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We consider a sessile hemispherical bubble sitting on the transversally oscillating bottom of a deep

liquid layer and focus on the interplay of the compressibility of the bubble and the contact angle

hysteresis. In the presence of contact angle hysteresis, the compressible bubble exhibits two kinds

of terminal oscillations: either with the stick-slip motion of the contact line or with the completely

immobile contact line. For the stick-slip oscillations, we detect a double resonance, when the

external frequency is close to eigenfrequencies of both the breathing mode and shape oscillations.

For the regimes evolving to terminal oscillations with the fixed contact line, we find an

unusual transient resembling modulated oscillations. VC 2011 American Institute of Physics.

[doi:10.1063/1.3650280]

I. INTRODUCTION

Recent years have shown keen interest in the dynamics of

sessile droplets and bubbles on oscillated substrate.1–7 While

the ability to predict the contact line motion and, therefore, to

control the wetting processes is generally important for tech-

nological applications,8,9 these setups can also be used to

manipulate small droplets over surfaces.10–12 Instead of sub-

strate vibrations, oscillations of drops and bubbles can be

induced by electrowetting, see Refs. 13 and 14 and references

therein. Apart from the ability to manipulate sessile objects,

these techniques also admit the possibility of mixing.13,15,16

Although in many of these applications, the contact line

(and=or contact angle) is not static, theoretical models often

neglect this dynamic feature or treat it in a simplified way.

Independent of how oscillations are induced, the behavior of

a sessile droplet or a bubble is significantly determined and

often is completely slaved by the dynamics of the triple line.

For instance, a simplified model of a compressible bubble

atop vibrated substrate that neglects the coupling with the

substrate predicts trivial volume oscillations. As the real

picture is much more intricate,6 this rough but representative

example testifies to the necessity of finer models of the con-

tact line motion. The importance of this argument is further

augmented, when quantitative agreement between the theory

and experiment is required, see also Sec. V.

The purpose of this study is to outline generic features

caused by the interaction of such factors as compressibility

and contact angle hysteresis, by looking at a relatively sim-

ple theoretical model that allows for a deep insight. More

precisely, this can be achieved by applying an effective

boundary condition suggested by Hocking,17,18 which cor-

rectly mimics the motion of the contact line and involves

specific dissipation caused by this motion. Such an idealized

system as a droplet (or a bubble) hemispherical in equilib-

rium admits a systematic analytical or semianalytical treat-

ment. The latter issue is important for obtaining a deep

insight, which is typically lost when one resorts to direct nu-

merical simulations. This strategy has recently been applied

to separately explore the impact of the compressibility of

bubble6 and the contact angle hysteresis.7

Apart from shape oscillations typical of any deformable

object, a compressible bubble additionally possesses the

breathing eigenmode corresponding to radial pulsations. For a

sessile bubble, the contact line dynamics causes the interaction

of this mode with the eigenmodes of shape oscillations even

within the linear problem,6 contrary to the necessarily nonlin-

ear coupling for a spherical bubble.19 Another prominent fea-

ture caused by compressibility is a “double resonance,” which

means that under certain conditions, two modes simultane-

ously, one of the modes of shape oscillations and the breathing

mode, are resonantly amplified. In this regime, bubble oscilla-

tions can be represented as such a superposition of these two

modes that the contact line remains almost fixed, which is

completely independent of wetting properties.

The issue of contact angle hysteresis has been recently

addressed in another study dealing with an incompressible
droplet.7 As the contact line moves only when the contact

angle exceeds a certain critical value, the stick-slip dynamics

is observed: the system switches periodically between the

phases with the sliding and the fixed contact line. The con-

tact angle hysteresis causes another noteworthy effect. It is

known that in the nonhysteretic limit,4 no contact line

motion exists at a discrete number of “antiresonant” frequen-

cies, which are independent of wetting properties. The

a)Author to whom correspondence should be addressed. Electronic mail:

straube@physik.hu-berlin.de.

