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Recent studies of dynamic self-assembly in ferromagnetic colloids suspended in liquid-air or liquid-

liquid interfaces revealed a rich variety of dynamic structures ranging from linear snakes to axisymmetric

asters, which exhibit novel morphology of the magnetic ordering accompanied by large-scale hydro-

dynamic flows. Based on controlled experiments and first principles theory, we argue that the transition

from snakes to asters is governed by the viscosity of the suspending liquid where less viscous liquids favor

snakes and more viscous, asters. By obtaining analytic solutions of the time-averaged Navier-Stokes

equations, we gain insight into the role of mean hydrodynamic flows and an overall balance of forces

governing the self-assembly. Our results illustrate that the viscosity can be used to control the outcome of

the dynamic self-assembly in magnetic colloidal suspensions.
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Fundamental principles guiding self-assembly in non-
equilibrium colloidal systems continue to attract enormous
attention in physics and engineering communities [1–13].
The interest is stimulated by the need for creating smart
materials capable of self-assembly, adaptation, and for the
design of tunable structures that can perform useful tasks at
the microscale [14], including targeted cargo delivery [15],
stirring in microfluidic devices [16], and control of optical
properties of the media [17].

Studies of dynamic self-assembly in ferromagnetic col-
loids dispersed at liquid-air interfaces [18,19] and ener-
gized by an alternating (ac) magnetic field revealed highly
organized, dynamic linear structures—magnetic snakes.
The snake emerges spontaneously from a random disper-
sion of particles in a certain range of frequencies and
amplitudes of the ac magnetic field. While for low frequen-
cies of the applied magnetic field the snakes are immobile,
with the increase in frequency they turn into self-propelled
entities [20]. Surprisingly, fundamentally new structures—
localized magnetic asters and arrays of asters—emerge
when the same colloidal suspension is confined at the inter-
face between two immiscible liquids and is energized by
the alternating magnetic field [21].

Both magnetic snakes and asters generate complex flows
in the fluid and possess magnetic ordering and dynamic
organization highly unfavorable under equilibrium condi-
tions. While magnetic snakes are essentially linear and
composed of antiferromagnetically ordered segments of
ferromagnetically ordered chains of microparticles [18],
asters develop radial structural order with the ferromag-
netically ordered chains emanating from the center of each
aster [21]. The mean flows excited by the snakes and asters
have fundamentally different morphology: snakes create
quasi-two-dimensional flows with quadrupole symmetry

confined near the surface [19] and asters induce three-
dimensional toroidal bulk flows [21]. The main forces
that control dynamic self-assembly in such systems involve
not only magnetic dipole-dipole and steric interactions
between the particles but also nontrivial hydrodynamic
forces stemming from deformation of the interface, vis-
cous drag, and entrainment by the large-scale mean flow.
The striking difference between self-assembled structures
in liquid-air and liquid-liquid systems remained unclear
since both systems were driven similarly. Thus, it is critical
to understand the fundamental physical parameters con-
trolling the transition between these two distinctive dy-
namic states.
In this Letter, we perform a systematic experimental and

theoretical study of the snake-aster transition. It is widely
believed that, because the motion of each individual colloi-
dal particle is strongly overdamped, the viscosity sets only
an overall time scale. Moreover, the motion of fluid is often
described by the linear Stokes equation, as, e.g., in
Ref. [22], and admits a one-way coupling between the
solvent and the particles, when only the particle dynamics
is influenced by the liquid flow but not vice versa [23]. For
our system, neither of these assumptions ismet, presenting a
great challenge for the theory. However, on the basis of
controlled experiments and comprehensive analysis of the
first principles model, we have demonstrated that the vis-
cosity defines the intricate balance betweenmagnetic forces
and hydrodynamic forces arising from the inertia of the
particles and suspending liquid. The magnitude of these
forces is inversely proportional to the viscosity, which can
be independently controlled both in our experiment and in
the theoretical model. We show that at a given frequency
and amplitude of the energizing ac magnetic field the vis-
cosity of a suspending liquid controls the transition between
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snakes and asters; snakes emerge for smaller viscosities,
while asters are favored in more viscous liquids.

In our experiments with liquid-air systems, the structural
transition from snakes to asters is consistently observed
when the viscosity of suspending liquid is gradually
increased. Our theoretical model, the fully nonlinear
Navier-Stokes equations coupled to the dynamics of indi-
vidual magnetic particles, is reduced to a set of closed,
time-averaged ordinary differential equations for particle
positions and orientations interacting via magnetic forces
and effective mean hydrodynamic forces arising due to
oscillation of massive particles in a viscous liquid. The
cause of these mean forces is Stokes drift and Rayleigh
streaming. In contrast to the earlier study based on direct
simulation of the Navier-Stokes equations [24], here we
obtain their analytic solutions, which provide deep insight
into the role of hydrodynamic flows, their detailed struc-
ture, and an overall balance of forces governing the
self-assembly. The model is in good qualitative (and
some times quantitative) agreement with the experiments.

