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I. MINIMAL MODEL OF PEAR-SHAPED
COLLOIDS IN A NEMATIC LIQUID CRYSTAL

In this supplemental material we provide details of
a simple model that describes the two-dimensional (in-
plane) behavior of weakly asymmetric colloidal particles
in a nematic liquid crystal (NLC) confined to a cell,
Fig. 1(a). The liquid crystal has a negative dielectric
anisotropy leading to the alignement of the director field
n̂(r) perpendicular to the external alternating (AC) elec-
tric field E(t) and parallel to the electrodes. We show
that our weakly asymmetric hydrodynamically coupled
particles with in-plane positions ri = (xi, yi) effectively
approximated by spheres, see Fig. 1(b), are governed by
the equation,

dri
dt

= v0(ω)n̂(ri)−
1

γ

∑
j 6=i

∂U

∂ri
. (1)

Here, v0(ω) is the frequency-dependent propulsion
strength of individual particles along the director n̂, U
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FIG. 1. (a) Schematic showing the experimental cell, with
pear-shaped colloids propelled in the nematic liquid crystal
with negative dielectric anisotropy under an AC electric field
normal to the sample. (b) The hydrodynamic flows around
particles lead net propulsion (typically in the direction of the
large particle, red arrow, upper panel) caused by the asym-
metry of particles and to effective pairwise in-plane pepulsive
interactions (blue arrows, lower panel). The weak asymme-
try of particles allows us to model them as spheres shown by
dashed lines.
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is an interparticle interaction potential, and γ is the fric-
tion coefficient. The in-plane director field is taken in the
form of the aster pattern, n̂(r) = −r̂ [1].

In Sec. II we establish an effective repulsion interaction
potential stemming from electroosmotic flows generated
around particles, which allows us to introduce hydrody-
namic coupling between the particles [2, 3]. The same
flows together with the asymmetry of particles lead to
individual propulsion of particles, as discussed in Sec. III.
Further details of interparticle interactions are summa-
rized in Sec. IV. In Sec. V, we provide simple arguments
to explain the density profile in a cluster of particles.

II. HYDRODYNAMIC SINGULARITY
PERSPECTIVE OF IN-PLANE REPULSION

Here, based on a close analogy with induced charge
electroosmosis (ICEO) in isotropic solvents and using hy-
drodynamic singularity perspective, we outline in-plane
long-range hydrodynamic flows, later cast into an effec-
tive repulsive potential.
Induced charge electroosmosis. Application of an

electric field E = E0ẑ to an unbounded isotropic sol-
vent with an uncharged spherical particle of radius a im-
mersed in it causes an electroosmotic flow around the
particle with the velocity field V = (Vr, Vθ, Vϕ = 0) of
the quadrupolar structure [4, 5], see also Fig. 2,

Vr(r, θ) =
9

8
V0
a2(a2 − r2)

r4
(3 cos2 θ − 1), (2)

Vθ(r, θ) =
9

8
V0
a4

r4
sin 2θ, (3)

where V0 is the strength of the flow discussed in Sec. III.
This solution can be cast into a scalar streamfunction of
the form ΨICEO(r, θ) = (9/8)V0a

2(a2/r2 − 1) sin2 θ cos θ,
with Vr = (r2 sin θ)−1∂θΨ and Vθ = −(r sin θ)−1∂rΨ,
which particularly implies the fulfillment of the incom-
pressibility condition, ∇ · V = 0.

The far field (r � a) of this solution, Vr�a(r, θ) =
−(9/8)V0(a/r)2(3 cos2 θ − 1)r̂ + O(a4/r4), which corre-
sponds to the streamfunction,

Ψr�a
ICEO(r, θ) = −9

8
V0a

2 sin2 θ cos θ, (4)
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FIG. 2. (a) Quadrupolar electroosmotic velocity flow field
V (r) generated by an extrenal electric field E around a par-
ticle of radius a, as given by Eqs. (2) and (3). (b) The far field
Vr�a(r) ∝ S of the flow in (a) is equivalent to the stresslet,
cf. Eq. (5) with E ||ν, corresponding to the puller, α = −1,
see also Fig. 3(b); note the symmetry E → −E.

coincides up to a constant prefactor with the stresslet (or
Stokes force dipole), a standard hydrodynamic singular-
ity [6, 7],

S(r,ν) =
α

8πηr2
[
3(ν · r̂)2 − 1

]
r̂. (5)

Expression (5) is generally defined for pushers (α = +1)
and pullers (α = −1), see Fig. 3, with the velocity flow
field V (r,ν) = flS(r,ν). Formally, f → ∞, l → 0,
whereas their product fl is kept constant.