1070-6631/2011/23(10)/102105/6/$30.00 VC 2011 American Institute of Physics23, 102105-1

PHYSICS OF FLUIDS 23, 102105 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

http://dx.doi.org/10.1063/1.3650280
http://dx.doi.org/10.1063/1.3650280
http://dx.doi.org/10.1063/1.3650280


contact angle hysteresis transforms these discrete frequencies

into antiresonant frequency bands of finite width. The dy-

namics corresponds to stick-slip motion outside the bands

and to oscillations with the pinned contact line within the

bands. The contact angle hysteresis has been shown to be

responsible for a nontrivial time dependence of the contact

angle, which is in qualitative agreement with recent

experimental observations.1

In this study, we report on the interplay of the compres-

sibility and the contact angle hysteresis. Particularly, we

show that such coupling results not only in a simple combi-

nation of known effects. More importantly, it can also lead

to a novel generic feature, which is not possible in previous

setups,6,7 where these two factors come into play separately.

The paper is outlined as follows. In Sec. II, we formulate the

problem and in Sec. III, we describe the method of solution.

Section IV is devoted to interpretation of results, which is

finally followed by conclusions in Sec. V.

II. PROBLEM STATEMENT

Consider a gaseous bubble attached to the bottom of a

liquid layer of thickness H with a free upper surface. The

bubble is assumed hemispherical, with a radius R in equilib-

rium, implying that the equilibrium contact angle veq¼p=2.

We focus on the case of “deep water,” R� H. The rigid

substrate is subject to transverse oscillations with an ampli-

tude a and a frequency x, see Fig. 1. The amplitude is con-

sidered small ða� R2=HÞ to linearize the governing

equations and boundary conditions except for the Hocking

condition, see Eq. (1) below. We assume that the frequency

x is high to neglect the dissipative effects caused by acoustic

irradiation, viscous and heat dissipation,20 see the corre-

sponding requirements, Eq. (2) in Ref. 6. At the same time,

x is considered comparable with both the eigenfrequencies

of shape and volume oscillations for the bubble. The contact

line dynamics is accounted via Hocking’s boundary

condition,18 which includes the contact angle hysteresis.

Following Ref. 6, we use
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qR3=r

p
, R, aH=R, qax2H,

and aH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ðqR3Þ

p
as the scales for the time, length, devia-

tion of bubble surface from its equilibrium position, pres-

sure, and velocity potential, respectively. Here, r is the

surface tension and q is the liquid density. We work in the

spherical coordinates r, #, and a with the origin in the center

of the bubble and restrict our analysis to the axisymmetric

problem. In the reference frame of the substrate, the system

is described by the equations (cf. Ref. 6)

p ¼ � 1

X2

@u
@t
þ cos Xt; r2u ¼ 0; (1a)

# ¼ p
2

:
@u
@#
¼ 0; (1b)

r ¼ 1 :
@f
@t
¼ @u
@r
; X2pþP0 fh i ¼ r2

# þ 2
� �

f; (1c)

r ¼ 1; # ¼ p
2

:
@f
@t
¼

kðc� ccÞ; c > cc;
0; jcj � cc;
kðcþ ccÞ; c < �cc;

8<
: (1d)

r !1 : u! 0; (1e)

r2
# ¼

1

sin#

@

@#
sin#

@

@#

� �
:

Here, c(t) : (v� veq)R2=(aH)¼�(@f=@#)j#¼p=2 is the

rescaled deviation of the contact angle from its equilibrium

value and angle brackets abbreviate the averaging over the

bubble surface. According to Hocking’s hysteretic condition,

Eq. (1d), the contact line remains motionless until jcj
exceeds a certain critical value cc, which is a dimensionless

parameter.

