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1 Introduction

The first nationwide mobile telecommunications system was installed in Ger-
many in 1958. Until then, regional systems covered only small areas, like
cities or communities, and a customer could not use his mobile radio unit in
another region than his serving one [5]. Still in the beginning of the 1980s,
mobile communications were not widespread because the fees and prices for
terminal equipment were too high for many people. With the liberalization
of the telecommunications market and the introduction of a unified standard
for digital cellular mobile radio systems in 1992 [2], mobile communications
developed to a mass market in the 1990s [22]. This introduced standard is
called the Global System for Mobile Communications (GSM). GSM is said
to belong to the second generation of mobile phone technology following the
first generation of analog radio networks [5].

Although the transmission of data is possible in GSM besides speech tele-
phony, the system is inadequate for various applications that require higher
bit rates [22]. This is one reason why the Universal Mobile Telecommunica-
tions System (UMTS) was developed. UMTS is a third generation cellular
mobile phone technology, which is deployed commercially in Germany since
2004 [24]. With UMTS, it is possible to transmit at variable data rates of
up to 384 kbit/s [2]. This is 40 times faster than the connection speed GSM
offers [23]. Therefore, a variety of new services is available like multimedia
applications or video transmissions. Furthermore, UMTS systems are more
resistant against failure than second generation radio networks. For example,
connections break off less often when a mobile user moves.

The providers of mobile communications want to offer a system that co-
vers a large area with high quality services and acceptable prices to their
customers. For this reason, it is important to design efficient radio networks.
One fundamental topic in radio network planning is the capacity of a radio
network. Ideally, a sufficient amount of radio resources has to be provided
for all users to establish a connection. However, in practice this is not always
possible. Due to the limitation of radio resources a mobile user might not be
served. The rejection of a customer who wants to establish a new connection
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to the radio network is called blocking. One of the goals when designing a
radio network is that the ratio of rejected mobiles – called the blocking rate
– does not exceed a certain threshold.

In UMTS, the multi user access scheme Code Division Multiple Access
(CDMA) is employed in the radio interface, the interface between the user
and the radio network. Because of this technology, the capacity of the radio
network is not fixed and therefore not known exactly during the planning
phase. The capacity depends on the current interference situation in the radio
network which in turn depends among others on the number and position of
simultaneous mobiles and the kinds of services they use. For this reason, in
the case of UMTS, we speak of “soft capacity” [5]. This special characteristic
of UMTS systems makes it difficult to determine the maximum number of
users the radio network is able to carry. Consequently, it turns out to be
complicated to predict the average blocking rate of the radio network reliably.

Various methods have been proposed to assess the consumption of re-
sources in a UMTS radio network, which must be known in order to deter-
mine the blocking rate of the system. There is a trade-off between accuracy
and efficiency in all of these models. Their inadequacies led to the necessity
of an improved method for the calculation of the blocking rate of a UMTS
radio network. One such method is introduced in this diploma thesis.

The thesis develops and analyzes a model to efficiently approximate the
average blocking rate of a UMTS radio network. In doing so, we consider a
moment during the periods, when the average expected amount of traffic is
highest. One such period is called the busy hour. The presented method is
based on a stochastical estimation of the average interference in the system.
With this model, it is possible to predict the average blocking rate of a
configured radio network quickly during the planning phase. Shortcomings
in the radio network design can thus be detected easily.

Outline

Chapter 2 presents a short survey of UMTS and its radio technology. Among
others, cellular radio networks are introduced, as well as the multi user ac-
cess technique CDMA. Furthermore, blocking is discussed in more detail and
the difficulties of assessing the blocking rate of UMTS radio networks are
described. A common mathematical model is given that represents a UMTS
radio network in a static way. All these topics are summarized from compre-
hensive literature studies.

In Chapter 3, established methods to determine the average blocking
rate of a UMTS radio network are introduced. In one approach, a system of
equations is set up to compute the average blocking rate. This approach can
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be used in two ways. One way of using this method is very time consuming
while the other one leads to unacceptable estimation errors. The extensive
version is a numerical method known as Monte Carlo simulation. The basic
principle of this popular method is explained briefly. The inadequacies of
these approaches are the motivation to propose another model that reduces
their shortcomings.

The next three chapters cover a new method to approximate the block-
ing rate of a UMTS radio network. This method is based on the expected
coupling approach presented in the preceding chapter. The new model is
introduced in two different ways in Chapter 4 and in Chapter 5. In both
cases, the expected value of the average blocking rate is computed. In doing
so, the interference of other radio cells is estimated by constant values while
the interference of the own radio cell is modeled stochastically. Chapter 6
shows analytically that the results of both approaches are equal.

The results of extensive computational tests are presented and analyzed in
Chapter 7. These results are compared to outputs of Monte Carlo simulation.
Finally, in Chapter 8, a summary of the entire thesis and an outlook are given.
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This chapter introduces necessary preliminaries for this thesis brought to-
gether from several literary sources. A short overview of the technical basics
of general cellular radio networks is given as well as the specifics of the UMTS
technology. Moreover, a common mathematical model for the explained fea-
tures is shown.

The chapter is organized as follows. First, some basics of wireless com-
munications are mentioned. Then, characteristics of cellular radio networks
are pointed out. At the same time, basic notation is introduced. Afterwards,
the tasks and purposes of radio network planning are highlighted. In the
next section, the particularities of UMTS are discussed. We deal with the
access scheme CDMA and the consequences for the system caused by this
technology. Furthermore, the resulting difficulties for the computation of the
blocking rate are revealed. Finally, a static mathematical model which is the
basis for the considerations in this thesis is given. Whenever we use the term
“network” throughout this thesis, a radio network is actually meant.

2.1 Basics of Wireless Communications

A communications system conveys messages. These messages originate in an
information source and are transmitted to a destination. Basically, there are
three components in the communications pipe: the transmitter, the channel
and the receiver [12], as shown in Figure 2.1. The transmitter and the
receiver are distant of each other. The physical manifestation of a message
is a signal [14].

The transmitter adapts the signal of the information source such that it
can be transmitted over the channel. In wireless communications systems,
the transmission medium delivering the signal from the transmitter to the
receiver is a radio channel. During transmission in space, the channel is
impaired by interference and noise. Interference originates from other sources
occupying the same frequency band. Noise is generated by electronic devices

5



6 2 Preliminaries

Source
Information Transmitter Channel Receiver Information

Sink

Figure 2.1: Block diagram of a communications system, based on [12, p. 4]

at the receiver. Finally, the receiver creates an estimate of the original signal
out of the received information-bearing signal. An exact reproduction is not
possible because of the mentioned influences on the radio channel (cf. [12]).

The frequency range occupied by the energy of a signal is denoted by the
bandwidth of the signal. The bandwidth of the communications system is the
frequency range the radio channel is able to transmit. The power spectrum
of a signal describes the distribution of the signal’s power along the digital
frequency range [14]. The power spectrum can be understood as a function of
frequency. Then the integral over the entire bandwidth represents the average
power of the signal [12]. The power of narrowband signals is concentrated
on a relative small bandwidth. In contrast, wideband signals have a wide
bandwidth.

2.2 Cellular Mobile Radio Networks

A cellular radio network consists of a set of base stations which are set up in
the terrain. At each base station, one or more antennas are installed. The
electromagnetic signals they emit are conveyed in space and are attenuated
on their way to the receiver. The complete attenuation on the radio channel
is called path loss. The higher the distance from the transmitter is, the
weaker is the power of the receiving signal at a specific position. However,
this power has to be sufficiently high in order to establish a connection to the
radio network. Because the maximum power of an antenna is restricted this
leads to a regional confinement of the radio signal range. The complete area
is divided into so-called cells or sectors (cf. [2]). Users (mobile stations) in
one sector are served by a certain base station antenna. This is usually the
one that provides the strongest signal in this region. This antenna is called
the best server. Mostly, cells are coherent areas which overlap partly [22]. In
Figure 2.2, the cellular structure of a UMTS radio network is shown. Besides
the cells, the figure depicts the locations where the antennas could be set up
(red points) and the installed antennas (black arrows).

Cellular systems for mobile telecommunications are organized centrally.
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Figure 2.2: Cells in a UMTS radio network

That is, users are not linked directly to each other but to central radio
stations [5]. These connections can be seen as point-to-point connections [12].
Links of a base station antenna to exactly one mobile are denoted by dedicated
channels. In contrast, common channels are used by all mobiles of one cell [2].
There are two directions of communication in radio networks. In the downlink
direction, the base station antenna transmits signals to the mobile station.
The reverse direction is called uplink (cf. [23]).

The capacity of a cell denotes the maximum number of users the asso-
ciated antenna can serve without excessing its available resources. If the
capacity of an antenna is exhausted, users trying to establish a new connec-
tion are left unserved. They are blocked.

2.3 Radio Network Planning

The purpose of radio network planning is to create a radio network with
good performance for the expected demand at low costs. There are various
indicators to estimate the performance of a configured radio network. One
such indicator is the quality of a service. Another important criterion is the
size of the coverage area. This is the area where the signal can be received
with sufficient strength to establish a connection. The blocking rate of a
network also represents a measure for the performance of a network design.
Usually, this value should lie below 2% in an acceptable radio network [23]
such that high availability of good quality service is ensured (cf. [16]).
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The problem of radio network planning occurs in different forms. In the
so-called “Green Field Planning”, a complete radio network shall be designed
from scratch. Nowadays, this is not relevant practically since base stations
and antennas are already installed in large regions. More interesting are the
problems of Site Selection and Network Tuning. In the first one, a subset
of existing sites is chosen where UMTS antennas are set up. In the second
task, the quality of an existing radio network shall be improved by changing
the configuration of the antennas, e. g. their height, their azimuth angle in
the horizontal plane or their tilt angle in the vertical plane.

As much users as possible shall be provided with high quality services.
At the same time, the arising expenses for the deployment and maintenance
of the network shall be as low as possible. That is, with a minimum amount
of radio resources the network design which handles the expected traffic best
in terms of the given requirements shall be conceived. In order to solve
this problem several optimization models are proposed. In [6] for example,
an approach for optimizing antenna tilts is introduced. With the method
presented in this thesis for quickly assessing the blocking rate of a UMTS
radio network, it is possible to refine such models. One could, e. g. insert an
additional constraint concerning the maximum allowed blocking rate of the
cells in order to improve the quality of the results.

2.4 Specifics of UMTS

This section describes the specific particularities of UMTS radio networks.
Due to its new access scheme, called CDMA, interference plays a major role
in the design of UMTS radio networks. This in turn leads to problems when
assessing the blocking rates of the cells in the network. These topics are
handled successively in the following.

2.4.1 CDMA

In mobile communications systems, all mobiles in a sector use a common
physical resource to transmit and receive signals. This transmitting medium
is a frequency band in the radio spectrum [16]. The simultaneous access of
all users to it (multi-user access) has to be controlled in order to avoid a loss
of information [5].

In the technology GSM, users are separated by Frequency Division Multi-
ple Access (FDMA) and Time Division Multiple Access (TDMA). In FDMA
systems, the available spectrum is subdivided into several frequency bands
which are used simultaneously. Each band can be interpreted as a physical
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channel which is assigned to exactly one user. TDMA means that a frequency
channel is split up into disjoint time slots. In doing so, every mobile conveys
signals in different periods of time (cf. [22]).

The access technique used in UMTS is Code Division Multiple Access
(CDMA). In contrast to FDMA and TDMA, the complete frequency band is
available for the total duration of the connection to every mobile. Due to the
simultaneous use of the radio spectrum by all mobiles, various signals arrive
at the receiver. From those, it has to separate the desired one. This is done
by assigning a unique code sequence to each link (cf. [22, 23]). Figure 2.3
visualizes the operating mode of this access technique.

Signal 1

Code 1

Signal n

Code n

Noise

Code 1

Code n

Signal n

Signal 1

x

x

++

x Filter 1

Filter n

Transmitter
Radio

Channel

. .
 .

Receiver

. .
 .

. .
 .

. .
 .

. .
 .. .

 .

. .
 .

x

Figure 2.3: Operating mode of Code Division Multiplex

Besides separation between the links, the code sequences are used to
spread the narrowband radio signals to wideband signals for the transmission
across the wireless channel. That is, the energy which was concentrated on
a narrow frequency range is then spread to a wider bandwidth. For this
reason, CDMA systems are commonly called spread spectrum systems. The
spread spectrum technique deployed in UMTS is Direct Sequence-CDMA
(DS-CDMA). That is, the user data stream is multiplied by a specific code
sequence whose bit rate is by a multiple higher than the user bit rate. In
doing so, the resulting bit sequence has a higher bandwidth and a lower
power spectrum than the original stream. The signal is said to be spread.
Figure 2.4 illustrates the spreading operation.