Because the ICEO flow, Eq. (2), streams towards the
particle along E (note that E ||ν with ν = ẑ and ν · r̂ =
cos θ) at the poles (Vr < 0 at θ = 0, π), and outwards in
the equatorial plane (Vr > 0 at θ = π/2), its flow pattern
corresponds to the puller, cf. Figs. 2 and 3. Note the
invariance with respect to the change of polarity, ν →
−ν (or E → −E), meaning that the flow pattern and
streaming direction is preserved also for AC fields.
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FIG. 3. Construction of the pusher (a) and puller (b)
stresslets built of two point forces of opposite signs, ±f , sep-
arated by a distance l. The unit vector ν denotes the di-
rection connecting the two point forces. The forces point ei-
ther away from (pusher) or towards (puller) each other with
their schematic designations below. The flow field around the
puller relative to the forces is shown in Fig. 2(b).

Liquid crystal enabled electroosmosis. The case
of pear shaped particles in a liquid crystal medium is
adapted within two steps.

First, the hydrodynamic field of an asymmetric particle
build of a larger and a smaller sphere with slighty differ-
ent radii, aL = a + ∆a and as = a − ∆a, respectively,
such that ∆a � a, does not substantially differ from
that of a spherical particle of radius a at large distances,
r � a. Therefore, we can approximate the long-range
hydrodynamic interaction between pear-shaped particles
by considering the far fields of effectively spherical parti-
cles with a radius a = (aL + as)/2.

Second, details on the radial and angular dependence
of the velocity field V (r) around such a particle can be
drawn from recent experiments for spherical particles in
an isotropic liquid [8] and a liquid crystal [9] confined
to a cell similar to ours, cf. Fig. 1 of the main text.
These generic findings together with the symmetry of our
system suggest that the leading contribution to the far
field for the NLC with the negative dielectric anisotropy
and planar anchoring at the particle’s surface behaves as
(Vr, Vθ) ∼ −(cos 2θ, sin 2θ)/r3. Thus, although similarly
to Eqs. (2) and (3) the flow pattern is quadrupolar with
the flow directions corresponding to the puller with re-
spect to E (see Fig. 2), the long-range velocities scale
differently with the distance. Accordingly, the hydrody-
namic singularity given by Eq. (4), has to be modified,
as can be captured in terms of the streamfunction,

Ψr�a
LC (r, θ) ∝ −V0

a3

r
sin2 θ cos θ, (6)

which satisfies not only the required spatial dependence
but also the experimentally confirmed incompressibility
of the velocity field at r � a [8, 9]. Being interested in
the behavior in the plane (“2D”) θ = π/2 only, similarly
to Eq. (5) we have the isotropic in-plane far field,

V2D(a, r) = V0
a3

r3
r̂, (7)

which we can cast into an effective in-plane repulsive po-
tential, see Eq. (12).

III. ELECTROPHORETIC PROPULSION OF
INDIVIDUAL PARTICLES

Here we discuss the issue of electrophoretic propulsion
of an individual particle and outline the dependence on
frequency of its propulsion strength.

For a given slip velocity us at the particle’s surface, the
propulsion velocity of a particle can be rigorously evalu-
ated as an integral, v0 = −(4π)−1

´
usdΩ, where dΩ is an

element of the solid angle. Because of perfect symmetry,

the slip velocity of a spherical particle, us(θ) = Vθ(a, θ)θ̂
with Vθ given by Eq. (3), evidences no net propulsion,
v0 ≡ 0. For an asymmetric particle, the perfect symme-
try is broken, and the particle starts to propel, v0 6= 0.
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This rigorous approach is, however, no longer helpful for
our case because the velocity field in the vicinity of pear-
shaped particle in the liquid crystal is unknown. There-
fore, we resort to an approximate reasoning capable of
capturing the basic physics of propulsion.