In addition to cc, the boundary value problem, Eq. (1), is

governed by three dimensionless parameters, introduced in

the nonhysteretic study:6 the external frequency

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx2R3=r

p
, the Hocking (or wetting) parameter

k ¼ K
ffiffiffiffiffiffiffiffiffiffiffi
qR=r

p
, and the pressure in the bubble

P0¼ 3npPgR=r. Here, np is the polytropic (e.g., adiabatic)

exponent and Pg and K are respectively dimensional pressure

in the bubble and the Hocking parameter. As the relative

depth of the layer H=R is large, the boundary conditions at

the free surface have been replaced by the requirement of the

decay of oscillations away from the bubble, Eq. (1e), see

discussion in Ref. 6.

III. METHOD OF SOLUTION

Although the hysteretic boundary condition at the

contact line, Eq. (1d), makes the boundary value problem,

Eq. (1), nonlinear, series representations for u, p, and f
applied earlier [cf. Eq. (21) in Ref. 6] can be used:

f ¼
X1
n¼0

CnðtÞP2nðhÞ; u ¼ �
X1
n¼0

_CnðtÞP2nðhÞ
ð2nþ 1Þr2nþ1

; (2)

p ¼ 1

X2

X1
n¼0

€CnðtÞP2nðhÞ
ð2nþ 1Þr2nþ1

þ cos Xt; h � cos#: (3)

Hereafter, dots denote the time derivatives.

Another representation of f follows from the normal

stress balance condition, the second relation in Eq. (1c)

f ¼ ch�
X1
n¼1

€CnðtÞP2nðhÞ
X2

n

þ X2 cos XtþP0C0 � €C0

2
; (4)

FIG. 1. (Color online) Sketch of a bubble sitting on the transversally

oscillating bottom of a deep liquid layer, H � R. The dashed line shows the

equilibrium shape and the dotted line indicates existence of radial (volume)

oscillations.
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where X2
n ¼ ð2nþ 1Þð2n� 1Þð2nþ 2Þ with n� 1 are the

eigenfrequencies of the shape oscillations of a spherical bub-

ble, which in our study refer to the even modes only. The

value X2
0 ¼ P0 � 2 denotes the eigenfrequency of the

volume (breathing) mode for the spherical bubble. It can be

readily seen that the first term in Eq. (4) determines the

deviation of the contact angle.

The comparison of Eqs. (2) and (4) for f yields a set of

ordinary differential equations for Cn

€C0 þ X2
0C0 ¼ �c� X2 cos Xt; (5)

€Cn þ X2
nCn ¼ anX

2
nc ðn > 0Þ; (6)

where an are introduced as expansion coefficients

h ¼
X1
n¼0

anP2nðhÞ; an ¼ �
ð4nþ 1ÞP2nð0Þ
ð2n� 1Þð2nþ 2Þ : (7)

Equations (5) and (6) should be supplemented with an equa-

tion for c, which is drawn from Eq. (1d). The convergence of

the series for f at h¼ 0 is very slow. To improve the compu-

tational efficiency, we make use of the following idea. We

note that the first term in Eq. (6) can be neglected for large n.

Indeed, this term is of order X2Cn (the higher modes of eige-

noscillations are not excited) and consequently, it is small in

comparison with X2
nCn. Therefore, starting from a certain N,

we can put Cn � anc and apply Eq. (2)

@f
@t
¼
XN

n¼0

_CnP2nð0Þ þ
X1

n¼Nþ1

_canP2nð0Þ ¼
XN

n¼0

_bnP2nð0Þ; (8)

where bn¼Cn� can and we used Eq. (7) at h¼ 0. Relations

(8) and (1d) give the desired equation for c

_c ¼ 1

SN

XN

n¼0

_CnP2nð0Þ �
1

SN

kðc� ccÞ; c > cc;
0; jcj � cc;
kðcþ ccÞ; c < �cc;

8<
: (9)

where SN �
PN

n¼0 anP2nð0Þ. Note that the similar approach

can be applied to incompressible droplets equally well and it

is even more powerful than that applied earlier in Ref. 7.

The set of Eqs. (5), (6), and (9) was solved numerically

with N¼ 90. To check the accuracy, we performed tests with

N¼ 100 and N¼ 150, which gave close results with a typical

distinction within 2% between N¼ 90 and N¼ 150.