Our experimental apparatus was similar to that
described in Ref. [18]. A ferromagnetic colloidal suspen-
sion was composed of nickel microspheres with an average
size of 90 �m (Alfa Aesar Company). Because of defects
in particles, their magnetic moments are often strongly
pinned and the particles behave as magnetically ‘‘hard’’
microspheres. The particles were dispersed at the liquid-air
interface, where they were supported by a surface tension.
To exclude the difference between the deep and shallow
liquid layers, a circular glass beaker (5 cm in diameter) was
filled with liquid depths of 5 cm and 5 mm.

To vary the viscosity of the liquid, a range of water-
sucrose solutions was prepared [25]. The colloidal
suspension was energized by an ac magnetic field, Hac ¼
H0 sinð2�ftÞ, with the frequency f and amplitude H0 ¼
200 Oe, applied perpendicular to the interface.

Selected experimental results are summarized in Fig. 1.
We observed the formation of magnetic snakes for values
of the dynamic viscosity of the suspending liquid � close
to the viscosity of water, � � 1 mPa s. With a gradual
increase in �, the snakes give way to asters, as illustrated
in Fig. 1, top panel. The transition is not sharp, it is
associated with a wide transition region, as indicated by
the error bars. Remarkably, the transition line is almost
parallel to the � axis above the viscosity of � � 12 mPas.
The bottom panel of Fig. 1 shows a characteristic time Tf

for the formation of snake or aster as a function of � for
f ¼ 40 Hz. After this time, the size of the developed
structure almost did not change; the change of its relative
size was within 10%. Despite relatively large error bars, Tf

gradually increases with the growth of �.
To obtain insights into the snake-aster transition, we

significantly extend our model developed in Ref. [24]. We
start with the model based on the fully nonlinear Navier-
Stokes equation in the shallow water approximation,

@thþr � ðhvÞ ¼ 0; (1)

@tvþ ðv � rÞv ¼ �ðr2v� �vÞ � rhþ �rr2h

þH0 sinð!tÞX
i

sðr� riÞPi; (2)

where v is the two-dimensional (2D), in-plane fluid veloc-
ity, h is the surface elevation, � is the kinematic viscosity,�
is the friction with the bottom of the container, and � is the
surface tension. The last term in Eq. (2) is representative of
forces applied to the surface of the fluid through the parti-
cles, whereH0 is the amplitude of the acmagnetic field,! is
the frequency, the localized function s defines the shape
of the particle, and Pi � ðcos�i; sin�iÞ is the orientation of
the dipole moment of the ith particle. In our study, we
neglect the surface tension [26] and assume that s is given
by delta functions �ðr� riÞ, which does not affect the basic
physics of self-assembly but, more importantly, makes our
model analytically tractable. The variables are scaled as

follows: coordinates r ! r=h0, time t ! t
ffiffiffiffiffiffiffiffiffiffiffi
h0=g

p
, velocity

v ! v=
ffiffiffiffiffiffiffiffi
gh0

p
, viscosity � ! �=h0

ffiffiffiffiffiffiffiffi
gh0

p
, where g is gravi-

tational acceleration. In this dimensionless, rescaled
equation, � ¼ h0 ¼ 1.
The motion of the particles on the surface of the fluid is

described using Newton’s equations

f 
(H

z)
(s

)

( )
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FIG. 1 (color online). Top panel: Snake-aster phase diagram as
a function of frequency f and viscosity �. The amplitude of the
ac magnetic field is H0 ¼ 200 Oe. Insets: Representative images
of a snake (top) and an aster (bottom). Bottom panel:
Characteristic time Tf for the formation of snakes (or asters)

as a function � for f ¼ 40 Hz and H0 ¼ 200 Oe. For two points
the vertical error bars are smaller than the markers.
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m€ri þ�t _ri ¼ Fi þ�tv� 	rh; (3)

I €� i þ�r
_� i ¼ Ti þ 
H0 sinð!tÞrh� Pi; (4)

wherem, I,�t,�r are the particle mass, moment of inertia,
and translational and rotational friction coefficients,
respectively; 	 ¼ mg, Fi ¼

P
j�iFij, and Ti ¼

P
j�iTij

are, respectively, the forces and torques on particle i due
to magnetic and steric interactions with all other particles,
�tv is the Stokes’ drag, and�	rh is the movement along
the surface gradient from gravity. The last term in Eq. (4) is
the torque applied to each dipole moment in the direction
of the projection of the vertical ac field on deformed
surface [24].

