� and �23��. Indeed, for the
case of bubbly fluid, ��1, and inviscid pulsations, K�1, we
have B=1 �see �A2� and �A3�� and the vibration force
Rljj ·��=Rvjj ·�c.

In the opposite limiting case, A→�, the compressibility
of bubbles becomes of crucial importance; the set of equa-
tions transforms to Eqs. �52�–�55�. In this case, the solutions
of the pulsation problems �58� and �50� coincide �if mea-
sured in the same units�.

V. EVOLUTION OF A BUBBLY FLUID IN A LAYER

A. Statement of the problem

A rather good understanding of vibration action on the
dynamics of a bubbly fluid can be obtained from a one-
dimensional consideration. Let us apply Eqs. �52�–�55� to
study the vibration dynamics of this medium in an infinite
plane layer −1�z�1, confined by solid walls, the vibration
axis is transversal to the boundaries. The quiescent state with
the uniform distribution of bubbles is chosen as the initial
one. Symmetry of the equations, boundary conditions, and
the initial state enables us to treat the problem in a half of the
layer, where the functions � and � are even and odd, respec-
tively. The fluid velocity vanishes due to the incompressibil-
ity condition �55� and the no-slip boundary conditions at the
walls. The concentration and the potential of the pulsation
velocity are defined by the following boundary value
problem:

�� +
3�

�2 − 1
� = 0, �64�

��
+ �ud��� = 0, ud = 2Q���, �65�
�t
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z = 0:� = 0, �� = 0; z = 1:�� = 1, �66�

where the prime is used to denote a derivative with respect
to z.

It is obvious, that the variation of the absolute value of Q
results only in changing of the time scale, and without loss of
generality, we set further Q= ±1 �the upper sign corresponds
to ��1, and the lower one—otherwise�. We can also renor-
malize the initial concentration in such a way that ��z , t
=0�=1; this leads only to rescaling of the frequency �.

We can easily make sure that there exists no quasisteady
state, when the fluid and the bubbles are quiescent on aver-
age. Indeed, for the quasisteady state it immediately follows
from Eq. �65�

��0�0�0��� = 0, �67�

i.e., �0=const/ ��0�0��. As seen earlier, the subscript “0”
stands for indication of the quasisteady state solution.

On the other hand, Eq. �64� then transforms to

�0� +
3 const

�0���
2 − 1�

= 0. �68�

Integrating this equation and taking into account that �0� is
even, we conclude that const=0 and hence �0=0. Note, that
this conclusion becomes invalid at the points where
�0�0�=0.

B. Initial stage of evolution

We now turn to the investigation of the initial stage of
evolution, when an analytical solution can be obtained. We
assume, that �=1+�1�z , t�, where 
�1 
 �1.

Neglecting the small perturbation �1 in the Schrödinger
Eq. �64�, we have

�0� +
3

�2 − 1
�0 = 0. �69�

First, consider the case ��1, when the vibration fre-
quency is lower than that of the natural oscillation of a
bubble. We introduce

�2 =
3

�2 − 1
�70�

and note that this expression for the wave number � is in
agreement with the known disperse relation for waves in a
bubbly medium �see, for example, Refs. 40 and 41�.

The solution to Eq. �69� with the impermeability condi-
tion at the boundaries is as follows:

� =
sin �z

� cos �
. �71�

The resonant frequencies correspond to the divergency of
�71� and are defined by the expression

�n
2 = 1 +

12

�2�2n + 1�2 , n = 0, 1, . . . . �72�

Note, that at these frequencies it is necessary to account for

dissipation in the pulsation equations.
Taking into account the result �71�, we obtain the aver-
aged velocity of the bubbles and the correction to the con-
centration

ud =
sin 2�z

� cos2 �
, �1 = −

2 cos 2�z

cos2 �
t + const. �73�

We see that the most rapid decrease of the concentration
of bubbles occurs in the vicinities of the points zn=�n /�,
n�Z—the bubbles tend to leave the nodes of the pulsation
pressure; and vice versa, the concentration grows in the an-
tinodes of the pressure. This phenomenon is referred to as

the primary Bjerknes effect.17,18 However, we stress, that in
our case, the bubbles are not just advected by the external
nonuniform pulsation field �as in the conventional Bjerknes
effect�. The presence of the bubbles causes this nonunifor-
mity.

Let us proceed to the opposite range of frequencies,
��1. In this case, the frequency of external action is be-
yond the passband for the bubbly fluid, i.e., the waves decay
deep into the layer:

� =
sinh �z

� cosh �
, �2 =

3

1 − �2 , ud =
sinh 2�z

cosh2 �
. �74�

Further, for the perturbation of the concentration we find

�1 =
2 cosh 2�z

cosh2�
t + const. �75�

Thus, the bubbles migrate away from the boundaries of
the layer to its center. As it could be expected, at a frequency
larger than the resonant frequency of a bubble, the bubbles
accumulate in the node of the pressure, at the center of the
layer.