IV. RESULTS AND DISCUSSION

We start our discussion by outlining possible types of

dynamics inherent to a compressible bubble with the contact

angle hysteresis. Recall that because of dissipative nature of

Hocking’s condition, Eq. (1d), the system reaches a terminal

oscillatory state (a limit cycle) after a certain transient. As

has been shown for an incompressible droplet,7 the contact

angle hysteresis leads to the existence of antiresonant bands.

Depending on the parameters X and cc but being completely

independent of the wetting parameter, k, two characteristic

types of terminal oscillations are possible: (1) with the stick-

slip motion of the contact line and (2) with the contact line

pinned, respectively outside and within the antiresonant

bands. The border separating the corresponding domains on

the plane (X, cc) is drawn from the partial problem with the

pinned contact line. For a compressible bubble, the situation

is similar with a difference that now a dependence on the

parameter P0 appears, see Fig. 2. Note that variation of P0

significantly affects the widths of the antiresonant bands.

Before we proceed to the analysis of terminal oscilla-

tions, we emphasize an outstanding feature, which concerns

transients related to the domains with the fixed contact line

(antiresonant bands) in Fig. 2 and is a result of interplay

between the compressibility and the contact angle hysteresis.

The bubble response strongly resembles modulated oscilla-

tions, see Fig. 3. Note that most of the time jcj< cc, implying

that the contact line is fixed and no damping occurs. The

oscillations are subject to damping during the relatively short

spells of sliding motion, jc(t)j> cc. As a result, in a few hun-

dreds of periods, a specific regime of oscillations in which

the amplitude of “modulated” oscillations equals cc is

reached; the contact line stops sliding and the oscillations no

longer decay.

A closer inspection of the signal c(t) shows that it

presents a superposition of the externally imposed oscillation

and an eigenmode: ac cos Xtþ (cc� ac)cos xnt. Here,

ac¼ ac(X, P0) and xn ¼x n(P0) are, respectively, the ampli-

tude of forced oscillations of c(t) and the eigenfrequency of

oscillations with the fixed contact line. In our example,

ac¼ 1.78, n¼ 1, and x1¼ 4.05. Further calculations demon-

strate that for any initial conditions that admit the stick-slip

motion of the contact line during the transient, only one of

eigenmodes is selected—the one with the eigenfrequency xn

closest to X; other eigenmodes decay faster and are eventu-

ally “filtered out” due to the Hocking dissipation.

At a first glance, this effect is unexpected, as the decay

rates caused by the contact line dynamics are approximately

FIG. 2. (Color online) Diagram showing the border cc(X) between the

domains of oscillations with the fixed contact line (antiresonant bands,

above the curves) and with the stick-slip motion (below the curves), plotted

for different P0.

FIG. 3. (Color online) Evolution of c(t) plotted for k¼ 5, P0¼ 20, cc¼ 4,

and X¼ 3.7.
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the same for all the eigenmodes.4,6 Therefore, it is not clear

why a single eigenmode (and which one exactly) is selected.

The only straightforward case in which dissipation becomes

vanishingly small for any k is the case of a double resonance,

when Xn�X0 and X is close to both these frequencies.6

From this perspective, the “leading” eigenmode should be

that with the eigenfrequency xn closest to the double reso-

nance. However, our calculations show that modulated oscil-

lations exist even away from the double resonance and hence

the argumentation should be modified.

What does explain the minimization of dissipation for

the leading eigenmode is a consideration of the spells during

which the contact line slides. Note first that for any superpo-

sition of the forced oscillation and an eigenmode with an

eigenfrequency xn, the evolution of the contact angle can be

represented as amplitude-modulated oscillations with the

pumping frequency X and the frequency of modulation

jxn�Xj. Then, the dissipation takes place only when the

contact line keeps sliding, or, in other words, during the

spells with jc(t)j> cc. Thus, as becomes clear from Fig. 3,

smaller dissipation corresponds to smaller frequencies of

modulation, jxn�Xj, which explains the dominance of the

eigenmode with smallest jxn�Xj and hence, the origin of

modulated oscillations. We stress that this effect is inherent

to a compressible bubble only and is not found for a drop.7

For an incompressible droplet, the signal c(t) is more compli-

cated, including always several eigenmodes shifted in

phases.