At the receiver, the arriving data stream contains additionally spread bit
sequences from other users and other interfering signals. This stream is mul-
tiplied with exactly the same code sequence used in the spreading operation.
This despreading process restores the lower bandwidth and the higher power
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Figure 2.4: Wideband spreading, based on [5, p. 221]

spectrum of the original user bit stream. At the same time, the power spec-
trum of interfering narrowband signals, such as thermal noise, is decreased
because they are spread now. Narrowband means that the bandwidth is sig-
nificantly smaller than that of the spread user signal. The wideband signals
from other users remain wideband, and thus their power spectrum remains
low. Hence, the power spectrum of the desired signal is increased relative
to the power spectrum of the interfering signals. Afterwards, the resulting
product is filtered with a filter adapted to the current signal [2]. The whole
operation at the receiver in case of narrowband interference is depicted in
Figure 2.5.

The property of CDMA to reduce interferences, especially those origina-
ting from other simultaneously proceeding calls, is fundamental in order to
reuse the available frequencies over geographically close distances. Ideally,
the codes of the different users are perfectly orthogonal such that they are
independent and the different physical channels do not disturb each other.
A more detailed description of code spreading can be found in [5, 23, 13].
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WCDMA

The most widely adopted radio interface for third generation systems is
WCDMA (Wideband-DS-CDMA). This radio interface is used in UMTS in
Europe and Asia. In WCDMA, the bandwidth is around 5 MHz (cf. [13]).
In the uplink direction, the spreading codes of different mobiles are quasi-
orthogonal. That is, the disturbances from other physical channels do not
disappear but are very small. In the downlink, the code sequences that a base
station antenna uses to convey messages to its associated mobiles are per-
fectly orthogonal if the sequences belong to the same code family. However,
this property is partly lost due to reflection and scattering of the radio waves
on their way to the receiver. The codes of different cells are quasi-orthogonal
(cf. [23]).

In UMTS radio networks, each base station antenna emits a special signal
with constant power, called pilot signal. A mobile station connects to that
antenna from which it receives the strongest pilot signal [6]. Since several
base stations are using the same frequency band in WCDMA systems, it
is possible that one mobile is connected to up to three serving antennas
at a time if the received radio signals offer a comparable strength. The
received information from each physical channel are combined appropriately.
This usually happens when the user is located at the border or overlapping
area between some cells. Then besides the connection to the best server, a
connection to one or more neighboring base station antennas is established.
The mobile is said to be in soft handover in this moment. If this feature was
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not available, the mobile station at the cell border would have to transmit
and receive at high power because of the large distance to the base station.
This would cause a high amount of interference to the associated cell as well
as to the neighboring ones. Thus, the link quality in these sectors would be
downgraded (cf. Section 2.4.2). Due to the additional link(s), the transmit
powers of both, the mobile and the best server, can be decreased. Hence, the
arising interference is weakened. Moreover, the probability of the connection
being interrupted when the user moves between the cells is almost eliminated
(cf. [23, 5]).

2.4.2 Interference in CDMA Systems

Interference is received power from other transmitters than the desired one
that radiate energy in the same frequency band. That is, interference is an
unmeant contribution to the received power that complicates the detection
of the desired signal (cf. [23]). The higher the amount of interference is, the
more difficult is it to filter out the desired radio signal properly.

In CDMA systems, all mobiles in one cell use the same frequency spec-
trum simultaneously as described in Section 2.4.1. Hence, they cause inter-
ference, denoted by intra-cell interference. Furthermore, the same frequency
channels are available to several base station antennas in the network [5].
Therefore, all mobiles from those cells use the same frequency band at the
same time, too. These impairments originating from other sectors are called
inter-cell interference. Consequently, there is a high amount of interference
in radio networks using the CDMA technology. In the uplink direction, the
signals from other mobile stations overlay the own radio waves. In the down-
link, interference is produced by other base stations [23]. Both directions
do not interfere because either two different frequency bands are used (FDD:
Frequency Division Duplex ) or receiving and transmitting happen at different
moments in time (TDD: Time Division Duplex ) [22].

The strength of the interfering signals depends among others on the dis-
tance between receiver and disturbing transmitter due to the propagation
characteristics of radio waves. That is, the spatial constellation between the
users influences the amount of interference each link receives. Typically, the
interferers in the own cell are located much closer than those of other sec-
tors. For this reason, the power of the intra-cell interference is usually higher
than that of the inter-cell interference. Another influence on the strength of
the interfering signal is the power with which the disturber transmits data
(cf. [23]).

Every kind of interference causes a modification of the radio signal du-
ring propagation. Possibly, this could lead to an incorrect detection at the
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receiver. The stronger the wanted signal C (carrier) and the smaller the
interference power I, the lower is the error rate. Therefore, the Carrier to
Interference Ratio (CIR) C/I must exceed a specific threshold, called the
CIR target. The following inequality must hold:

Strength of Desired Signal
∑

Strength of Interfering Signals + Noise
≥ CIR target. (2.1)

Besides the interference caused by the system, there are natural impairments
like the thermal noise at the receiver, which is always present (cf. [23]). Also
emissions of other external sources like radars or industrial equipment have
to be considered [16]. The influence of such factors is included in the term
“Noise” in the inequality.

For the required CIR target to be maintained in spite of the high amount
of disturbance, interference control is crucial in UMTS radio networks. A
receiver is able to tolerate a specific maximum level of interference power to
which each user contributes [2]. If this level is exceeded the desired signal
is buried among the interfering signals after despreading. For this reason, a
complex power control is applied to dedicated links in UMTS radio networks.
The power control minimizes the interference in the system by adjusting the
transmission powers as low as possible. On the other hand, it ensures an
adequate signal quality at the receiver according to the CIR target (cf. [16]).
If the interference situation in the network changes the CIR target has to be
adapted to the actual circumstances by the power control mechanisms [5].
Furthermore, the power control equalizes signal variation due to dynamical
phenomena called shadowing and fading.

In UMTS systems, many users share the same frequency spectrum simul-
taneously. Therefore, the value of the CIR at the receiver is smaller than
one since the power of the desired signal is usually weaker than the sum of
the powers of the other signals [23]. The CIR target is also much smaller
than one. Due to the ability of CDMA systems to appreciably reduce the
interference power proportional to the power of the desired signal (cf. Sec-
tion 2.4.1), the required power density is higher than the interference power
density after despreading. In UMTS radio networks, the signal power can
thus be lower than the power of the interference and the receiver can still
detect the desired signal.

The CIR target depends mainly on the requested service. A higher thresh-
old has to be achieved when it is transmitted at a higher data rate [23].
Moreover, the user’s velocity influences the CIR target. The faster he moves
the faster changes the fading situation of its link. For high speeds, the vari-
ances are too fast to be made up by power control. In order to guarantee the
quality of a connection even in this case, the CIR target to meet is higher.
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Since uplink and downlink are usually asymmetrically loaded [16], the target
values for uplink and downlink differ.

2.4.3 Blocking in UMTS

If all channels in the radio network are occupied it is impossible to establish a
connection. In this situation, a new arriving call would be refused or blocked.
In UMTS radio networks, the admission control handles all new incoming
traffic. This control admits a new request to the system only if this would
not overload the network and if the necessary resources are available. The
admission control belongs to a variety of functions which ensure that the radio
interface load does not exceed predefined thresholds. They are grouped under
the so-called congestion control which in turn belongs to the Radio Resource
Management. Besides admission control, the congestion control contains the
load control which is responsible to bring the system into a feasible situation
when it is overloaded. The Radio Resource Management includes among
others the power control as well as the handover control (cf. [16]).

The capacity of a CDMA cell mainly depends on the orthogonality and
number of the used spreading codes. When having perfectly orthogonal code
sequences the different dedicated channels do not influence each other. In
this case, the capacity of a sector is determined by the number of orthogonal
codes. However, as pointed out in Section 2.4.1, the codes are not perfectly
orthogonal in UMTS radio networks. For this reason, interference is the
factor determining the capacity of a UMTS cell. UMTS networks are said
to be interference limited (cf. [23]). Every new accepted link – in the whole
network as well as in one arbitrary cell – causes a degradation of the quality
of all other existent connections in the same frequency band since each CIR
decreases. In the case that one CIR drops below the according CIR target,
power control triggers the appropriate transmitter to raise its emitted energy.
This in turn increases the interference power on all other connections in
the frequency band which possibly causes other transmitters to emit with
more power and so on (cf. [5]). The transmission and reception powers of
the base station antennas are limited due to the installed hardware. If the
available radio resources are exhausted, no more users can be served. Then
new requests are rejected.

When a user tries to establish a completely new connection to the radio
network and is refused by a base station antenna due to the explained reasons,
he is blocked. A similar situation appears if an active mobile moves from one
cell to another one having no radio resources available. Then it may happen
that the connection is broken off. We speak of a dropped call. Since often
users estimate such an experience more negative than a blocked request some
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channels are reserved especially for handover by the radio network operators
(cf. [23]). Therefore, we will not consider dropped calls in this diploma thesis.

Besides rejecting new arrivals it is possible that the link quality for some
mobiles of circuit-switched services is downgraded. Circuit-switched services
are real-time traffic services like speech telephony or video transmissions.
In contrast, packet-switched services are services which can be carried out
delayed such as sending e-mails. Furthermore, it may happen that a desired
link is blocked even though there are radio resources available in order to
guarantee the quality of the entire system [5]. In this diploma thesis, we
address blocking only in the case of exceeded cell powers leading to a rejected
user request.

In second generation mobile communications systems like GSM, the ca-
pacity of a cell can be specified during the planning phase. The common use
of the frequency band is controlled by assigning a specific frequency chan-
nel and time slot to each user (cf. Section 2.4.1). To every base station
antenna, a certain number of channels and slots is associated. From that,
the maximum number of simultaneous links can be derived. If a new arrival
finds them all occupied, then it is blocked (cf. [5]). In UMTS radio networks,
the number of simultaneous users is restricted by their mutual interference
at the receiver [22]. In contrast to second generation cellular systems, each
cell has a varying capacity which mainly depends on the current interference
situation. Therefore, it is called soft capacity [5]. The difficulty is that it is
not known exactly beforehand but can only be estimated. Thus, the capacity
in CDMA systems is not deterministic but a stochastic value.

2.5 General Mathematical Model

In the current section, we set up a mathematical model of a UMTS radio
network. The presented approach is the basis for the further considerations
in this thesis. First, we briefly explain the essential simplifications of the ge-
nerated model compared to a UMTS radio network in reality. Afterwards, the
input data is explained as well as the central assumptions. Finally, formulas
for the CIR targets and powers of the antennas are derived.

2.5.1 Static View

The proposed model is an abstraction of the real processes in a UMTS radio
network. That is, the properties of the modeled system are covered which are
essential for our purpose while other features are ignored. In this manner,
the complexity of the original system is reduced in order to be able to better
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understand and analyze it. Nevertheless, the represented properties have to
be modeled as precise as necessary to obtain reasonable study results which
can be applied to the original system. Hence, a trade-off between accuracy
and simplicity has to be found.

Actually, a UMTS radio network is a dynamic system. That is, the state
of the network changes steadily. Due to moving mobiles and successively
incoming service requests the interference situation varies in the complete
network. The power control effects the transmit powers to change according
to the new CIR targets, which can be updated every 10ms [2]. Other dy-
namic features are, e. g. the handovers of the existent links from one cell to
another [16] or blocking as explained in Section 2.4.3.

However, we consider this dynamic radio network in a static way. That
is, users are located at fixed positions instead of moving in the area. The
different arriving times of the requests are not taken into account, rather
the whole traffic demand is present at once. Furthermore, the changing CIR
targets at a receiver are modeled each by one constant, average value. The
same applies to the interference in the radio network and the transmission and
reception powers. Consequently, we just consider the UMTS radio network
at one instance in time. Moreover, we ignore the possibility of soft handover
and assume, that each mobile station is linked to exactly one antenna, namely
the one with the strongest pilot signal.

2.5.2 Input Data and Assumptions

We consider a planning area A 6= ∅. This region is embedded into the two
dimensional plane for a fixed height or into the three dimensional space with
variable heights for each point. The dimension of the area is denoted by
d ∈ {2, 3}. In order to discretize the planning region, it is subdivided into
a finite set of pixels. Each pixel marks a d-dimensional location in the area.
In the planning area A, a UMTS radio network with a set N of antennas is
installed. The best server area of an antenna i ∈ N is denoted by Ai ⊂ A.
The users in the network are represented by a set M of mobile stations. The
set Mi ⊂ M denotes the users served by antenna i ∈ N . Furthermore,
a set S of available services is considered. All these sets are finite. Their
cardinality is a natural number, that is, |A| ∈ N, |N | ∈ N, |M| ∈ N and
|S| ∈ N.

The mobile users M are given by a traffic snapshot. This is a static
realization of the average user demand obtained on basis of spatial average
traffic load distributions. A traffic snapshot gives detailed information on
the position, mobility, and service of each user. The average spatial traffic
distribution of a service s ∈ S is denoted by Ts : A → R+. For a position
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p ∈ A, Ts(p) is the average traffic intensity of the service s at one instance
in time. Figure 2.6 illustrates the average spatial traffic distribution for one
service.