C. Finite time evolution: Numerical results

At finite times the set of Eqs. �52�–�55�, describing one-
dimensional dynamics of a bubbly fluid in the layer, was
studied numerically. The equation for transfer of the bubbles
was integrated by means of the method of characteristics.
The equation for the characteristics has an obvious form

dz

dt
= ud�z,t� . �76�

At the characteristics the following relation is fulfilled:

d�

dt
= − ud�� . �77�

The fields of the concentration � and potential � are defined
in the nodes of the uniformly spaced grid; we used up to
2000 grid nodes. In the case when ud�1��0, there appears a
front of the concentration z=zs�t� such that ��0 only in the
domain with z�zs. For this particular situation, the grid
nodes were interposed only in the domain occupied by the
bubbly fluid, i.e., for z�zs�t�; in the opposite part of the
layer, the equations admit an obvious solution: �=0,
�=�0+z. At the point z=zs the functions �, �� are continu-
ous, so that the value of the constant �0 is insignificant. In

the opposite case, ud�1��0, a part of the bubbles settle on
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the boundaries; the averaged concentration ��
=�0
1�dz de-

creases with time.
Results of the numerical simulation are presented in

Figs. 4–6. If ���0=1.489 �for the uniform distribution of
the bubbles, see relation �72��, the bubbles gradually leave
the bulk of the layer, settling on the boundaries, Fig. 4. At
first, the maximal value �m of the concentration grows and
after a while starts to decrease; the averaged concentration
��
 monotonically decreases with time.

In the case of �1����0, the bubbles accumulate in a
certain domain inside the layer. The concentration of the
bubbles rises abruptly near the point zs and reaches infinite
values for a finite time t= t0; there develops a peaking re-
gime. The maximal concentration grows as �t− t0�−1, i.e., a
bubble screen develops. The potential itself remains finite,
while its second derivative tends to infinity near the point zs.
This scenario is demonstrated for �2=1.25 in Fig. 5. The
averaged concentration of the bubbles decreases with time.
As the eigenfrequency � gets closer to 1, the number of
bubble screens increases.

In the case ��1, the bubbles accumulate in the center
of the layer—a node of the pulsation pressure. Evolution of
the maximal concentration, the coordinate zs of a front, i.e.,
the interface bubbly fluid-pure fluid, and the profiles of the

FIG. 4. The maximal �max and the averaged ��
 values of concentration
as functions of time �a�; the concentration profiles at different times,
Q=1,�2=3 �b�.
concentration are depicted in Fig. 6. As was mentioned
above, the bubbles located near the front possess the maxi-
mal velocities �cf. �74��, consequently the concentration
grows very fast at the front and does not practically vary in
the stagnant core in the center of the layer.

VI. CONCLUSIONS

The averaged dynamics of various two-phase systems in
a high-frequency vibration field has been theoretically stud-
ied. The continuum approach was applied to describe such
systems as solid particle suspensions, emulsions, bubbly flu-
ids, when the volume concentration of the disperse phase is
small and gravity is insignificant. The dynamics of a mono-
disperse system was considered by means of the averaging
method, when the fast pulsation and slow averaged motion
can be treated separately. The vibration dynamics of suspen-
sions of both nondeformable and deformable particles, when
the compressibility of the disperse phase becomes important,
has been investigated.

An averaged model for nondeformable particles has
been obtained. It is shown, that accounting for the Stokes
drag and unsteady forces such as the Basset history term, the
second memory force and the added mass force in the pul-
sation motion, is of crucial importance for correct description
of the averaged dynamics. The averaged equations have been

FIG. 5. The maximal �max and the averaged ��
 values of concentration
as functions of time �a�; the concentration profiles at different times,
Q=1,�2=1.25 �b�.
obtained and simplified in the framework of the single-fluid
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approximation. It is proven that the particles can be treated
as frozen into the averaged fluid flow. As a result the aver-
aged dynamics of a suspension is described by the equations
of momentum and mass conservation for the carrier fluid and
a transfer equation for the concentration of particles. The
action of vibration results in the appearance of a vibration
force in the equation of the fluid motion. This force is non-
vanishing only for the nonuniform distribution of particles,
its direction coincides with the vibration axis. We note, that
the developed model is expected to be worth applying to
clarify recent experiments on blood flow resistance under

vibration action.42

The developed model has been applied to study the be-
havior of a two-phase medium in an infinite plane layer sub-
jected to transversal vibrations. It is demonstrated that there
is a set of possible nonuniform quasiequilibrium distributions
of particles, when the averaged flow vanishes but the pulsa-
tion velocities do not. The stability of a linear distribution of
particles has been investigated. Analytical and numerical
analysis manifests that the quasiequilibrium state is unstable
for any intensities of vibration. A nonuniformity of particle
distributions causes the vibration force that generates the av-
eraged motion in fluid. Because of this flow, the initial dis-
tribution of particles is deformed and the state becomes un-

FIG. 6. The maximal concentration �max and the coordinate of the front
zs as functions of time �a�; the concentration profiles at different times,
Q=−1,�2=0.5 �b�.
stable.
As a system with deformable particles, the case of bub-
bly fluids in vibration field has been analyzed separately. An
averaged model accounting for the compressibility of the
bubbles has been developed. The pulsations were assumed to
be inviscid, and a set of averaged equations has been ob-
tained in the single-fluid approximation. The averaged veloc-
ity of bubbles differs from the fluid velocity; this difference
is caused by vibration and proportional to its intensity. It is
shown that in contrast to the case of nondeformable particles,
the impact of vibration on the system with deformable par-
ticles is significantly stronger. Even for uniform distribution
of particles the vibration force is nonzero.