Of course, in a real system, other dissipative mecha-

nisms neglected in our study (say, for simplicity, viscosity,

with a characteristic time scale s�	R2=�, where � is the ki-

nematic viscosity of the liquid) eventually suppress the

eigenmode oscillations. After that, the system approaches

the terminal state—the studied earlier linear oscillations with

the pinned contact line.6 However, such a nontrivial transient

is expected to be visible on times smaller than s�. For

instance, for a bubble of radius 0.1 cm in water s� � 1 s and

the capillary time scale sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qR3=r

p
’ 0:003 s, which

means that several hundreds of oscillations take place before

the extinction of the leading eigenmode. Beyond the antire-

sonant bands, the system approaches the terminal state due

to the Hocking mechanism of dissipation. Note that the char-

acteristics of the terminal state are only slightly affected by

viscosity. The magnitude of such a change can be estimated

as sc=s�, which provides as small as sc=s� ’ 0:003 for the

example above.

We next consider the terminal oscillations with the

stick-slip motion at the contact line, which are qualitatively

similar to those found for a droplet.7 Namely, away from the

resonant frequencies, the response is simple. However, even

in this case, the oscillations are nonlinear: as ensured by the

nonlinearity due to Hocking’s condition, generation of

higher harmonics occurs. When X is close to xn, the evolu-

tion can become more intricate showing appearance of

several local maxima in c(t) and fp(t) : f (#¼ 0, t) during a

period, cf. panels (a) and (b) in Fig. 4. The oscillations of the

bubble volume C0(t) remain almost harmonic irrespective of

k and X.

Despite qualitative similarity with the droplet,7 a feature

inherent to the bubble oscillations appears, see amplitude

response for different values of cc and P0 in Fig. 5. Although

all the curves for finite cc are between those for the nonhyste-

retic case, cc¼ 0, and the case of cc ! 1 (or, equivalently,

the pinned-end limit, k¼ 0) as in Ref. 7, we now have the

additional parameter P0. This parameter can be used to tune

X0 such that it is close to an eigenfrequency of the shape

oscillations, Xn, when the dissipation drops down.6 As a

result, at frequencies X � X0 � Xn, we can expect a double

resonance.6 The first exact resonance occurs at P0¼ 14,

when X0 ¼ X1 ¼
ffiffiffiffiffi
12
p

. As can be seen in Fig. 5, the double

resonance is well pronounced for P0¼ 10 but no longer

present at P0¼ 30. Note that the double resonance has two

distinctive features: (1) in contrast to usual resonances, the

response characteristics of the double resonance are almost

independent of cc and (2) compared for finite values of cc, its

amplitude ! (X0�Xn)�2 is much larger than those for usual

resonances.

V. CONCLUSIONS

Concluding, we have considered a hemispherical bubble

sitting on the transversally oscillating bottom of a deep liquid

layer and studied the interplay of the compressibility of the

bubble and the contact angle hysteresis. At the heart of our

approach is Hocking’s hysteretic condition at the triple line.

On one hand, it allows us to capture principal features of the

contact line dynamics. On the other one, this boundary

condition keeps the model relatively simple, which admits

FIG. 4. (Color online) Evolutions of the contact angle, c(t), surface devia-

tions at the pole, fp(t), and on the substrate, f0(t), denoted by solid, dashed,

and dotted lines, respectively. The horizontal dashed lines are for c¼6cc.

Parameters are k¼ 5, P0¼ 10 and cc¼ 10, and (a) X¼ 5.1 and (b) X¼ 6.0.