Figure 2.6: Average traffic distribution for one service

The number of users and their locations is a random variable. It is a
common assumption that the average user distribution in one pixel follows a
Poisson distribution. In general, the Poisson distribution is a discrete proba-
bility distribution which “arises in a variety of situations in which it is desired
to count the number of occurrences of some phenomenon in an interval of
time or space” [20, p. 199]. Usually, the number of possible successes is large
while the probability for one success is small [15]. Both features apply in our
case. The pixels in the planning area are small compared to the size of the
entire region. For this reason, the number of pixels is high while the average
traffic intensity in one pixel is very low. The expected number of users in
a pixel is always much smaller than one. Thus, the probability for one user
being located at a pixel is low. Consequently, the Poisson distribution is an
adequate characterization of the spatial user distribution.

The user intensities in non-overlapping areas are assumed to be indepen-
dent. The sum of independent Poisson distributed random variables is again
a Poisson distributed random variable whose parameter is the sum of the
parameters of the original random variables [15]. Hence, for each sequence
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(An)n∈N, An ⊂ A, of pairwise disjoint sets following equation applies:

Ts

(

⋃

n

An

)

=
∑

n

Ts(An). (2.2)

Furthermore, Ts(∅) = 0 holds. These properties show that Ts is a measure on
A [9]. Actually, it is a counting measure which maps to a region the expected
number of users in it. This measure is finite, that is, Ts(A) < ∞ since we
only consider situations in which the traffic intensity in the entire planning
area is finite.

We assume that the number of users for each service s ∈ S in a certain
region Ã ⊆ A is proportional to the size of the region λd(Ã). The measure λd

is the d-dimensional Lebesgue-Measure. We assume that there exists a user
density fs : A → R+ for each service s ∈ S. The expected number of users
of service s in area Ã is thus expressed by

Ts(Ã) =

∫

p∈Ã

fs(p) dp. (2.3)

2.5.3 CIR Constraints and Blocking

At first, we derive the complete CIR constraints for the uplink and downlink
direction. The average CIR targets for a mobile station m ∈ M are denoted
by µ↑

m for uplink and µ↓
m for downlink. Furthermore, there are transmit ac-

tivity factors α↑
m and α↓

m for every mobile indicating the average ratio of time
it is transmitting data on the radio channel. In speech conversations, for ex-
ample, every user speaks on average 50% of the time. The CIR inequality
has to be satisfied in active periods only. At other instances in time, there
is no data transmission. For this reason, we assign a transmit activity factor
of one to the desired mobile. We do not know if the signals of other users
are currently in an active period or not. Therefore, we apply the transmit
activity factors to the other signals in (2.1) in order to consider the average
interference power. Finally, γ↑

mi in uplink and γ↓
im in downlink are the atten-

uation factors for mobile station m ∈ M and base station antenna i ∈ N .
Apart from the path loss between the mobile and the antenna, additional
losses and gains are included dependent on the cabling, hardware, and user
equipment.

In the uplink direction, the transmission power of a mobile m ∈ M
is denoted by p↑m. Then the strength of the desired signal at base station
antenna i ∈ N is γ↑

mi p
↑
m. The received background noise at antenna i is

marked by ηi. With these conventions, the basic CIR target inequality (2.1)
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for the uplink transmission from mobile m to antenna i reads as:

γ↑
mi p

↑
m

∑

n 6=m γ↑
ni α

↑
n p↑n + ηi

≥ µ↑
m. (2.4)

Several base stations use the same frequency band (cf. Section 2.4.1). In this
model, we assume that all base stations use the same frequency spectrum.
Hence, all users in the area convey information in the same frequency band
at the same time. All these transmissions are received with varying strength
by each base station antenna. For mobile stations using another frequency
band in reality, the attenuation factor is appropriately low. The average total
reception power at antenna i ∈ N is thus given by

p̄↑i :=
∑

m∈M

γ↑
mi α

↑
m p↑m + ηi. (2.5)

As mentioned previously, it is not known for a link whether it is active or
not. For this reason, we take the transmit activity factors of the mobiles
into account and obtain the average power. Using the last equation, (2.4)
simplifies to

γ↑
mi p

↑
m

p̄↑i − γ↑
mi α

↑
m p↑m

≥ µ↑
m. (2.6)

In the downlink direction, the pilot and common channels are included,
whose power we denote by p

(c)
i at base station antenna i ∈ N . This value

is assumed to be constant. Furthermore, p↓im is the strength of the signal
from antenna i to mobile m and ω̄m ∈ [0, 1] is an environment dependent
orthogonality factor. The signals an antenna transmits to its associated mo-
biles partly lose their orthogonality due to multipath propagation (cf. Sec-
tion 2.4.1). If ω̄m = 0 holds, the signals are perfectly orthogonal and ω̄m = 1
means no orthogonality. The average total transmission power of antenna i
is defined by

p̄↓i :=
∑

m∈Mi

α↓
m p↓im + p

(c)
i . (2.7)

We denote by ηm the noise at mobile m. Then the CIR constraint in downlink
satisfies following inequality:

γ↓
im p↓im

γ↓
im ω̄m

(

p̄↓i − α↓
m p↓im

)

+
∑

j 6=i γ
↓
jm p̄↓j + ηm

≥ µ↓
m. (2.8)

The transmission power of a base station antenna is restricted. Typically,
a UMTS antenna cannot emit more than 20W. In addition, there are limits
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on the average load of a cell. These load limits lie significantly below 100%
since it is important to have a buffer to compensate for dynamic effects. The
downlink load is defined as the ratio of the current transmission power to the
maximum possible output power. Usually, the limit of the downlink load lies
at 70%. The uplink load is given by 1 − 1

noise rise
. The noise rise is the ratio

of the total received power at a base station antenna to the noise power. The
uplink load should not rise above 50%. We denote by Πmax↓

i the maximum
possible transmission power and by pmax↑

i and pmax↓
i the maximum allowed

reception and transmission power of a base station antenna i ∈ N . The
latter can be derived by resolving

1 −
ηi

pmax↑
i

= load limit↑ and
pmax↓

i

Πmax↓
i

= load limit↓.

Throughout this thesis, we mean with “maximum total power” the maximum
allowed total power pmax↑

i and pmax↓
i , respectively.

The following inequalities express that on average all users in cell i are
served and thus no blocking occurs:

p̄↑i ≤ pmax↑
i and p̄↓i ≤ pmax↓

i . (2.9)

Using equations (2.5) and (2.7), this can be transformed into

∑

m∈M

γ↑
mi α

↑
m p↑m ≤ pmax↑

i − ηi and
∑

m∈Mi

α↓
m p↓im ≤ pmax↓

i − p
(c)
i . (2.10)
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In this chapter, we discuss established methods to assess the average blocking
rate of a base station antenna in a UMTS radio network. First, we introduce
an approach to approximate the blocking rate based on a system of equations.
This system can be set up for one traffic snapshot as described in the first part
of the following section. In order to obtain statistically reliable results, such
equation systems have to be solved for a large number of snapshots. Since
the computational complexity of this procedure is too high to be applicable
in some situations, the basic idea of this approach is generalized on the basis
of average traffic load distributions. This idea is explained afterwards. This
method speeds up calculation radically. In exchange, it causes a significant
underestimation of the blocking rate of a cell in a region under around 5%. In
the next section, the so-called Monte Carlo simulation on traffic snapshots
is described briefly. This is a popular method but this approach is very
extensive and time consuming. The snapshot based system of equations is
also a Monte Carlo simulation. The last section summarizes the shortcomings
of the formerly presented methods.

The notation can be found in Appendix A. Throughout this thesis, we
assume perfect power control on dedicated channels. That is, the CIR tar-
gets are met at equality. Moreover, no user is in soft handover, and effects of
shadow fading are neglected. Uplink and downlink are considered indepen-
dently.

3.1 System of Equations

In this section, the ideas from [6] are introduced briefly. A system of equa-
tions is set up for uplink and downlink respectively describing the average
transmission and reception powers of the antennas in the radio network.
These results are then used to assess the blocking rate of each cell.

First, the equations are derived based on a traffic snapshot and then
generalized on the basis of stochastical average load. Afterwards, we point

21
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out how the blocking rate is calculated in both cases. This model is the
basic principle of the method we develop in the next chapters. Throughout
this thesis, the indices i and j will be used for base station antennas. The
subscript i denotes the cell whose blocking rate we wish to determine. A
vector with elements vj is denoted in bold font v. Moreover, diag (v) marks
a diagonal matrix having the same dimension as v and the components of v

on the main diagonal.

3.1.1 Snapshot Based Derivation

We consider a set M of mobile stations given by a traffic snapshot. Following
assumptions are made in this model for the time being:

(i) limitations of transmission powers and noise rise are neglected and

(ii) all users are served.

These restrictions are important for the derivation of the equations. Later,
they will be abolished when blocking is modeled.

Uplink

In the uplink direction, we start from equation (2.5), which describes the
average reception power of antenna i, written as

p̄↑i =
∑

m∈Mi

γ↑
mi α

↑
m p↑m +

∑

j 6=i

∑

m∈Mj

γ↑
mi α

↑
m p↑m + ηi. (3.1)

In this way, it can be recognized that the total reception power at an antenna
consists of three parts: one portion for the interference from the own and
from the other cells respectively and the noise exterior to the system. For
the uplink CIR target to be maintained by transmission from mobile station
m ∈ M to antenna i ∈ N , inequality (2.6) must hold. As stated in the
beginning, we assume that equality applies. When converting this equation
properly and defining the uplink user load of a mobile m as

l↑m :=
α↑

m µ↑
m

1 + α↑
m µ↑

m

, (3.2)

the uplink coupling factors result in

C↑
ij :=

∑

m∈Mj

γ↑
mi

γ↑
mj

l↑m. (3.3)
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Consequently, with (3.1) and (3.3), the uplink transmission power of base
station antenna i reads as

p̄↑i = C↑
ii p̄

↑
i +

∑

j 6=i

C↑
ij p̄↑j + ηi. (3.4)

We call the matrix
C↑ :=

(

C↑
ij

)

1≤i,j≤|N |

the uplink cell load coupling matrix (uplink coupling matrix). The compo-
nents of C↑ can be interpreted in following way. The diagonal entry C↑

ii

measures the contribution from the intra-cell interference to the total re-
ceived power. The value C↑

ij scales the inter-cell interference contribution
from antenna j 6= i. The desired system of equations arises from (3.4):

p̄↑ = C↑ p̄↑ + η↑. (3.5)

The solution of this system is the vector with the uplink reception powers at
each base station antenna.

Downlink

The same approach is applied in the downlink case. The total average output
power of base station antenna i ∈ N is defined by (2.7). The CIR constraint
is given by (2.8). Again, the assumption of perfect power control holds and
the constraint is an equation. The downlink user load reads as

l↓m :=
α↓

m µ↓
m

1 + ω̄m α↓
m µ↓

m

. (3.6)

We use it to introduce the downlink coupling factors

C↓
ii :=

∑

m∈Mi

ω̄m l↓m and C↓
ij :=

∑

m∈Mi

γ↓
jm

γ↓
im

l↓m (j 6= i) (3.7)

for antennas i and j, as well as the traffic noise power of sector i

p
(η)
i :=

∑

m∈Mi

ηm

γ↓
im

l↓m. (3.8)

The meaning of the coupling factors C↓
ij is the following. The diagonal entry

C↓
ii represents the contribution from the intra-cell interference to the total

transmission power. The value C↓
ij specifies the portion of transmission power
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allocated on overcoming the inter-cell interference from antenna j 6= i. The
item p

(η)
i expresses the fraction of transmission power spent on overcoming

the noise at the mobiles if there was no intra-system interference. For the
transmission power at antenna i we obtain

p̄↓i = C↓
ii p̄

↓
i +

∑

j 6=i

C↓
ij p̄↓j + p

(η)
i + p

(c)
i . (3.9)

The matrix

C↓ :=
(

C↓
ij

)

1≤i,j≤|N |

is called the downlink cell load coupling matrix (downlink coupling matrix).
Equation (3.9) for each base station antenna yields the following system of
equations

p̄↓ = C↓p̄↓ + p(η) + p(c). (3.10)

The solution of this system is the downlink transmission power for every cell.

3.1.2 Expected Coupling

The coupling matrices C↑ and C↓ are stochastical. They depend on the posi-
tions and services of the active mobiles. We assume the user distribution in
the planning area to be known (cf. Section 2.5.2). The matrix entries defined
in (3.3) and (3.7) are linear compositions. For this reasons, it is possible to
determine the expected values of the load coupling matrices, denoted by C̄↑

and C̄↓. Then, the equation systems (3.5) and (3.10) can be set up with
these expected values.

For a clearer presentation, it is implied, that we have representative CIR
targets µ↑

s, µ↓
s and transmit activity factors α↑

s, α↓
s in both directions for each

service s ∈ S. Furthermore, ηp is the noise and ω̄p the orthogonality factor
at a mobile in position p. The attenuation factors between a base station
antenna i and a user located in p are denoted by γ↑

pi in uplink and γ↓
ip in

downlink.