Direction of propulsion. In the NLC matrix, the
particle alignes its longest axis along the director field as
illustrated in Fig. 1. This longitudinal orientation is also
preferable for the propulsion because of smaller friction
compared to the transverse orientation. The remaining
question is whether the particle propels with the small
or large lobule ahead.

If we build the pear-shaped particle by combining two
stresslets of slightly different strengths, then the net mo-
tion would be with the small lobule ahead, Fig. 4(a).
Indeed, the motion of a large (“L”) and small (“s”) parti-
cles of radii aL and as coupled by the hydrodynamic field
(7) obeys the equations of motion ṙL = V2D(as, rL − rs)
and ṙs = V2D(aL, rs − rL). Let ν point from the small
to large particle and rL − rs = lν. By applying the
constraint of fixed length on the distance l between the
particles and proceeding to the equation for the center
of mass, r = (aLrL + asrs)/(aL + as) [2], we find that
the propulsion velocity of such a dimer ṙ ∝ −(a3L−a3s )ν,
i.e. it propels with its small lobule ahead. Here, we have
taken into account that the typical ICEO velocity scales
linearly with the particle size, V0 ∝ a [5]. As expected,
the net motion exists only if the particles are not iden-
tical, aL 6= as. Note, however, that this picture bases
entirely on the far fields and is therefore too rough.

A more realistic analysis requires account of the near
field. Although its radial dependence is unknown, the
normal component of the solvent velocity turns to zero
at the particle’s surface [9], cf. Eq. (3), which is enough
to draw the general conclusion. Let us put, for simplic-
ity, two effective spheres (which differ from the point-like
stresslet by accounting for the near field) at a distance
l = aL, see Fig. 4(b). This means that V2D(aL, rs − rL)
has to be set to zero in the above equations of motion
and hence ṙs = 0. As a result, the center of mass ve-
locity ṙ ∝ ν, and we conclude that such a pear-shaped
particle propels with the large lobule ahead, as typically
happens in the experiments [10].

Frequency dependent electrophoretic speed.
Application of a constant electric field E = E0ẑ causes
the formation of an induced-charge screening cloud
around the particle. This electric double layer forms
within a time τs and is characterized by the Debye screen-
ing length λD and the zeta potential, ζ (the electrostatic
potential drop over the screening cloud). The external
field sets the electrically charged fluid in the cloud into
motion, resulting in the quadrupolar electroosmotic flow.
Its intensity and hence the strength of propulsion are de-
termined by the characteristic velocity scale V0 = εζE/η
[4, 5], cf. Eqs. (2) and (3), with ε and η the dielectric
permittivity and viscosity of the solvent, respectively.

For pear-shaped particles, the perfect symmetry of
quadrupolar vortices is broken, resulting in a nonzero
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Above analytic example

Far-field too rough close to particle
Near field ensures fulfillment of no-flux 

far field solution

full solution

Far-field picture
(quasi-dimer) 

With the near field
(pear-shaped particle) 

Net motion Net motion 
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FIG. 4. (a) Quasi-dimer built of a pair of stresslets of different
strengths. (b) A more realistic picture accounting for the near
field that provides the direction of propulsion consistent to the
experiment. Here, the center of the smaller particle locates
exactly at the surface of the larger particle.

net propulsion. The frequency dependence of propulsion
speed v0 under AC electric field can be estimated as

v0(ω) ∝ ε

η
ζ(t)E(t) =

ε

2η
Re[ζ̃∗(ω)Ẽ(ω)], (8)

where overline denotes the time averaging over a period of
oscillation, ζ(t) is taken for a spherical particle, ζ̃(ω) and

Ẽ(ω) are complex amplitudes of ζ(t) and E(t) introduced

as F (t) = Re[F̃ (ω)eiωt] = [F̃ (ω)eiωt+F̃ ∗(ω)e−iωt]/2 with
the superscript “∗” for complex conjugation.

In contrast to the unbounded system, in the cell geom-
etry the upper and lower confining planes are electrodes
separated by a distance L, Fig. 1. Similarly to the par-
ticle, electric double layers are formed around the elec-
trodes, which screen the external field prescribed at the
electrodes as Ee(t) = Ee(t)ẑ, Ee(t) = E0 cosωt within
the timescale τe = λDL/(2D), with D the solvent diffu-
sivity. The electric field in the bulk obeys a relaxation
equation Ė(t) = −τ−1e E(t) + Ėe(t), yielding

Ẽ(ω) =
iωτe

1 + iωτe
E0. (9)

The electric field in the bulk is screened at low frequen-
cies, E � E0 for ωτe � 1, and persists at high frequen-
cies, E ≈ E0 for ωτe � 1, when the double layer has no
time to develop near the electrodes.