FIG. 5. (Color online) Amplitudes of surface deviation at the pole, Ap, as

functions of frequency X for k¼ 5 and different values of cc, plotted for

P0¼ 10 (a) and P¼ 30 (b).
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the possibility of a systematic analysis. We have shown that

the combined action of the compressibility and contact angle

hysteresis does not simply inherit known effects caused by

one of these factors [see points (1) and (2) below]6,7 but also

leads to a qualitatively novel feature not possible in the

previously considered systems [point (3) below].

(1) Similar to an incompressible droplet in the presence

of contact angle hysteresis,7 the compressible bubble exhib-

its two kinds of terminal oscillations: either with the stick-

slip motion of the contact line or with the thoroughly

motionless contact line. For both systems, the border separat-

ing these regimes of terminal oscillations is independent of

the wetting parameter, k, and depends on the threshold value

of the contact angle cc and on the external frequency X. For

an incompressible droplet, the oscillations with the pinned

contact line and those with the stick-slip motion represent

fixed domains on the plane (X, cc). For a compressible

bubble, an additional dependence on the pressure in the

bubble, P0, appears and this diagram is significantly affected

by the value of P0, see Fig. 2.

(2) For the regime of terminal oscillations with the

stick-slip motion of the contact line, we end up with the fol-

lowing conclusion. Similar to a compressible bubble with no

contact angle hysteresis,6 the studied system preserves the

effect of double resonance. This happens when the external

frequency X is close simultaneously to the frequency of the

breathing mode and to one of eigenfrequencies of the shape

oscillations (both for a spherical bubble of the same radius),

X0�Xn. Interestingly, the oscillations are found to be almost

independent of the threshold value of the contact angle, cc.

We also note that the double resonance is much stronger

than usual resonances. From the experimental point of view,

the double resonance can be detected by adjusting P0 such

that X0(P0) � Xn. The condition X � Xn is ensured by tun-

ing the external frequency X.

(3) For the regime of terminal oscillations with the fixed

contact line, we found out an unusual transient resembling

modulated oscillations, as in Fig. 3. Any initial conditions that

admit the stick-slip motion of the contact line during the tran-

sient lead to oscillations presenting a superposition of the

external signal with the frequency X and a single eigenmode

with the eigenfrequency xn closest to X. Here, xn is the eigen-

frequency of the shape oscillations for the hemispherical bub-

ble with the pinned contact line. Although in a real system this

eigenmode will ultimately be suppressed (e.g., by viscosity),

such a nontrivial transient is expected to be experimentally

testable: for instance, for a bubble of radius 0.1 cm in water

several hundreds of oscillations take place before the

amplitude modulation is completely washed out. Note that the

effect of modulation is possible neither for a bubble without

contact angle hysteresis6 nor for an incompressible droplet.7

More generally, we believe that the potential of Hock-

ing’s dynamic boundary condition at the triple line goes

beyond the studied problem, including studies in Refs. 4, 6,

and 7, and can be helpful in a different context. We briefly

mention a relation to the problem of bubble oscillations gen-

erated by means of electrowetting.14 Despite the different

way of exciting oscillations, the two problems are similar in

several aspects.

First, a simple model developed in Ref. 13 for a drop

and later modified for a bubble14 neglects the coupling to the

substrate and, therefore, involves no interaction of different

“Rayleigh’s” modes (associated with different Legendre poly-

nomials). The interaction of these modes through the substrate

is known to shift the eigenfrequencies from the values Xn,

see, e.g., Refs. 4 and 6. Note also that for any finite value of

the wetting parameter, k, the resonant frequencies do not coin-

cide with the eigenfrequencies. Most likely, this is a reason of

a quantitative discrepancy between the experimental measured

and theoretical resonant frequencies, which can be fixed via

the methodology that we applied in the present study. A com-

parison of resonant frequencies for different values of k with

those measured experimentally would make possible to esti-

mate the value of k for a given experimental system.