The definitions of the user load (3.2) and (3.6) are substituted by

l↑p :=
∑

s∈S

α↑
s µ↑

s

1 + α↑
s µ↑

s

Ts(p) and l↓p :=
∑

s∈S

α↓
s µ↓

s

1 + ω̄p α↓
s µ↓

s

Ts(p). (3.11)

Remember, that Ts(p) is the expected value of the traffic intensity for service s
at location p. The other factors in the above definitions are constants. Thus,
l↑p and l↓p are the expected values of l↑m and l↓m at location p. We derive the
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entries of the expected uplink coupling matrix by

C̄↑
ii :=

∫

p∈Ai

l↑p dp , C̄↑
ij :=

∫

p∈Aj

γ↑
ip

γ↑
jp

l↑p dp. (3.12)

The components of the expected downlink coupling matrix and traffic noise
power read as

C̄↓
ii :=

∫

p∈Ai

ω̄p l↓p dp , C̄↓
ij :=

∫

p∈Ai

γ↓
jp

γ↓
ip

l↓p dp , p̄
(η)
i :=

∫

p∈Ai

ηp

γ↓
ip

l↓p dp. (3.13)

3.1.3 Approximating Blocking

Until now, the system of linear equations introduced in the former sections
ignores the effects due to load control which is triggered if the power of a
cell would excess its limit (cf. Section 2.4.3). To mimic load control, the
approach from [7] is adopted to reduce the load in saturated cells. In this
proposed model, it is not necessary to distinguish whether a user is rejected
or whether the service quality of other users is downgraded. Following two
properties characterize a proper load control:

(i) Admissibility : After load control has been applied, all antenna power
values are feasible, that is, (2.10) holds.

(ii) Greediness: Users are only rejected by a cell if it cannot serve them
without rising above its own capacity. That is, an antenna does not
reject users to ease the situation of its neighboring cell.

Furthermore, we assume that a base station antenna is able to serve all its
users up to a certain fraction of their resource demands. This is realized by
scaling the relative user load ( (3.2) and (3.6) or (3.11) ) in the according cell
by a value λ between 0 and 1. In doing so, only as little load as necessary is
withdrawn. The blocking rate is then 1−λ. However, in realistic settings, the
assumption of compressible user demand is not valid. The obtained scaling
vectors can be used as a guideline for determining how many mobiles need
to be refused.

A complementarity condition has to hold for the resulting power and
scaling vectors in order to achieve the above two properties. In general,
in a complementarity condition one or several subgroups of inequalities are
comprised. In each group at least one of these inequalities should be met at
equality [4]. In our case, it claims that if user demand in a cell is reduced,
then the cell power is equal to its maximum allowed value.
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The in the following described procedure can be applied to both kinds of
equation system: the one derived by snapshot analysis and the one obtained
on the basis of stochastical average load. For this reason, we simply use the
notation we introduced in Section 3.1.1 for the traffic noise power vector as
well as for the coupling matrices. The power vector obtained by this scaling
procedure is denoted by p̃↑ and p̃↓, respectively. The approach using the
expected coupling matrices yields an approximation of the expected blocking
rate. We explain the method for the downlink direction first since this is the
easier one. The approach in uplink is more complex because scaling is applied
to columns instead of rows.

Downlink

In the downlink direction, the rows of the load coupling matrix have to be
scaled, that is,

p̃↓ = diag
(

λ↓
)

· C↓ · p̃↓ + diag
(

λ↓
)

· p(η) + p(c). (3.14a)

Due to the linear definitions of the matrix entries and the entries of the
traffic noise power vector, scaling the user load is equal to scaling the load
coupling matrix and the traffic noise power. The complementarity condition
is expressed by

λ↓
i < 1 =⇒ p̃↓i = pmax↓

i . (3.14b)

The scaling vector λ and the corresponding transmit power estimates are
obtained by following recursion formula provided that 0 < p

(c)
i ≤ pmax↓

i and
∑

j C↓
ij > 0 for all i:

With the initial settings
λ0

i = 1

p̃0
i = p

(c)
i ,

the update step is given by

λt+1
i = min

{

λt
i,

pmax↓
i − p

(c)
i

C↓
ii p

max↓
i +

∑

j 6=i C
↓
ij p̃t

j + p
(η)
i

}

p̃t+1
i =

1

1 − λt+1
i C↓

ii

[

p
(c)
i + λt+1

i

(

∑

j 6=i

C↓
ij p̃

t
j + p

(η)
i

)]

.

(3.15)

The resulting sequences have the properties

1 = λ0
i ≥ λ1

i ≥ λ2
i ≥ . . . ≥ 0,

p
(c)
i = p̃0

i ≤ p̃1
i ≤ p̃2

i ≤ . . . ≤ pmax↓
i ,
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and
λt

i < 1 =⇒ p̃t
i = pmax↓

i .

The sequences (λs
i )s≥0 and (p̃s

i )s≥0 converge since they are component-wise
monotonous and bounded. Their limiting values represent a complemen-
tary solution to (3.14), that is, a feasible solution to (3.14a) that fulfills the
complementarity condition (3.14b). This solution is unique.

Uplink

In the uplink case, the columns of the load coupling matrix are scaled:

p̃↑ = C↑ · diag
(

λ↑
)

· p̃↑ + η↑. (3.16a)

The complementarity condition looks as follows

0 < λ↑
i < 1 =⇒ p̃↑i = pmax↑

i

p̃↑i > pmax↑
i =⇒ λ↑

i = 0.
(3.16b)

One method to determine a complementary solution to (3.16) is to ex-
press the problem as a so-called extended linear complementarity problem.
Essentially, this is a linear feasibility problem where in addition at least one
complementarity condition is given [4]. The purpose of this thesis is not to
describe the technique to solve this problem. Therefore, the interested reader
is referred to [7]. The important point is that the problem is solvable. In
contrast to the downlink direction, the solutions to (3.16) are not unique.

3.2 Monte Carlo Simulation

A popular method to assess the average blocking rates of the cells in a UMTS
radio network is the so-called Monte Carlo simulation. This is a numerical
method providing an approximate solution to the treated mathematical pro-
blem by executing a large number of statistical experiments. The results
of every trial are collected. In the end, they are averaged (cf. [10]). The
Monte Carlo Simulation is based on the Law of Large Numbers [17]. This
theorem states, that the arithmetic mean of n mutually independent, identi-
cally distributed random variables converges to the common expected value
of these variables as n goes to infinity if this expected value exists. Several
formulations of this law specify convergence in different ways [11].

In our case, one traffic snapshot is evaluated in each sample experiment.
Realistic CIR targets and attenuation factors of the mobile stations are deter-
mined and thus their individual capacity demands. Depending on this data,
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the power levels of all active connections in the system are calculated. The
input and output powers are assigned to every antenna in the radio network
according to (2.5) and (2.7). If these powers exceed the maximum values
one or more connections are dropped until the capacity constraints (2.10)
are fulfilled. In this way, the blocking rate of every cell can be assessed.
There are various methods to evaluate the radio network performance based
on one traffic snapshot. Besides static or dynamic simulations of the system
(cf. [21]) a snapshot based set of equations can be solved as described in the
Sections 3.1.1 and 3.1.3.

The results of several independent snapshot analysises are combined to
obtain statistically significant results. In this connection, we want to know
how precise the estimated solution is for a certain number of trials, called
the sample size. For this reason, the confidence interval is determined. This
is a numerical interval covering the true value of the wanted unknown with
a specified probability. That is, we find a value δ > 0 such that

P(x ∈ [x̄ − δ, x̄ + δ]) = 1 − α (3.17)

for a given confidence level 1− α. The value x denotes the true value of the
blocking rate and x̄ is the solution obtained by the Monte Carlo simulation.
For techniques to assess the interval [x̄ − δ, x̄ + δ] refer to [17, 10].

Usually, the sample size is very large if one wants to ensure statistical
accuracy. Hundreds or even thousands of snapshots have to be analyzed to
achieve statistically significant results [6]. For this reason, this method is very
time-consuming and extensive. This procedural problem gets even worse if an
evaluation of the network load shall be used within a local search procedure
where it has to be executed several times. Consequently, the Monte Carlo
simulation achieves accurate results at the expense of a high complexity that
limits the applicability of this method.

3.3 Shortcomings

The problem of the snapshot based model was already highlighted in Sec-
tion 3.2. The computational effort of this method is just too high for some
purposes. In order to reduce this complexity, the approach using the expected
cell load coupling matrix is applied. This is much less time consuming. How-
ever, this method produces estimation errors in the power values and the
blocking rate. These errors are particularly significant for the blocking rate
since the tolerable values are very small. We aim at designing radio networks
with blocking rates lower than 2%. Due to this low limit of tolerance, the
expected coupling approach should be improved for our purpose.
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Figure 3.1 illustrates this effect schematically in case of a network with a
single base station antenna for the downlink direction. Figure 3.1(a) shows
the blocking rate of the cell and Figure 3.1(b) the power of the antenna
depending on the average number of users in the cell. The green curve in
each picture represents the results of the expected coupling approach from
Section 3.1.2. The red one shows the exact values which can be described
analytically for this simple case. The exact values can be understood as the
expected values of the power and the blocking rate, respectively. That is,
the power or blocking rate of all possible snapshot situations is weighted by
the probability for the according traffic snapshot to occur and summed up.
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Figure 3.1: Power and blocking rate in downlink for an isolated cell

In Figure 3.1(a), it is remarkable that the blocking rate obtained by the
expected coupling approach is zero upto a certain point. Then the curve has
an abrupt, steep rise. At this inflection point, the scaling factor computed
according to (3.15) is smaller than one for the first time. By contrast, the
exact blocking rate rises much earlier. This value is already greater than zero
if in one traffic snapshot situation blocking occurs in the cell. Such effects
of randomness are ignored by using average traffic load distributions. This
statistical data specifies the expected amount of traffic in the radio network.
Possible variations from this expected value are not taken into account.

Figure 3.1(b) depicts that the expected coupling method tends to under-
estimate the power in the low region under around 9W. The reason is that
the power is a convex, monotonically increasing function of the average user
intensity. Snapshot situations with more users than expected increase the
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power of a base station antenna above average. In the concerned region of
average user density, the number of users is distributed almost symmetrically
around its expected value. That is, traffic situations with more users than ex-
pected are as possible as those with less users than expected. Therefore, the
expected power value of all possible traffic snapshots is higher than that ob-
tained by the expected coupling method. In the higher region from shortly
below the maximum power, the expected coupling approach overestimates
the power. This is due to the fact that the maximum power is not exactly
met in reality. If there is more than one antenna in the radio network this
overestimation of the other antennas’ powers leads to an overestimation of
the blocking rate in the considered cell in this high region.

In conclusion, there are methods to determine the average blocking rate
almost exactly with high computational effort on the one hand. On the other
hand, we have a model that has an acceptable complexity but whose results
need to be improved for our purpose. Such improvements are developed and
analyzed in the rest of this thesis.



4 The Blocking Rate

as Expected Value

The goal of this diploma thesis is to develop a mathematical model to effi-
ciently approximate the blocking rates of the cells in a UMTS radio network.
Efficiently in this case means that the new method shall have about the speed
of the expected coupling approach of the former chapter and about the ac-
curacy of Monte Carlo simulation. In this chapter, we propose a new model
to solve this task.

The basis for the following considerations is the expected coupling ap-
proach introduced in Section 3.1.2 and the computation of the blocking rate
given in Section 3.1.3. We aim at reducing the inaccuracies of this method
with regard to the blocking rate (cf. Section 3.3). These inaccuracies are due
to the fact that the expected coupling approach neglects effects of random-
ness. These effects can be taken into account by approximating the blocking
rate of a cell by its expected value. This is the idea of the model presented
in this chapter. We determine the expected value of the average blocking
rate depending on the intra-cell interference. In this model, we make two
essential simplifications:

(1) The mobile stations in the own cell are modeled independently of their
locations, that is, we consider average users within the own sector.

(2) We use constant estimates for the inter-cell interference.

For didactical reasons, we first address the case that all users in a sector
have constant load l↑m and l↓m, respectively. In this case, the average blocking
rate of an antenna can be expressed depending on the number of users in
the cell. In the next step, we examine the situation in which the user load
within the sector varies. In this case, the discrete approach is not suitable.
Instead, we compute the expected value of the blocking rate depending on
the main-diagonal entry of the load coupling matrix. We assume that this
random variable follows a normal distribution. Afterwards, an enhancement
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of the model is proposed, which possibly improves the estimates of the inter-
cell interference. Finally, we discuss the assumption that the main-diagonal
matrix entry is normally distributed.

4.1 Constant User Load

The sketch of modeling the intra-cell interference stochastically is descriptive
in the case that all users in the cell have equal load l↑m, l↓m. We are able to
model the intra-cell interference depending on the number of users in the
sector. Thus, it is possible to specify the capacity of a cell explicitly and to
compute the expected value of the average blocking rate depending on this
capacity. In reality, the case of constant user load could be achieved if all
mobile stations in the cell request the same service, have the same velocity,
user equipment, and orthogonality factor. Of course, such a setting is not
realistic. However, it serves to introduce the model in an easy way.