Further, for the zeta potential we have up to the an-
gular dependence [4],

ζ̃(ω) ∝ 1

1 + iωτs
Ẽ(ω)a, (10)

where the charging time of a spherical particle τs =
λDa/(2D). Evaluating Eq. (8) with expressions (9) and
(10), we arrive at the estimate for the self-propulsion
speed of individual particle, v0(ω) ∝ (εE2

0a/η)τ2e ω
2(1 +

τ2s ω
2)−1(1 + τ2e ω

2)−1, represented as

v0(ω) = u0α(ω), α(ω) =
(τs + τe)

2ω2

(1 + τ2s ω
2)(1 + τ2e ω

2)
. (11)

Here, dimensionless frequency function α(ω) ∈ [0, 1] and
the prefactor u0 ∝ (εE2

0a/η)τ2e /(τs + τe)
2 has the units
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of velocity. The constant u0 is determined by fitting this
dependence against experimental data, see the main text
and Fig. 1(e) there. A similar approach was successfully
used to justify the propulsion of spherical inclusions with
hedgehog defects in a NLC [11]. Although formula (11) is
formally similar to that obtained earlier [11], the defini-
tons of the timescale τs differ, which is a consequence of
using different theories: the two-dimensonal theory for a
cylinder [5] in Ref. 11 and for a sphere [4, 5] here.

Equation (11) remains formally valid under following
conditions. First, the time-averaging approach utilized
in Eq. (8) tacitly assumes that the electric double layer
changes quasi-steadily [5], which requires that frequencies
are not too high, ω � ωD = τ−1D , where τD = λ2D/D is the
electrolyte relaxation time. Second, our analysis is based
on the assumptions of thin electric double layers and
small particles, λD � a � L, which automatically en-
tails the separation of timescales, τD � τs � τe. Third,
the external fields are supposed to be not too strong [4].

IV. PAIRWISE INTERACTION POTENTIAL

Hydrodynamically induced repulsion. Because
the mechanisms of hydrodynamically induced repulsion
and individual propulsion considered in Secs. II and III
originate from the same osmotic flows, their frequency
dependence is the same. Furthermore, we cast the far
field velocity distribution, Eq. (7), into the effective hy-
drodynamically induced repulsive potential,

Uhd(r, ω) = A
α(ω)

r2
, (12)

with the frequency dependence in α(ω) given by Eq. (11).
Induced electrostatic dipolar repulsion. As ar-

gued in the main text, there should be an additional
electrostatic-based repulsion mechanism, with a different
frequency dependence. In our experiments, polarizable
particles are coplanar, and the dipoles induced by the
electric field are perpendicular to the plane of the sam-
ple. This results in a net pairwise repulsion (see Fig. 3(b)
in the main text) that we introduce in the model with the
potential Udd(r) ∝ p2/r3.

Induced dipole moments p appear as a result of charge
separation leading to the formation of electric double lay-
ers surrounding each particle. While flows originated
in the double layers lead to the hydrodynamic interac-
tion among particles, their polarization makes them in-
teract electrostatically. In an AC electric field, E(t) =

Re[Ẽ(ω)eiωt]ẑ, the induced dipole moment of a particle
can be written as [4, 5]

p ∝ Re

[(
1/2− iωτs
1 + iωτs

)
Ẽ(ω)eiωt

]
ẑ ,

valid under the same conditions as for self-propulsion,
Sec. III. Taking into account the expression for the field

in the bulk, Eq. (9), and averaging over time, we obtain

Udd(r, ω) = B
β(ω)

r3
, β(ω) =

(1/4 + τ2s ω
2)τ2e ω

2

(1 + τ2s ω
2)(1 + τ2e ω

2)
,

with the frequency-independent prefactor B.
Short-range repulsion. The finite particle size is

accounted by the steep short-range repulsive potential

Uhc(r) = 4ε

[(σ
r

)48
−
(σ
r

)24
+

1

4

]
,

which is applied at distances r < 21/24σ and is otherwise
zero. We set the strength of short-range interactions such
that 4ε/γ = 1µm2/s, and choose the effective diameter
σ = 4.3µm of the particles to be slightly of their real size
to reflect the experimentally observed fact that particles
in a cluster do not come into contact. Local defects or
thin boundary layer-like vortex flows attached to the sur-
face of the particles [9, 12] are potential reasons why the
particles cannot approach each other beyond the certain
distance.
Elastic liquid crystal interactions. We also ac-

count for the interactions mediated by the elasticity of
the liqiud crystal matrix, which are responsible for the
optimal particle arrangement, described by