Second, the account of viscosity in the theoretical model

applied in Ref. 13 can be improved. The contribution into

dissipation of the viscous boundary layer developing near

the substrate is known (see, e.g., Ref. 21) to prevail over the

volume dissipation taken into account in this study.13 For

this reason, the decay rates should be estimated as being

proportional to d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=xR2

p
rather than d2. An example of

estimates for a hemispherical drop can be found in Ref. 4.

This circumstance may be a reason behind the theoretically

overestimated resonant amplitudes.13

Finally, we point out that the correct description of the

interaction with the substrate can also be an important pre-

requisite for obtaining the proper picture of the bulk dynam-

ics, for instance, in oscillating bubbly liquids under

confinement, see Ref. 22 and references therein. Another

example concerns acoustic or electrowetting-driven oscilla-

tions of a sessile bubble used to generate streaming flow in

the bulk, which presents a way to manipulate small-sized

objects indirectly, including capture, propulsion, and

release.23–25

ACKNOWLEDGMENTS

The authors gratefully acknowledge support by German

Science Foundation (DFG Project No. 436 RUS113=977=0-

1) and Russian Foundation for Basic Research (Project No.

08-01-91959). A.S. additionally acknowledges support by

DFG SPP 1164 “Nano- and microfluidics” (DFG Project No.

STR 1021=1-2).

1X. Noblin, A. Buguin, and F. Brochard-Wyart, “Vibrated sessile drops:

Transition between pinned and mobile contact line oscillations,” Eur.

Phys. J. E 14, 395 (2004).
2S. Daniel, M. K. Chaudhury, and P. G. de Gennes, “Vibration-actuated

drop motion on surfaces for batch microfluidic processes,” Langmuir 21,

4240 (2005).
3A. Buguin, F. Brochard, and P.-G. de Gennes, “Motions induced by asym-

metric vibrations. The solid=solid case,” Eur. Phys. J. E 19, 31 (2006).
4D. V. Lyubimov, T. P. Lyubimova, and S. V. Shklyaev, “Behavior of a

drop on an oscillating solid plate,” Phys. Fluids 18, 012101 (2006).
5B. Vukasinovic, M. K. Smith, and A. Glezer, “Dynamics of a sessile drop

in forced vibration,” J. Fluid Mech. 587, 395 (2007).
6S. Shklyaev and A. V. Straube, “Linear oscillations of a hemispherical

bubble on a solid substrate,” Phys. Fluids 20, 052102 (2008).
7I. S. Fayzrakhmanova and A. V. Straube, “Stick-slip dynamics of an

oscillated sessile drop,” Phys. Fluids 21, 072104 (2009).
8P.-G. De Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. 57,

827 (1985).

102105-5 Bubble dynamics atop an oscillating substrate Phys. Fluids 23, 102105 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

http://dx.doi.org/10.1140/epje/i2004-10021-5
http://dx.doi.org/10.1140/epje/i2004-10021-5
http://dx.doi.org/10.1021/la046886s
http://dx.doi.org/10.1140/epje/e2006-00013-8
http://dx.doi.org/10.1063/1.2137358
http://dx.doi.org/10.1017/S0022112007007379
http://dx.doi.org/10.1063/1.2918728
http://dx.doi.org/10.1063/1.3174446
http://dx.doi.org/10.1103/RevModPhys.57.827


9L. Leger and J. F. Joanny, “Liquid spreading,” Rep. Prog. Phys. 55, 431

(1992).
10T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoli-

ter scale,” Rev. Mod. Phys. 77, 977 (2005).
11X. Noblin, R. Kofman, and F. Celestini, “Ratchetlike motion of a shaken

drop,” Phys. Rev. Lett. 102, 194504 (2009).
12K. John and U. Thiele, “Self-ratcheting Stokes drops driven by oblique

vibrations,” Phys. Rev. Lett. 104, 107801 (2010).
13J. M. Oh, S. H. Ko, and K. H. Kang, “Shape oscillation of a drop in ac

electrowetting,” Langmuir 24, 8379 (2008).
14S. H. Ko, S. J. Lee, and K. H. Kang, “A synthetic jet produced by

electrowetting-driven bubble oscillations in aqueous solution,” Appl.