This section is organized as follows. First, we give the basic formula of the
expected value of the average blocking rate. Moreover, we define the basic
variables capacity and average blocking rate of a sector. Then, the capacity
of a cell is computed in uplink and downlink. In the downlink direction, a
refinement is shown since the inter-cell interference power also depends on
the number of users in the own sector. Afterwards, we extend the model to
the case that the user load within a cell is not constant but its variation is
small. In the following, we denote the constant user load in cell i by l↑i and
l↓i , respectively. The number of users in sector i is expressed by n ∈ N.

4.1.1 Preliminaries

The average blocking rate at base station antenna i is denoted by b̄↑i in uplink
and b̄↓i in the downlink direction. The common formulas for the expected
value of the average blocking rate of the sector depending on the user number
n are given by

E[̄b↑i ] =
∞

∑

n=0

b̄↑i (n) P(n) and E[̄b↓i ] =
∞

∑

n=0

b̄↓i (n) P(n). (4.1)

Here, P(n) denotes the probability of exactly n mobiles being located in cell i.
We assume that the traffic intensity for one service in a cell is a random vari-
able that follows a Poisson distribution with parameter Ti (cf. Section 2.5.2).
Knowing the average traffic intensity Tp of the available service in location p
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we can define the expected number of users in cell i by

Ti :=

∫

p∈Ai

Tp dp. (4.2)

This follows from equation (2.2), which states the additivity of the counting
measure T . The probability for n users in sector i is given by

PTi
(n) = e

−Ti (Ti)
n

n!
, n ∈ N. (4.3)

The capacity of a cell is the maximum number of users the base station
antenna is able to serve without exceeding its power limit. For cell i, the
uplink and downlink capacity is expressed by

n̄max↑
i := max{n ∈ N : p̄↑i (n) ≤ pmax↑

i } and

n̄max↓
i := max{n ∈ N : p̄↓i (n) ≤ pmax↓

i }.
(4.4)

Generally, the blocking rate of an antenna is described by the ratio of rejected
users to the total number of users. Therefore, the average blocking rates in
uplink and downlink are given by

b̄↑i (n) :=

{

0 for n ≤ n̄max↑
i

n− n̄
max↑
i

n
for n > n̄max↑

i ,

b̄↓i (n) :=

{

0 for n ≤ n̄max↓
i

n− n̄
max↓
i

n
for n > n̄max↓

i .

(4.5)

If n̄max↑
i and n̄max↓

i were the exact capacities of cell i, these formulas would
express the exact blocking rates. Since we approximate the capacities of
the antennas we deal exclusively with average blocking rates. Using equa-
tions (4.3) and (4.5), the expected values of the blocking rates (4.1) read
as

E[̄b↑i ] =

∞
∑

n=n̄
max↑
i

+1

n − n̄max↑
i

n
PTi

(n),

E[̄b↓i ] =

∞
∑

n=n̄
max↓
i +1

n − n̄max↓
i

n
PTi

(n).

(4.6)

Hence, we approximate the capacities of the base station antennas in uplink
(n̄max↑) and downlink (n̄max↓) in the following.
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4.1.2 Uplink

Due to assumption (1), the main diagonal entry of the load coupling matrix
depends merely on the number of users in the sector. That is,

C↑
ii(n) = n l↑i . (4.7)

Because the number of users in the cell is Poisson distributed, C↑
ii follows a

scaled Poisson distribution with scaling factor l↑i . Since C↑
ii depends on the

user intensity n, the power p̄↑i depends on n, too. Substituting C↑
ii according

to (4.7), the equation for the reception power at base station antenna i reads
as

p̄↑i (n) = n l↑i p̄↑i (n) +
∑

j 6=i

C̃↑
ij p̃↑j + ηi. (4.8)

The power values C̃↑
ij for j 6= i are defined by

C̃↑
ij := C̄↑

ij λ↑
j .

The values p̃↑j are the solutions of the equation system (3.16) using the ex-
pected coupling matrix. According to assumption (2), we estimate the inter-
cell interference by average values. In doing so, we use C̃↑

ij instead of C̄↑
ij in

order to express the realistic behavior of antenna j. Cell j only serves the
fraction of users that does not exceed its available radio resources. The other
portion is blocked. We assume that

∑

j 6=i

C̃↑
ij p̃↑j + ηi > 0.

For this reason, with (4.8) it holds that

p̄↑i (n) > n l↑i p̄↑i (n).

This is equivalent to
1 − n l↑i > 0. (4.9)

In cell i, blocking happens if more than n̄max↑
i active users are in the

sector. Then, the surplus will not be served. In this case, the total received
power of the antenna is p̄↑i (n̄

max↑
i ) ≤ pmax↑

i . Transforming (4.8), the average
uplink power for n mobile stations in the cell satisfies the expression

p̄↑i (n) =







P

j 6=i C̃
↑
ij p̃

↑
j+ηi

1 − n l
↑
i

for n ≤ n̄max↑
i

p̄↑i (n̄
max↑
i ) for n > n̄max↑

i .
(4.10)
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Due to (4.9), this formula is well defined. In order to assess the capacity of
the cell we use the above equation in definition (4.4) of n̄max↑

i . This results
in

n̄max↑
i = max

{

n ∈ N :

∑

j 6=i C̃
↑
ij p̃↑j + ηi

1 − n l↑i
≤ pmax↑

i

}

.

From the above equation, n̄max↑
i can be derived as

n̄max↑
i =

⌊

pmax↑
i −

∑

j 6=i C̃
↑
ij p̃↑j − ηi

pmax↑
i l↑i

⌋

. (4.11)

We round down the received value since the number of users in a cell is
integral.

4.1.3 Downlink

Now, we follow the same considerations in downlink. In contrast to the uplink
direction, the traffic noise power p

(η)
i has to be taken into account, but this

issue is ignored for the time being. In addition to the constant user load l↓i ,
we also assume a constant orthogonality factor in the whole cell area. We
denote this unique orthogonality factor by ω̄i. The main diagonal entry of
the downlink coupling matrix in case of n users in sector i is given by

C↓
ii(n) = n ω̄i l

↓
i . (4.12)

Therefore, the average transmission power of antenna i depending on the
user intensity n in the cell reads as

p̄↓i (n) = n ω̄i l
↓
i p̄↓i (n) +

∑

j 6=j

C̃↓
ij p̃↓j + p

(c)
i . (4.13)

The scaled off-diagonal entries of the coupling matrix are defined as

C̃↓
ij := λ↑

i C̄↓
ij.

The value p̃↓j is the solution of the scaled, expected value based equation

system (3.14). The values C̄↓
ij estimate the fraction of the average total

power at antenna i that is necessary to overcome the received power of other
antennas at the mobiles in sector i. If some of them are blocked, these
estimates are lower. We involve the scaling in order to take the blocking
behavior of our own cell into account. Following expression is satisfied due
to p

(c)
i > 0:

∑

j 6=i

C̃↓
ij p̃↓j + p

(c)
i > 0.
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Therefore, it holds that

p̄↓i (n) > n ω̄i l
↓
i p̄↓i (n).

This can be transformed into

1 − n ω̄i l
↓
i > 0. (4.14)

If there are more users in the cell than n̄max↓
i , blocking happens such

that the total transmission power does not exceed its limit. For this reason,
equation (4.13) can be written as

p̄↓i (n) =







P

j 6=i C̃
↓
ij p̃

↓
j +p

(c)
i

1 − n ω̄i l
↓
i

for n ≤ n̄max↓
i

p̄↓i (n̄
max↓
i ) for n > n̄max↓

i .

Because of (4.14), this expression is well defined. Using the above formulation
in the definition (4.4) of n̄max↓

i , we obtain

n̄max↓
i = max

{

n ∈ N :

∑

j 6=i C̃
↓
ij p̃↓j + p

(c)
i

1 − n ω̄i l
↑
i

≤ pmax↑
i

}

.

This can be transformed into

n̄max↓
i =

⌊

pmax↓
i −

∑

j 6=i C̃
↓
ij p̃↓j − p

(c)
i

pmax↓
i ω̄i l

↓
i

⌋

.

With this closed-form expression, we are able to calculate the quantity n̄max↓
i

as well as the desired expected value of the average blocking rate according
to (4.6).

Refined Downlink

In the above approach, the contributions of other antennas to the interference
in the own cell are not modeled stochastically. We use constant expected
values. However, in downlink, it is possible to additionally vary the off-
diagonal entries of the load coupling matrix C↓ in order to obtain more
precise results.

The coupling factors C↓
ij describe the fraction of total transmission power

of antenna i spent on overcoming the interference originating in sector j.
Each new request in cell i causes the transmission power of the antenna to
its associated mobiles to increase. At the same time, this new user is affected
by interference from other base station antennas. That is, the interference
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power in sector i increases and the antenna has to raise the power to overcome
this interference. Actually, the strength of the interference power depends
on the location of the affected mobile. Users at the cell border are much
more exposed to inter-cell interference than mobiles in the center of the
sector. We do not consider the positions of the mobile stations in our own
cell (condition (1)). Instead, we assume average users in the sector. Since
the off-diagonal entries C↓

ij depend on the number of users in cell i we assume

a proportional correlation between C↓
ij and the average number of users in

sector i. In uplink, a similar approach is not possible because the inter-cell
interference depends on the number of mobiles in the other cells, which we
do not model stochastically.

Instead of (4.13), the total transmission power of antenna i is calculated
as

p̄↓i (n) = n ω̄i l↓i p̄↓i (ni) + n
∑

j 6=i

C̄↓
ij

Ti

p̃↓j + p
(c)
i

with Ti as defined in (4.2). The value C̄↓
ij is an entry of the expected load

coupling matrix. We assume the inter-cell interference to be uniformly dis-
tributed to all mobiles in sector i. Therefore, in place of being scaled, the
off-diagonal entries of C̄↓are normalized by the average user intensity in cell i.
As in (4.13), p̃↓j is the total transmission power of antenna j received by sol-
ving the equation system with the scaled, expected coupling matrix. The
approximated transmission power of base station antenna i is thus:

p̄↓i (n) =







n 1
Ti

P

j 6=i C̄
↓
ij p̃

↓
j + p

(c)
i

1 − n ω̄i l
↓
i

for n ≤ n̄max↓
i

p̄↓i (n̄
max↓
i ) for n > n̄max↓

i .

Then the approximated capacity of cell i is determined according to

n̄max↓
i =

⌊

pmax↓
i − p

(c)
i

pmax↓
i ω̄i l↓i + 1

Ti

∑

j 6=i C̄
↓
ij p̃↓j

⌋

.

The Traffic Noise Power

The traffic noise power in downlink in cell i is modeled in analogy to the
expected coupling approach. We estimate it by the expected value

p̄
(η)
i :=

∫

p∈Ai

ηp

γ↓
ip

l↓p dp.

The traffic noise power of an antenna depends on the number of mobiles in
its best server area. The reason is the same as for the dependence of the
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off-diagonal coupling matrix entries on the number of mobiles. The more
users an antenna serves, the more power it has to spent on overcoming the
noise at these mobiles. Therefore, we normalize the average noise power by
the average user intensity in the cell and multiply this value with the user
number n. Finally, the approximated total transmission power of antenna i
for n mobiles in the cell results in

p̄↓i (n) = n ω̄i l
↓
i p̄↓i (n) + ni

1

Ti

(

∑

j 6=i

C̄↓
ij p̃↓j + p̄

(η)
i

)

+ p
(c)
i .

This can be transformed into

p̄↓i (n) =







n 1
Ti

(

P

j 6=i C̄
↓
ij p̃

↓
j +p̄

(η)
i

)

+ p
(c)
i

1 − n ω̄i l
↓
i

for n ≤ n̄max↓
i

p̄↓i (n̄
max↓
i ) for n > n̄max↓

i .
(4.15)

In analogy to the previous sections, the capacity of cell i is derived as

n̄max↓
i =

⌊

pmax↓
i − p

(c)
i

pmax↓
i ω̄i l

↓
i + 1

Ti

(
∑

j 6=i C̄
↓
ij p̃↓j + p̄

(η)
i

)

⌋

. (4.16)

4.1.4 Extension

The proposed discrete approach is valid in cases in which the variation of the
user load l↑m and l↓m, respectively, within the sector is small such that it can
be represented by its average value without being too unprecise. In reality,
this situation could occur if all mobile stations in the cell request the same
service but have each a different velocity, user equipment or orthogonality
factor. We determine the average user load over all positions in the sector
and assume it to be constant for every mobile station. That is, we transform
this situation into the case with constant user load.

In mathematical models, it is common to classify the user mobility coarsely
instead of considering speed as a continuous variable. One possible classifica-
tion is to group the different mobility types according to the average velocity.
E.g. the mobility type pedestrian has the speed 1 m/s. In the following, M
denotes the set of mobility types.