In previous work, Eqs. (1)–(4) were solved numerically
to model snakes [24]. Here, we first analytically find
solutions of Eqs. (1) and (2) in an asymptotic limit where
we expand the surface deformation and liquid velocity with
respect to the small parameter �, h ¼ h0 þ �h1 þ �2h2 þ
Oð�3Þ and v ¼ �v1 þ �2v2 þOð�3Þ. The parameter � can
be interpreted as the relative deviation of the locus hðr; tÞ
of the liquid-air interface from the equilibrium value h0.
Moreover, by using the dimensionless viscosity � as a
small parameter, Eqs. (1) and (2) were analytically solved
up through the first order for the corresponding surface
deformation and 2D velocity fields induced by each parti-
cle individually to yield h1ðr; tÞ ¼ hrðrÞei!t þ c:c: and
v1ðr; tÞ ¼ vrðrÞei!t þ c:c:, where c.c. denotes the complex
conjugate. At the second order, time-averaged solutions
h2 and v2 were sought and a corresponding analytic
expression for v2, which determines the mean flow, was
obtained [27,28].

Using the explicit solutions h1, h2, v1, and v2 of the
nonlinear Navier-Stokes equations (1) and (2), we perform
the time averaging of Eqs. (3) and (4). As a result, we arrive
at a closed system of ordinary differential equations for the
particles in which all of the details of the complex hydro-
dynamic flows are effectively encapsulated in pairwise
interactions:

m€ri þ�t _ri ¼
X
j�i

½Fij þ sj þ�tv
ðjÞ
2 � 	rhðjÞ2 �; (5)

I €� i þ�r
_� i ¼

X
j�i

�
Tij þ Im

�

H0

2
rðhðjÞr � �hðjÞr Þ � Pi

��
:

(6)

Here, the overline denotes complex conjugate and sj¼
�2m½	rjrhðjÞr j2þ�tfðvðjÞr �rÞ�vðjÞr þc:c:g�=ð�2þm2!2Þ is
the Stokes drift term. To obtain the Stokes drift of each
particle, we treated each term on the right-hand side of
Eq. (3) independently. The last term in Eq. (5) is of much
smaller order and can be neglected.

Thus, in contrast to the earlier model [24], where the
dynamics of the particles is determined by Eqs. (3) and (4)
coupled to nonlinear equations (1) and (2), we suggest a

much simpler and more transparent model in which the
particle positions and orientations are described by Eqs. (5)
and (6). Based on this model, we performed simulations
with different numbers of particles ranging from 225 to
1000 [29], with an initial configuration on a perturbed
square lattice with a uniformly random orientation of the
dipole moment and run on a graphic processing unit clus-
ter. In addition to a significant reduction of computation
time, roughly an order of magnitude speed up, the great
advantage of our approach is gaining insight into the
surface flows as the central ingredient underlying self-
assembly.
The overall analytic behavior of the mean surface flows,

shown in Fig. 2, is similar to the large-scale quadrupolar
flow seen from experiment. These flows are analogous to
the mean flow produced by Rayleigh streaming [30]. The
first-order flows (v1) are time dependent, dipolar flows that
oscillate in space and decay out exponentially, vrðrÞ /
expð�ikrÞ= ffiffiffi

r
p

, with k � !� i�k1, k1 ¼ ð!2 þ �Þ=2;
the behavior of hrðrÞ with r is similar to that of vrðrÞ; see
Fig. 2(d). The second-order mean flow v2 is time indepen-
dent and is decomposed into the potential and rotational
components, as shown in Figs. 2(a) and 2(b), respectively.
Both these counterparts have a long-ranged quadrupolar
structure with a monotonic power-law decay / r�3. The
full mean flow is seen in Fig. 2(c).
Note that since the localized shape function was mod-

eled by the delta function, the velocities and surface

(a) (b)

(c) (d)

FIG. 2 (color online). Mean surface flows (v2) and first-order
surface deformation (hr) induced by a single particle.
(a), (b) Quadrupole streamlines produced by the potential (a)
and rotational (b) components of the mean flow v2. The magni-
tude of the velocity v2 decays as r�3. (c) Composite of the
potential and rotational flows. (d) First-order surface deforma-
tion hr, which decays exponentially with r. The color in the
image indicates the height.
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deformations at all orders diverge at the center of each
particle. These divergences, however, have no effect on the
system because each particle cannot influence itself, and
for each pair of particles, a short-range steric repulsion
prevents them from getting close enough to feel the diver-
gence. Earlier experimental data [19] showed that a mean
quadrupole flow was an essential ingredient for the assem-
bly of snakes. Our model elucidates why this finding is true
for both snakes and asters: neither of these structures can
be reproduced in simulations via Eqs. (5) and (6) unless the
Stokes drift and the mean flow (i.e., the fields hr, vr, and v2)
are properly determined.