Uqq(r, n̂) =
C

r5
(3− 30 cos2 ϑ+ 35 cos4 ϑ),

with ϑ = ϑ(r, n̂) the angle between the vector connecting
the centers of particles, r, and the far-field orientation of
the nematic director, see Fig. 3(c) in the main text.

V. ONE-DIMENSIONAL MODEL OF A
CLUSTER OF DRIVEN REPELLING COLLOIDS

Here we propose a simplified one-dimensional model of
a cluster of phoretic particles that admits an approximate
analytic expression for their density in the cluster as a
function of radial distance from its center.

Consider a number N of particles with radial coordi-
nates ri (i = 1, ..., N) that propel with the phoretic speed
v0 against the center of the cluster, r = 0, with an immo-
bile particle placed at r0 = 0. Assuming a finite size of
particles as ensured by a short-range repulsive potential,
the equilibrium configuration corresponds to equidistant
spacing of particles with ri = iq, where q is an equilib-
rium effective “hard-core” distance.

Assuming that the particles are additionally subject
to long-range repulsive interactions according to a po-
tential U(r), as e.g. in Eqs. (1) and (12), which alter the
equidistant particle spacing,

∆ri := ri − ri−1 = q + ∆qi, ∆qi ≥ 0. (13)

To make analytical progress, we assume nearest-neighbor
interaction and a harmonic approximation for the re-
pulsive potential, U(q + ∆qi) ≈ U(q) + U ′(q)∆qi +
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U ′′(q)∆q2i /2, with ∆qi � q. Here, the prime denotes
the derivative of potential. As a result, the equilibrium
configuration of particles obeys the set of equations

γv0 = −U ′′(q)∆qi + U ′′(q)∆qi+1, i = 1, . . . , N − 1

γv0 = −U ′(q)− U ′′(q)∆qN , i = N.

By taking the sum of equations i to N , finding ∆qi =
Q − (N − i + 1)` and substituting it into Eq. (13), for
interparticle distances we obtain

∆ri = q +Q− (N − i+ 1)`, (14)

where Q = −U ′(q)/U ′′(q) ≥ 0 and ` = γv0/U
′′(q) ≥ 0.

Considering relation (14) recursively for different i, we
find for the coordinates, ri = iq+ iQ− i [N − (i− 1)/2] `.

To proceed to the continuum limit, we consider N � 1,
put r := ri and solve the above quadratic equation with
respect to i to obtain two solutions i±(r) = −`−1(q +

Q−N`)± `−1
√

(q +Q−N`)2 + 2`r. Note that because
by definition ∆qi ≥ 0 for all i, (q + Q − N`) ≥ 0 and

the solution i−(r) is physically unjustified, we proceed
further with i(r) := i+(r).

As follows from Eq. (14) for N � 1, ∆ri = q + Q −
N`+ i` and with account of i(r), for the one-dimensional
number density ρ(r) defined as 1/∆ri we obtain

ρ(r) =
1√

(q +Q−N`)2 + 2`r
=

ρ∗√
1 + 2ρ2∗`r

. (15)

Here, ρ∗ = (q + Q − N`)−1 is a maximum number
density, as follows from the above equation at r = 0,
which corresponds to the shortest interparticle distance,
∆r1 = (q +Q−N`). We finally note that our smallness
assumption, ∆qi � q, implies that solution (15) is justi-
fied for small enough ` ' O(q/N) and can be expanded.
Therefore, the number density decays linearly with r,

ρ(r) ≈ ρ∗ −
ρ3∗γv0
U ′′(q)

r, (16)

with the negative slope dρ/dr ∝ −γv0/U ′′(q), which is
proportional to the strength of propulsion and inversely
proportional to the repulsion strength.
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