Uplink

For every position p ∈ Ai, we compute the expected value of the user load.
This yields

l↑p =
∑

m∈M

l↑m Tp Pp(m).
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In this formula, Tp is the average traffic intensity in point p. The value Pp(m)
is the probability for the presence of a user having mobility type m at this
location and l↑m is the uplink user load for mobility type m. This user load
is given by

l↑m =
α↑

m µ↑
m

1 + α↑
m µ↑

m

,

which is the same definition as (3.2) for the user load of a mobile station.
The average uplink user load for a mobile in cell i reads as

l↑i :=
1

Ti

∫

p∈Ai

l↑p dp. (4.17)

In fact, this is the main-diagonal entry of the expected cell load coupling
matrix C̄↑ normalized by the average number of users in the according sector.
The constant user load l↑i is used in the equations (4.10) and (4.11) in order
to derive a formula for the uplink capacity of cell i.

Downlink

In analogy to the uplink, the expected value of the downlink user load in
position p ∈ Ai is given by

l↓p =
∑

m∈M

l↓m(p) Tp Pp(m)

with Tp and Pp(m) as explained before. The downlink user load for a user
with mobility type m at location p reads as

l↓m(p) =
α↓

m µ↓
m

1 + ω̄p α↓
m µ↓

m

.

Besides the mobility type m, the user load depends on the point p because
of the location-specific orthogonality factors ω̄p. The average downlink user
load for a mobile station served by base station antenna i is given by

l↓i :=
1

Ti

∫

p∈Ai

ω̄p l↓p dp. (4.18)

Again, this is the main-diagonal entry of the expected cell load coupling
matrix C̄↓, normalized by the average traffic intensity in cell i. We use l↓i in
the equations (4.15) and (4.16) to obtain the average capacity of the cell.
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4.2 Variable User Load

In this section, we enhance the presented approach. In reality, the user load
varies strongly due to different services, velocity, and so on. For this reason,
computing the expected blocking rate according to (4.6) yields too unprecise
results for our purpose. The assumption of the intra-cell interference being
scaled Poisson distributed does not hold. Instead, we assume the main-
diagonal entry of the coupling matrix to follow a normal distribution since
this value is the sum of a large number of independent random variables. A
detailed discussion of this assumption can be found in Section 4.4. As in the
previous section, we first give the common formula for the expected value
of the average blocking rate. Afterwards, the needed quantities are derived
for the uplink and downlink direction. In the downlink, an enhancement is
given in analogy to the case of constant user load.

4.2.1 Preliminaries

The underlying random variable is the main-diagonal entry of the cell load
coupling matrix. This variable is continuous. For this reason, we compute
the expected value of the average blocking rate according to

E[̄b↑i ] =

∫ ∞

0

b̄↑i (x) f ↑
i (x) dx and E[̄b↓i ] =

∫ ∞

0

b̄↓i (x) f ↓
i (x) dx. (4.19)

The functions f ↑
i and f ↓

i denote the probability density functions of C↑
ii and

C↓
ii, respectively. In this continuous case, it makes no sense to count the

users in a cell and determine the average capacity as we did in the previous
section. Each single user contribution is much too different to be represented
reasonably by an average value. In order to compute the expected value
according to (4.19), we derive formulas for the probability density functions
f ↑

i and f ↓
i as well as for the average blocking rates b̄↑i and b̄↓i in the rest of

this section.

4.2.2 Uplink

According to (3.3), the main-diagonal entry of the uplink cell load coupling
matrix for antenna i is defined as

C↑
ii =

∑

m∈Mi

l↑m.

We assume it to be normally distributed. Generally, it is reasonable to
approximate the sum of many independent random variables with unknown
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distribution by a normal distribution. As in the expected coupling approach,
the expected value of C↑

ii can be calculated according to

E[C↑
ii] =

∫

p∈Ai

∑

s∈S

α↑
s µ↑

s

1 + α↑
s µ↑

s

Ts(p) dp. (4.20)

Here, Ts(p) is the traffic intensity of service s in pixel p. The variance of the
user intensity is equal to its expected value Ts(p) because the traffic intensity
is assumed to be Poisson distributed. For the variance of C↑

ii thus holds

V[C↑
ii] =

∫

p∈Ai

∑

s∈S

(

α↑
s µ↑

s

1 + α↑
s µ↑

s

)2

Ts(p) dp. (4.21)

No covariances have to be included because of the independence of the user
numbers in each pixel and for each service. Knowing the expected value and
variance of a normally distributed random variable allows for assessing its
probability density function f ↑

i .
The blocking rate b̄↑i in sector i can be determined by

b̄↑i (x) = 1 − λ↑
i (x). (4.22)

The vector λ↑ consists of the load scaling factors for each cell introduced in
Section 3.1.3. In order to compute the whole vector and the according recep-
tion powers an extended linear complementarity problem has to be solved. In
contrast, we now estimate the average load scaling factors and reception po-
wers of the other antennas. Therefore, we simply have to solve the following
equation for λ↑

i (cf. (3.16)):

pmax↑
i = C↑

ii λ
↑
i pmax↑

i +
∑

j 6=i

C̃↑
ij p̃↑j + ηi.

Due to possible blocking in other cells, the scaled off-diagonal matrix entries
C̃↑

ij are taken. Moreover, the average total reception power at antenna i is

estimated by its maximum because otherwise λ↑
i = 1 applies (cf. (3.16b)).

In doing so, we simplify p̄↑i (n̄
max↑
i ) to pmax↑

i . In conclusion, we obtain

λ↑
i (x) = min

{

1,
pmax↑

i −
∑

j 6=i C̃
↑
ij p̃↑j − ηi

x pmax↑
i

}

(4.23)

for x ∈ (0,∞). Furthermore, we define λ↑
i (0) := 1.
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4.2.3 Downlink

The main diagonal entry of the downlink cell load coupling matrix for an
antenna i is given by

C↓
ii :=

∑

m∈Mi

ω̄m l↓m.

We assume this random variable to follow a normal distribution. In analogy
to the expected coupling approach, the expected value of C↓

ii is

E[C↓
ii] =

∫

p∈Ai

∑

s∈S

ω̄p α↓
s µ↓

s

1 + ω̄p α↓
s µ↓

s

Ts(p) dp.

Its variance satisfies

V[C↓
ii] =

∫

p∈Ai

∑

s∈S

(

ω̄p α↓
s µ↓

s

1 + ω̄p α↓
s µ↓

s

)2

Ts(p) dp

due to the independence of the traffic intensities in distinct locations and for
different services. As in the uplink direction, the expected value and variance
of C↓

ii are finite. With these values we can determine the probability density
function f ↓

i of C↓
ii.

The blocking rate at antenna i is expressed by

b̄↓i (x) = 1 − λ↓
i (x) (4.24)

with λ↓ being the downlink load scaling vector from Section 3.1.3. We esti-
mate the average scaling factors and transmission powers of the other cells
in the network. Furthermore, if λ↓

i < 1, then the transmission power at an-
tenna i is assumed to meet pmax↓

i (cf. (3.14b)). For this reason, the following
expression holds for λ↓

i < 1:

pmax↓
i = λ↓

i

(

C↓
ii p

max↓
i +

∑

j 6=i

C̄↓
ij p̃↓j + p̄

(η)
i

)

+ p
(c)
i .

This yields

λ↓
i (x) = min

{

1,
pmax↓

i − p
(c)
i

x pmax↓
i +

∑

j 6=i C̄
↓
ij p̃↓j + p̄

(η)
i

}

for x ∈ (0,∞)\
{

− 1

p
max↓
i

(

∑

j 6=i C̄
↓
ij p̃↓j + p̄

(η)
i

)}

. For

x ∈

{

0,−
1

pmax↓
i

(

∑

j 6=i

C̄↓
ij p̃↓j + p̄

(η)
i

)}

,



4.2 Variable User Load 43

we set λ↓
i (x) := 1.

In this approach, the random variable we actually consider is the user
load l↓m in each position of the own cell. Besides the main diagonal entries of
the coupling matrix, it is also involved in the computation of the off-diagonal
entries and the noise power. For this reason, we are able to refine the above
approach similar to the case of constant user load by introducing the random
variable

C↓
i := C↓

ii p
max↓
i +

∑

j 6=i

C↓
ij p̃↓j + p

(η)
i . (4.25)

It is convenient to define

c↓im := ω̄m pmax↓
i +

∑

j 6=i

γ↓
jm

γ↓
im

p̃↓j +
ηm

γ↓
im

for a mobile station m. Then C↓
i can be written as

C↓
i =

∑

m∈Mi

c↓im l↓m.

We assume this random variable to be normally distributed as sum of many
independent random variables. Its expected value and variance are

E[C↓
i ] = C̄↓

ii p
max↓
i +

∑

j 6=i

C̄↓
ij p̃↓j + p̄

(η)
i ,

V[C↓
i ] =

∫

p∈Ai

(c↓ip)
2
∑

s∈S

(

α↓
s µ↓

s

1 + ω̄p α↓
s µ↓

s

)2

Ts(p) dp.
(4.26)

Here, c↓ip is defined as

c↓ip := ω̄p pmax↓
i +

∑

j 6=i

γ↓
jp

γ↓
ip

p̃↓j +
ηp

γ↓
ip

(4.27)

for a position p. The probability density function of C↓
i is denoted by f ↓

i .
Again, the expected blocking rate is determined according to (4.19) with b̄↓i
given by (4.24). However, we compute λ↓

i by

λ↓
i (x) = min

{

1,
pmax↓

i − p
(c)
i

x

}

(4.28)

for x ∈ (0,∞). We define λ↓
i (0) := 1.
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4.3 The Effect of Coupling

In this section, we introduce an approach which possibly improves the esti-
mates for the powers of the other base station antennas and thus the aver-
age blocking rate. We obtain these estimates by solving the equation sys-
tem (3.14) and (3.16), respectively. By computing the expected value of the
average blocking rate according to (4.1) or (4.19), only those situations are in-
cluded in which the blocking rate of the cell is greater than zero. In the basic
mathematical model, we equate this situation with the case that the power
of the antenna in question is at its maximum (cf. (3.14b) and (3.16b)). In
UMTS radio networks, the cells are coupled with each other (cf. Section 2.4).
For this reason, setting the power of one base station antenna to its maxi-
mum causes other antennas to raise their power, too. So far, the estimates of
the other antennas’ powers are computed for the average situation in which
the power of our antenna is eventually lower than its maximum. That is, the
effect of coupling is not taken into account. Therefore, these estimates may
be too low and thus the average blocking rate of our sector.

One possibility to consider the effect of coupling is to solve a modified
equation system. In (3.14) and (3.16), respectively, we set the power of the
own antenna to its maximum value. In this manner, we get an equation
system with one variable less than before. In the uplink direction, it looks
as follows:

p̃↑k = pmax↑
k for k = i,

p̃↑k =
∑

j∈N

C̃↑
kj p̃↑k + ηk for k 6= i. (4.29)

For the downlink, we set up

p̃↓k = pmax↓
k for k = i,

p̃↓k =
∑

j∈N

C̃↓
kj p̃↓k + p̃

(η)
k + p

(c)
k for k 6= i. (4.30)

Solving these equation systems results in powers for the other base station
antennas, which are higher than before if they were not at their maximum
and if the power of antenna i was not at its maximum. In fact, the assumption
that p̄↑i (n̄

max↑
i ) = pmax↑

i and p̄↓i (n̄
max↓
i ) = pmax↓

i , respectively, does not apply
in general (cf. Section 3.3). However, this estimation error may possibly be
small in contrast to the estimation error we make if we do not consider the
effect of coupling. This question is analyzed in Chapter 7.
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4.4 The Assumption

of a Normal Distribution

This section addresses the assumption of Section 4.2 that the random vari-
ables C↑

ii and C↓
i are normally distributed. Since each of them is the sum

of a large number of independent random variables we could suppose that
the Central Limit Theorem applies. This theorem states that the sum of
m independent random variables tends to be normally distributed for suffi-
ciently large m if the contribution of each single variable to the total variance
is negligible. However, this section shows, that the Central Limit Theorem
does not apply in our case. That is, the limiting distributions of our random
variables are no normal distributions.

First, we give a formulation of the Central Limit Theorem with the Lin-
deberg condition as well as the Feller Theorem according to [3]. The Feller
Theorem implies the necessity of the Lindeberg condition. Afterwards, we
transform our case to the conditions of these theorems. Then, we prove that
the Feller Theorem applies. Thus, the Lindeberg condition is necessary. We
show that this condition is not fulfilled. Finally, we give some reasons why
the assumption of a normal distribution is justified anyway.

4.4.1 The Central Limit Theorem

We introduce briefly the needed theorems based on [3]. In the following, we
consider sequences of random variables defined on the same probability space

X11 X12 . . . X1n1

X21 X22 . . . . . . X2n2

...
...

. . .