An intermediate case of low vibration frequencies, when
the ratio � of eigenfrequency of radial bubble oscillations to
the frequency of vibration is high, has been considered. A
criterion when the compressibility of bubbles can be ne-
glected has been figured out: ��L /R, where L is the length
scale of the flow and R is the time-averaged radius of the
bubble. In this case the intermediate model reduces to the
model for nondeformable particles. In the opposite limit, �
�L /R, the intermediate model transforms to the discussed
model where compressibility of bubbles becomes of crucial
importance.

The dynamics of a bubbly fluid in an infinite plane layer
under the action of transversal vibration has been analyzed.
The quiescent state with the uniform distribution of bubbles
is chosen as the initial one. It turns out that for ��1.489 the
bubbles migrate to the boundaries of the layer; for 1��
�1.489 the bubble screens appear; for ��1 bubbles accu-
mulate in the center of the layer. We have demonstrated that
the behavior of bubbly fluid is analogous to the primary
Bjerknes effect: for ��1 the bubbles leave the nodes and
accumulate in the antinodes of the pressure wave, while for
��1 the bubbles migrate to the nodes. However, in our
case, the bubbles are not only advected by the external non-
uniform field, as in the conventional Bjerknes effect, but also
cause this nonuniformity.
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APPENDIX

Here we analyze relation �21� as a function of the pa-
rameters �, �, and K. First, we give the expressions for the
limiting vibration regimes of viscous �K�1� and inviscid
�K�1� pulsation. Next, we discuss the dependence in the
whole range of values of K and outline features for some
typical media.

In the limit of viscous pulsation, K�1, relation �21� re-

duces to the following:
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B0 =
�� − 1�2K3

9�2
. �A1�

Note, in this limit, it is not enough to take into account only
the Stokes force, which would result in vanishing B and
therefore in no vibration force. Physically, this means that
the particles get frozen not only in the averaged flow, but in
the pulsation fluid flow as well, and therefore no averaged
effects are possible. To account for any nontrivial dynamics
one has to retain small �with respect to the Stokes drag�
terms due to memory forces, which ensures relative pulsation
motion of phases. Another interesting point is that this result
does not depend on �.

In the opposite limit of inviscid pulsation, K�1, the
leading contribution to B is made by the added mass force.
The result is sensitive solely to the relative density of phases:

B� = � � − 1

1 + 2�
�2

. �A2�

A typical case of a bubbly fluid ���1, ��1� is gov-
erned by

Bb =
2K3�18�2 + 9K + 3�2K2 + K3�

�18�2 + 18K − K3�2 + K2�18 + 3�2K + K2�2
. �A3�

The result is caused by the Stokes drag, the second memory
force, and the added mass force.

For the case of solid particles ��→��, the dependence
�21� transforms to

Bs =
�� − 1�2�2K3�9 + �2K�

81��2 + K�2 + K2�9 + �2�1 + 2���2
, �A4�

where the Stokes drag, the Basset and the added mass forces
make finite contribution.

To demonstrate the dependence in more general situa-
tions, we tabulate �21� as a function of K for different values
of � and �. Typical results are presented in Fig. 7. As it can
be shown, the function B�K� is positive for all K; it is either
monotonic or has a maximum. In the limits of K�1 and
K�1 the results are independent of � and agree with the
expressions �A1� and �A2�, respectively. As it can be ex-
pected, the effect of different values of � occurs at interme-
diate values of K.

Figure 7�a� represents the case of bubbly fluids ���1�;
the curve with �=0 corresponds to relation �A3�. The curves
go out from the point B=0 at K=0, start to grow at small K
as K3 / �9�2� �see relation �A1��, and monotonically approach
the value B�=1, as follows from �A2�. For ��1/2, qualita-
tive form of the curves keep the same as in Fig. 7�a�, the
value of B� changes according to �A2�.

For ��1/2 the dependence B�K� is no longer mono-
tonic; there appears a maximum Bm at some value Km �see
Fig. 7�b��. The curve with ��1 corresponds to solid par-
ticles and is described by formula �A4�; such a curve in Fig.
7�b� is plotted for a suspension “sand in water” ��=4,
��1�. We note, that for higher relative densities � the de-
pendence B�K� does not change qualitatively. In the limiting
case of heavy particles suspended in a gaseous medium

�solid particle suspension in air, aerosol�, ��1, the maxi-
mum value Bm grows and shifts to lower values of K; the
asymptotic behavior reads Bm ��, Km 1/��. At high val-
ues of K parameter B gradually approaches the limiting value
B�=1/4.
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