Phys. Lett. 94, 194102 (2009).
15F. Mugele, J.-C. Baret, and D. Steinhauser, “Microfluidic mixing through

electrowetting-induced droplet oscillations,” Appl. Phys. Lett. 88, 204106

(2006).
16R. Shilton, M. K. Tan, L. Y. Yeo, and J. R. Friend, “Particle concentration

and mixing in microdrops driven by focused surface acoustic waves,” J.

Appl. Phys. 104, 014910 (2008).

17L. M. Hocking, “The damping of capillary-gravity waves at a rigid

boundary,” J. Fluid Mech. 179, 253 (1987).
18L. M. Hocking, “Waves produced by a vertically oscillating plate,” J.

Fluid Mech. 179, 267 (1987).
19Z. C. Feng and L. G. Leal, “Nonlinear bubble dynamics,” Annu. Rev.

Fluid Mech. 29, 201 (1997).
20L. van Wijngaarden, “One-dimensional flow of liquids containing small

gas bubbles,” Annu. Rev. Fluid Mech. 4, 369 (1972).
21C. C. Mei and L. F. Liu, “The damping of surface gravity waves in a

bounded liquid,” J. Fluid Mech. 59, 239 (1973).
22A. V. Straube, “Small-scale particle advection, manipulation, and mixing:

Beyond the hydrodynamic scale,” J. Phys. Condens. Matter 23, 184122 (2011).
23P. Marmottant and S. Hilgenfeldt, “Controlled vesicle deformation and

lysis by single oscillating bubbles,” Nature (London) 423, 153 (2003).
24S. K. Chung and S. K. Cho, “On-chip manipulation of objects using mo-

bile oscillating bubbles,” J. Micromech. Microeng. 18, 125024 (2008).
25S. K. Chung, K. Rhee, and S. K. Cho, “Bubble actuation by electrowet-

ting-on-dielectric (EWOD) and its applications: A review,” Int. J. Precis.

Eng. Manuf. 11, 991 (2010).

102105-6 Fayzrakhmanova, Straube, and Shklyaev Phys. Fluids 23, 102105 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

http://dx.doi.org/10.1088/0034-4885/55/4/001
http://dx.doi.org/10.1103/RevModPhys.77.977
http://dx.doi.org/10.1103/PhysRevLett.102.194504
http://dx.doi.org/10.1103/PhysRevLett.104.107801
http://dx.doi.org/10.1021/la8007359
http://dx.doi.org/10.1063/1.3123165
http://dx.doi.org/10.1063/1.3123165
http://dx.doi.org/10.1063/1.2204831
http://dx.doi.org/10.1063/1.2951467
http://dx.doi.org/10.1063/1.2951467
http://dx.doi.org/10.1017/S0022112087001514
http://dx.doi.org/10.1017/S0022112087001526
http://dx.doi.org/10.1017/S0022112087001526
http://dx.doi.org/10.1146/annurev.fluid.29.1.201
http://dx.doi.org/10.1146/annurev.fluid.29.1.201
http://dx.doi.org/10.1146/annurev.fl.04.010172.002101
http://dx.doi.org/10.1017/S0022112073001540
http://dx.doi.org/10.1088/0953-8984/23/18/184122
http://dx.doi.org/10.1038/nature01613
http://dx.doi.org/10.1088/0960-1317/18/12/125024
http://dx.doi.org/10.1007/s12541-010-0121-1
http://dx.doi.org/10.1007/s12541-010-0121-1

	s1
	cor1
	E1a
	E1b
	E1c
	E1d
	E1e
	s2
	s3
	E2
	E3
	E4
	F1
	E5
	E6
	E7
	E8
	E9
	s4
	F2
	F3
	s5
	F4
	F5
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25