(4.31)

Usually, it holds that n1 < n2 < . . . . For this reason, the above array is
called a triangular array. Throughout this section, k ∈ N denotes a row
index of this array. The column index p ranges from 1 to nk ∈ N. We define

µkp := E[Xkp], σ2
kp := V[Xkp], and Xk :=

nk
∑

p=1

Xkp. (4.32)

Theorem 4.1 Let the sequence {Xkp} be independent with µkp = 0 for all p
and k and the variance sequence {σ2

kp} satisfying

E[X2
k ] =

nk
∑

p=1

σ2
kp = 1. (4.33)
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Then the limiting distribution of Xk is the standard normal distribution if

lim
k→∞

nk
∑

p=1

∫

{|Xkp|>ǫ}

X2
kp dP = 0, for all ǫ > 0. (4.34)

Condition (4.34) is called the Lindeberg condition. It states that for arbitra-
rily small ǫ > 0, the contribution to the accumulated row variance from those
terms with absolute value greater than ǫ becomes negligible as the row index
approaches infinity.

Generally, the Lindeberg condition is merely sufficient. The Feller The-
orem characterizes the situation in which the Lindeberg condition is also
necessary.

Theorem 4.2 Let the sequence {Xkp} be independent with µkp = 0 for all p
and k and with variance sequence {σ2

kp}. If the limiting distribution of Xk is
the standard normal distribution and

lim
k→∞

max
1≤p≤nk

P(|Xkp| > ǫ) = 0, for all ǫ > 0, (4.35)

then the Lindeberg condition holds.

In the following, we prove that condition (4.35) is satisfied but condition (4.34)
is not fulfilled for our random variables. For this reason, they do not converge
to a normal distribution when the number of summands approaches infinity.

4.4.2 Transformation

We transform the random variables C↑
ii and C↓

i to random variables meeting
the assumptions of Theorem 4.1. That is, each random variable has an ex-
pected value of zero and the sum of the variances is one. This transformation
as well as the application of the theorems hold for C↑

ii and C↓
i likewise.

We have a random variable for each pixel in the best server area of base
station antenna i. For p ∈ Ai, it reads as

Yp :=
∑

s∈S

ls(p) ms(p). (4.36)

The variable ms(p) ∈ N denotes the number of mobiles of service s in posi-
tion p. The value ls(p) > 0 is constant for each s ∈ S. We restrict ourselves
to considering merely those services with an activity factor and CIR target
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greater than zero. That is, in the uplink direction, S does not include the ser-
vice “File Download”, for example. The values ls(p) are given in the uplink
direction by

ls(p) =
α↑

s µ↑
s

1 + α↑
s µ↑

s

.

In the downlink, we have

ls(p) = c↓ip
α↓

s µ↓
s

1 + ω̄p α↓
s µ↓

s

.

The value c↓ip is defined by (4.27). The random variables Yp are summed up
over all pixels in the best server area of base station antenna i. That is,

Yi :=
∑

p∈Ai

Yp. (4.37)

Each row of the triangular array corresponds to a partition of the cell
area Ai into pixels p. That is, A

(k)
i = {1, . . . , nk} in the kth row. This di-

vision gets finer in each step or row. Throughout this section, we consider
a partition that is constructed in following way. The value d ∈ {2, 3} de-
notes the dimension of the given planning area. In step k, divide each pixel
p = 1, . . . , nk into 2d sub-pixels of equal size and distribute Ts(p) uniformly
to each sub-pixel for all s ∈ S. In doing so, p ranges from 1 to nk+1 = 2d nk

in row k + 1. It holds that
nk = 2dk. (4.38)

As the row index k goes to infinity, the number of pixels also goes to infinity
while the average number of users in each pixel approaches zero.

This problem can be transformed by normalizing the random variables
Yp, such that Theorem 4.1 is applicable. We set

µp := E[Yp], σ2
p := V[Yp], and s2

k :=

nk
∑

p=1

σ2
p. (4.39)

The traffic intensities in position p are mutually independent for different
services. For this reason, we obtain

µp =
∑

s∈S

ls(p) Ts(p) and σ2
p =

∑

s∈S

ls(p)2 Ts(p). (4.40)

We define

Xkp :=
Yp − µp

sk

. (4.41)
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These random variables are mutually independent. As stated in Section 2.5.2,
the traffic intensities in pairwise distinct locations are independent random
variables. The weighted summation of such variables does not change this
characteristic. Hence, the random variables Yp defined in (4.36) are inde-
pendent. This property is not affected by the division and subtraction of a
constant as done in (4.39). For the expected value of Xkp, we obtain

µkp =
1

sk

E[Yp − µp] = 0.

Furthermore, equation (4.33) is met because the variables Yp are mutually
independent. It holds:

E[X2
k ] = V[Xk] =

1

s2
k

E

[

(

nk
∑

p=1

(Yp − µp)
)2

]

=
1

s2
k

E

[

(

nk
∑

p=1

Yp −
nk
∑

p=1

µp

)2
]

=
1

s2
k

E

[

(

nk
∑

p=1

Yp − E

[

nk
∑

p=1

Yp

])2
]

=
1

s2
k

V

[ nk
∑

p=1

Yp

]

=
1

s2
k

nk
∑

p=1

V[Yp] =

nk
∑

p=1

1

s2
k

σ2
p =

nk
∑

p=1

σ2
kp = 1.

Consequently, the conditions of Theorem 4.1 are fulfilled with this transfor-
mation.

4.4.3 Proof

Now, we prove that condition (4.35) is met for the transformed random vari-
ables but (4.34) does not hold. Hence follows, that the limiting distribution
of the transformed random variables Xk is not the standard normal distri-
bution. In order to prove this, we first need the following:

Proposition 4.1 For each row index k of the triangular array (4.31), the
value s2

k defined in (4.39) is bounded above and below by constants within the
open interval (0,∞), which are independent of k.

Proof. The expected traffic intensity in the entire region A
(k)
i is constant in

every step k. That is, for all k holds

Ti :=
∑

p∈A
(k)
i

∑

s∈S

Ts(p) ∈ (0,∞). (4.42)
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The values ls(p) are bounded by constants for all partitions of the cell area,
that is, for all steps k. We denote by l̂i the upper bound and by ľi the lower
bound of ls(p) in cell i. Hence,

ľi ≤ ls(p) and l̂i ≥ ls(p) ∀ p ∈ A
(k)
i , k ∈ N, s ∈ S.

In the uplink direction, such bounds are given by

ľi =
1

2
min
s∈S

α↑
s µ↑

s and l̂i = 1,

for example, since 0 < α↑
s µ↑

s ≤ 1 for all s ∈ S. In the downlink, we can set
the lower bound to

ľi =
1

2
ω̌i p

max↓
i min

s∈S
α↓

s µ↓
s.

The value ω̌i denotes the lower bound of ω̄p for all partitions. This constant
exists because for sufficiently large k, the sub-pixels in which we refine a pixel
have the same orthogonality factor as the original pixel. The sub-pixels are
that small that the propagation characteristics of the radiowaves are equal
in each sub-pixel and thus the orthogonality factors. It holds that ω̌i > 0
since we do not have perfect orthogonality in the whole area. Moreover,
0 < α↓

s µ↓
s ≤ 1 applies for all s ∈ S. An upper bound in downlink is given by

l̂i = pmax↓
i +

∑

j 6=i

pmax↓
j +

η̂i

γ̌↓
i

.

Here, γ̌↓
i denotes the lower bound of γ↓

ip for all partitions of Ai. The best
server area of antenna i does not contain pixels that are not covered. For a
pixel to be covered, the received power from the antenna has to be sufficiently
high (cf. Section 2.2). Therefore, γ̌↓

i exists and it holds that γ̌↓
i > 0. The

value η̂i is the upper bound of ηp for all k. It is clear that the noise in the cell
area does not rise infinitely by refining the partition of the region. It applies

that ηp

γ
↓
ip

≤ η̂i

γ̌
↓
i

for every division of Ai. Because of
γ
↓
jp

γ
↓
ip

≤ 1, an upper bound

of
γ
↓
jp

γ
↓
ip

p̃↓j is given by pmax↓
j for all j 6= i. Furthermore, ω̄p ∈ (0, 1] for all p.

Hence, we obtain ω̄p pmax↓
i ≤ pmax↓

i and α
↓
s µ

↓
s

1+ω̄p α
↓
s µ

↓
s

≤ α↓
s µ↓

s ≤ 1 for all s ∈ S.

It holds that

0 < ľi ≤ l̂i < ∞ for all k ∈ N. (4.43)
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The following expression is satisfied for all k:

s2
k =

nk
∑

p=1

∑

s∈S

ls(p)2 Ts(p)

≤ l̂2i

nk
∑

p=1

∑

s∈S

Ts(p) = l̂2i Ti.

The same can be applied in the reverse direction with ľi. Consequently, we
obtain

ľ2i Ti ≤ s2
k ≤ l̂2i Ti.

�

Next, we prove the following proposition:

Proposition 4.2 The random variables Xkp defined by (4.41) satisfy condi-
tion (4.35).

Proof. According to the way we refine the pixel grid, the user intensity
in each position approaches zero for every service as the number of pixels
nk = |A(k)

i | goes to infinity. That is,

k → ∞ ⇒ Ts(p) → 0 ∀ p ∈ A
(k)
i , s ∈ S. (4.44)

From equation (4.44) we obtain for all τ > 0:

P
(

ms(p) > τ
)

= 1 − P
(

ms(p) ≤ τ
)

≤ 1 − P
(

ms(p) = 0
)

= 1 − e
−Ts(p) (Ts(p))0

0!

= 1 − e
−Ts(p)

−→
k→∞

1 − 1 = 0 ∀ p ∈ A
(k)
i , s ∈ S.

Because of P
(

ms(p) > τ
)

≥ 0, above formulation expresses that

lim
k→∞

P
(

ms(p) > τ
)

= 0 ∀ p ∈ A
(k)
i , s ∈ S, τ > 0. (4.45)

For all p = 1, . . . , nk and ǫ > 0 we consider:

P(|Xkp| > ǫ) = P

(

∣

∣

∑

s∈S ls(p)[ms(p) − Ts(p)]
∣

∣

sk

> ǫ

)
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We define δ := ǫ sk. Due to Proposition 4.1, δ ∈ (0,∞) holds. It applies

P

(

∣

∣

∑

s∈S ls(p) [ms(p) − Ts(p)]
∣

∣

sk

> ǫ

)

= P

(
∣

∣

∣

∑

s∈S

ls(p) [ms(p) − Ts(p)]
∣

∣

∣
> δ

)

≤ P

(

∑

s∈S

ls(p) |ms(p) − Ts(p)| > δ
)

≤ P
(

|S| l̂i max
s∈S

|ms(p) − Ts(p)| > δ
)

.

We set τ := δ

|S| l̂i
. Because of |S|, l̂i ∈ (0,∞) (cf. (4.43)), it holds that

τ ∈ (0,∞). For ease of notation, we denote by 1 the index s ∈ S for which
the maximum value of |ms(p) − Ts(p)| is attained. We obtain

P
(

|S| l̂i max
s∈S

|ms(p) − Ts(p)| > δ
)

= P
(

|m1(p) − T1(p)| > τ
)

.

Because of (4.44) and (4.45), it holds for all τ > 0 that

lim
k→∞

P
(

|m1(p) − T1(p)| > τ
)

= lim
k→∞

P
(

m1(p) > τ
)

= 0.

In conclusion, for all p = 1, . . . , nk it applies that

lim
k→∞

P(|Xkp| > ǫ) = 0 for all ǫ > 0.

Therefore, the above expression holds for the maximum value of Xkp over all
p = 1, . . . , nk. �

Due to Theorem 4.2, the Lindeberg condition (4.34) is necessary for the
random variables Xk to converge against the standard normal distribution.
That is, if the condition is not fulfilled the variables Xk do not approach the
standard normal distribution as k goes to infinity. The non-fulfillment of the
Lindeberg condition by the random variables is shown in the next step:

Proposition 4.3 The random variables Xkp defined by (4.41) do not satisfy
the Lindeberg condition (4.34).

Proof. We substitute Xkp by its definition (4.41) in the Lindeberg condition.
This yields the following expression to prove:

lim
k→∞

nk
∑

p=1

1

s2
k

∫

{|Yp−µp|>ǫ sk}

(Yp − µp)
2 dP 6= 0, for any ǫ > 0.

Because of Proposition 4.1, we just need to show that

lim
k→∞

nk
∑

p=1

∫

{|Yp−µp|>ǫ sk}

(Yp − µp)
2 dP 6= 0, for any ǫ > 0.
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Due to the boundedness of sk and ls(p) by constants within (0,∞) (cf. Propo-
sition 4.1 and (4.43)), above expression is equivalent to:

lim
k→∞

nk
∑

p=1

∑

s∈S

∫

{|ms(p)−Ts(p)|>δ}

ls(p)2
(

ms(p) − Ts(p)
)2

dP 6= 0, for any δ > 0.