A critical test of the model is to recover the crossover in
the behavior from snakes to asters that was seen experi-
mentally as a function of the liquid viscosity� and the field
frequency f. The model successfully does so for a range of
values of � and f, see Fig. 3, top panel, where � ¼ h0 ¼
� ¼ 1. In qualitative agreement with the experiment, we
observed snakes and asters formed for lower and higher
values of �, respectively. Moreover, the dependence of

time Tf for the formation of a dynamic structure on �

exhibits a trend similar to the experimental one; see Fig. 3,
bottom panel. Note that, in order to avoid depth depen-
dence, the axes in Fig. 3 remain in dimensionless quanti-
ties. In the case where the viscosity was low and the
frequency was high, the simulations yielded a clumping
of particles primarily due to the lack of friction in the
system. Alternately, when the viscosity was high and the
frequency was low, the particles remained scattered due to
overdamping and a lack of alignment along the changes in
the surface height gradient.
Because the mean flow induced by each particle has a

long-range nature, it affects the dynamics of all other
particles, leading to a highly nontrivial self-organization
of the system. Figure 4 illustrates the formation of snakes
and asters from an initially disordered distribution of
particles. The particles were dispersed uniformly inside a
rectangle (snakes) or square (asters) with their magnetic
moments oriented randomly. As Fig. 4 shows, asters and
snakes are formed after a short transient (Tf), their orga-

nization, e.g., antiferromagnetic order, closely resembles
the experimental one. Starting from different initial con-
ditions, e.g., square for the case of snake, often resulted in
the formation of more than one snake or aster.
In conclusion, we have demonstrated that the viscosity

of the suspending liquid strongly affects the outcome of
dynamic self-assembly and controls the structural transi-
tion between self-assembled structures. Linear snakes are
favored for small viscosities and circular asters for higher
viscosities. Our novel model provides a nontrivial insight

[ ]

[ ]

f (
H

z)

( )

FIG. 3 (color online). Top panel: Snake-aster phase diagram as
a function of the rescaled frequency and viscosity. Circles,
triangles, and stars are, respectively, for asters, snakes, and a
mixture of segments forming neither asters nor snakes. Inset:
Comparison of experimental data (circles) and prediction of the
model (solid lines) for h0 ¼ 1:5 mm and h0 ¼ 2 mm. Bottom
panel: Formation time Tf of a structure as a function of fluid

viscosity for fðg=h0Þ�1=2 ¼ 0:3.

(a) (b) (c)

(d) (e) (f)

FIG. 4 (color online). Top row: Snake formation. (a) Particles
on a rectangular lattice with random orientation. (b) Magnetic
moments align along the surface gradient. Colors represent
surface elevation h (red and blue show maxima and minima,
respectively), arrows indicate particle magnetic moments.
(c) Ferromagnetic chains are formed and are antiferromagneti-
cally aligned, creating a snake. Bottom row: Formation of an
aster. (d) Particles on a square lattice with random orientations.
(e) Magnetic moments align along the surface gradient.
(f) Ferromagnetically ordered chains are formed and an aster
is assembled.
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into how the large-scale mean flow—a nonlinear effect
caused by the strong coupling of oscillating particles
with the initially equilibrium liquid—becomes a critical
player that not only determines the shape and organization
of the emergent dynamic structures but also keeps them
stable. As we show, both inertia of the liquid and inertia of
the particles are at the heart of the assembly process.

While we were able to reproduce the main observed
phenomenology, our method also has limitations. One
shortfall is that, being a completely two-dimensional
model, the shallowwater equations do not capture the liquid
jets into the bulk produced by asters [21]. However, our
model is capable of replicating the overall structure of
both snakes and asters. As snakes produce a largely 2D
flow, it was natural to expect that they can be recovered from
this model. Asters, however, produce a three-dimensional
toroidal flow and their appearance in this model was not
expected. They form due to the propensity of the dipoles to
align along the surface gradient for large characteristic
wavelengths, whereas entrainment by the large-scale toroi-
dal flow is important but less critical. Another reason for the
lack of a good quantitative agreement between the experi-
ment and model (such as in the inset of Fig. 3, top panel) is
due to the neglected surface tension. Along with gravity, it
presents another mechanism for surface wave generation
but makes the model analytically intractable.
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