Since Ti > 0 applies, there exist at least one pixel p ∈ A
(k)
i and one

service s ∈ S with Ts(p) > 0. In the case that Ts(p) = 0 for any tuple (p, s),
it holds that ms(p) = 0 with probability one. Hence, such tuples (p, s) are
not taken into account in the above integral. Without loss of generality, we
thus assume that

Ts(p) > 0 ∀ p ∈ A
(k)
i , k ∈ N, s ∈ S. (4.46)

Following formulation applies for all δ > 0 because of the special refinement
we use (cf. (4.38)):

nk
∑

p=1

∑

s∈S

∫

{|ms(p)−Ts(p)|>δ}

ls(p)2
(

ms(p) − Ts(p)
)2

dP

≥ 2dk |S| ľ2i min
p∈A

(k)
i , s∈S

∫

{|ms(p)−Ts(p)|>δ}

(

ms(p) − Ts(p)
)2

dP.

Without loss of generality, let 1 be the index in S and p⋆ be the pixel in
A

(k)
i for which the minimum value in the above expression is attained. For

sufficiently large k, it holds that T1(p
⋆) < 1

2
due to (4.44). Thus, we obtain

for δ ≤ 1
2

2dk |S| ľ2i

∫

{|m1(p⋆)−T1(p⋆)|>δ}

(

m1(p
⋆) − T1(p

⋆)
)2

dP

= 2dk |S| ľ2i

∫

{m1(p⋆)≥1}

(

m1(p
⋆) − T1(p

⋆)
)2

dP

≥ 2dk |S| ľ2i

∫

{m1(p⋆)=1}

(

m1(p
⋆) − T1(p

⋆)
)2

dP

= 2dk |S| ľ2i
(

1 − T1(p
⋆)

)2
e
−T1(p

⋆)
T1(p

⋆).

In (2.3), we expressed the expected number of users for one service in a region
of the planning area by using a user density. With this equation, we receive

2dk |S| ľ2i
(

1 − T1(p
⋆)

)2
e
−T1(p

⋆)
T1(p

⋆)

= 2dk |S| ľ2i
(

1 − T1(p
⋆)

)2
e
−T1(p

⋆)
∫

p⋆

f1(p) dp.
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We define
c := f1(p

⋆).

Due to (4.46), it holds that c > 0. The following expression is satisfied:

∫

p⋆

f1(p) dp = f1(p
⋆) λd(p⋆) = c λd(Ai) 2−dk > 0.

For this reason, we obtain

2dk |S| ľ2i
(

1 − T1(p
⋆)

)2
e
−T1(p

⋆)
∫

p⋆

f1(x) dx

= 2dk |S| ľ2i
(

1 − T1(p
⋆)

)2
e
−T1(p

⋆)
c λd(Ai) 2−dk

= |S| ľ2i
(

1 − T1(p
⋆)

)2
e
−T1(p

⋆)
c λd(Ai).

Because of (4.44), it holds that

lim
k→∞

(

1 − T1(p
⋆)

)2
= 1 and lim

k→∞
e
−T1(p

⋆)
= 1.

Hence follows

lim
k→∞

|S| ľ2i
(

1 − T1(p
⋆)

)2
e
−T1(p

⋆)
c λd(Ai) = |S| ľ2i c λd(Ai) > 0.

�

We proved that the random variables C↑
ii and C↓

i , respectively, do not
converge against a normal distribution with expected value E[C↑

ii] and E[C↓
i ],

respectively, and variance V[C↑
ii] and V[C↓

i ], respectively.

4.4.4 Discussion

We know that the assumption of C↑
ii and C↓

i being normally distributed
does not hold. However, it is reasonable to approximate the distribution of
these random variables by a normal distribution. Their exact distribution
is a sum of weighted Poisson distributions. This is difficult to handle. A
probability for each possible value in the range of the particular random
variable has to be computed. This is considerably more complex than using
the known quantiles of the normal distribution. Hence, we would have the
same problem as with Monte Carlo simulation. The method would be precise
but too computationally expensive for some purposes. For this reason, we
have to make a compromise and take systematical estimation errors.
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The accuracy we get with the approximation by a normal distribution
seems to be acceptable. Figures 4.1 and 4.2 illustrate this. The figures
depict the exact distribution of C↑

ii and C↓
i for one cell, each described by

a histogram arising from the evaluation of 1000 traffic snapshots. The red
curve represents a normal distribution with expected value E[C↑

ii] and E[C↓
i ],

respectively, and variance V[C↑
ii] and V[C↓

i ], respectively. Particularly in the
downlink direction, there are errors we make with this approximation. This
is due to the higher variance in downlink that causes higher deviations from
the expected value. However, these errors are acceptable in exchange for a
quick and simple way to determine the probability density of the random
variables.
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Figure 4.1: Distribution of the random variable for service speech telephony
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Figure 4.2: Distribution of the random variable for a service mix



5 Power Knapsack

An alternative approach of approximating the blocking rates of the cells in
a UMTS radio network is discussed in this chapter. We understand the
given task as a Knapsack problem. In such a problem, we are given a set of
elements, each with a certain weight and value. The task is to find a subset
out of the given set in a way that its total weight does not exceed a certain
bound and that its accumulated value is at maximum.

In our case, we have a kind of fractional power knapsack. We make two
central assumptions in this model:

(1) The power of the own antenna is at its maximum.

(2) We use constant estimates for the powers of the other antennas.

With these conditions, we are able to assign a specified weight to each mobile
in our sector. This weight represents the power that would be received from
or consumed by the user if it was served under the above assumptions. The
bound in our Knapsack problem is the maximum power the antenna is able to
receive from or transmit on the dedicated channels. Due to the assumption
of compressible user demand (cf. Section 3.1.3) it is possible to “fill” our
power knapsack until the bound is met exactly. The surplus is not served.
Hence, the ratio of unserved user weight to the total weight of all mobiles
in the sector represents the blocking rate. In our basic model, we assume
the power level of the considered antenna to be at its maximum if blocking
occurs. From this point of view, condition (1) is reasonable. We use the
expected coupling approach from Section 3.1.2 to assess the powers of the
other base station antennas.

First, the method is introduced at a set of mobile stations given by a traffic
snapshot. Afterwards, we consider the distribution of the accumulated weight
of all mobiles in the cell. This random variable is assumed to be normally
distributed as sum of many independent random variables. We determine the
expected value of the average blocking rate depending on the total weight of
all users in the cell.
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5.1 Snapshot Based Derivation

This section derives the approach for a traffic snapshot. The basic idea can be
found in [1], where it was introduced merely for the downlink direction. This
thesis also covers the uplink afterwards and enhances the proposed model.

5.1.1 Downlink

For a base station antenna i ∈ N , the size of the power knapsack κ↓
i is defined

as

κ↓
i := pmax↓

i − p
(c)
i . (5.1)

This value represents the mentioned upper bound of our cell. We assume,
that the present mobiles in cell i consume exactly this power. The total
average transmission power of antenna i allocated to the traffic on dedicated
channels if all mobile stations in its sector are served reads as

∑

m∈Mi
α↓

m p↓im.

The value p↓im is the transmission power from antenna i to mobile m under
the condition that the antenna transmits at its maximum power level pmax↓

i

(assumption (1)). The power p↓im can be determined using the CIR target
equality introduced in (2.8). Due to assumptions (1) and (2), we obtain

µ↓
m =

γ↓
im p↓im

γ↓
im ω̄m

(

pmax↓
i − α↓

m p↓im

)

+
∑

j 6=i γ
↓
jm p̃↓j + ηm

.

The powers p̃↓j for all j 6= i are the solutions of the system of equations (3.14)

using the expected coupling matrix. Solving the above equation for p↓im
results in

p↓im =
l↓m

α↓
m

(

ω̄m pmax↓
i +

∑

j 6=i

γ↓
jm

γ↓
im

p̃↓j +
ηm

γ↓
im

)

. (5.2)

The downlink user load l↓m for mobile station m is defined by (3.6).
In Section 2.5.3, we derived the condition for no blocking to occur in

cell i. With the definition (5.1) of κ↓
i , the downlink inequality of (2.10) can

be transformed into
∑

m∈Mi

α↓
m p↓im ≤ κ↓

i . (5.3)

It is convenient to write this as

1

κ↓
i

∑

m∈Mi

α↓
m p↓im ≤ 1. (5.4)
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The values α↓
m p↓im are the weights of our Knapsack problem for each mobile

in the sector. We define the left hand side of inequality (5.4) as K↓
i , that is,

K↓
i :=

1

κ↓
i

∑

m∈Mi

α↓
m p↓im. (5.5)

This can be understood as the content that shall fit into the power knapsack.
The variable K↓

i depends on the set of served mobile stations Mi since p↓im
might be different for different users. The value K↓

i approximates the frac-
tion of total available transmission power of antenna i spent on the traffic
on dedicated channels. Inequality (5.4) states that blocking occurs if this
fraction is greater than one. That means, we “fill” our power knapsack with
mobile weights α↓

m p↓im until the bound of one is reached exactly. In doing
so, some of these weights might be taken fractionally. The (fractions of) user
weights contributing to the excess are rejected. Therefore, the average down-
link blocking rate b̃↓i of base station antenna i for the considered snapshot is
given by

b̃↓i =







0 for K↓
i ≤ 1

K
↓
i −1

K
↓
i

for K↓
i > 1.

(5.6)

We verify this formula by showing that

b̃↓i = 1 − λ↓
i .

The scaling factor λ↓
i – introduced in Section 3.1.3 – is defined by:

λ↓
i = min

{

1,
pmax↓

i − p
(c)
i

C↓
ii p

max↓
i +

∑

j 6=i C
↓
ij p̃↓j + p

(η)
i

}

. (5.7)

This formulation can be derived from (3.14) since we estimate the other
antennas’ powers p̃↓j , j 6= i (assumption (2)).

(i) In the case that K↓
i ≤ 1, equation (5.3) holds. Substituting p↓im accor-

ding to (5.2) yields

∑

m∈Mi

l↓m

(

ω̄m pmax↓
i +

∑

j 6=i

γ↓
jm

γ↓
im

p̃↓j +
ηm

γ↓
im

)

≤ κ↓
i .

This is equivalent to

C↓
ii p

max↓
i +

∑

j 6=i

C↓
ij p̃↓j + p

(η)
i ≤ pmax↓

i − p
(c)
i .

Hence follows, that λ↓
i = 1 and thus b̃↓i = 1 − λ↓

i .
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(ii) In the case that K↓
i > 1, it holds that

C↓
ii p

max↓
i +

∑

j 6=i

C↓
ij p̃↓j + p

(η)
i > pmax↓

i − p
(c)
i .

Therefore, λ↓
i is assessed by

λ↓
i =

pmax↓
i − p

(c)
i

C↓
ii p

max↓
i +

∑

j 6=i C
↓
ij p̃↓j + p

(η)
i

.

For b̃↓i , we obtain

b̃↓i =
K↓

i − 1

K↓
i

= 1 −
1

1

κ
↓
i

∑

m∈Mi
α↓

m p↓im

= 1 −
κ↓

i

∑

m∈Mi
l↓m

(

ω̄m pmax↓
i +

∑

j 6=i

γ
↓
jm

γ
↓
im

p̃↓j + ηm

γ
↓
im

)

= 1 −
pmax↓

i − p
(c)
i

C↓
ii p

max↓
i +

∑

j 6=i C
↓
ij p̃↓j + p

(η)
i

= 1 − λ↓
i .

�

5.1.2 Uplink

In the uplink direction, a base station antenna does not only receive signals
from the mobile stations in the own sector. Instead, the reception power
of an antenna is composed of the received powers of all users in the entire
planning area. Depending on the attenuation factor from a mobile station
to the considered antenna, the strength of the incoming power varies. We
assume that the contributions of the other cells j 6= i are constant at their
expected average values. That is,

∑

j 6=i

C̃↑
ij p̃↑j = constant.

The matrix C̃↑ is the scaled, expected cell load coupling matrix. The scaling
describes the blocking behavior of a cell. An antenna rejects users exceeding
its power limits. In order to represent this functionality, the scaling has to
be involved. The maximum power antenna i can receive from the mobiles in
the own cell reads as

κ↑
i = pmax↑

i −
∑

j 6=i

C̃↑
ij p̃↑j − ηi. (5.8)
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This is the upper bound or size of our power knapsack.
The total average reception power arising from all present users in the cell

if none of them is blocked is given by
∑

m∈Mi
γ↑

mi α
↑
m p↑m. With condition (1),

we obtain from the CIR target equality (2.6):

p↑m =
l↑m

γ↑
mi α

↑
m

pmax↑
i . (5.9)

The situation that there is enough capacity to serve all users in cell i in
uplink is characterized by

∑

m∈Mi

γ↑
mi α

↑
m p↑m ≤ κ↑

i . (5.10)

We transform this inequality into

1

κ↑
i

∑

m∈Mi

γ↑
mi α

↑
m p↑m ≤ 1. (5.11)

The weights of our knapsack are the values γ↑
mi α

↑
m p↑m for each mobile station

in cell i. We define the fraction of total possible reception power at antenna i
stemming from the traffic on dedicated channels of the own cell by

K↑
i :=

1

κ↑
i

∑

m∈Mi

γ↑
mi α

↑
m p↑m. (5.12)

Due to inequality (5.11), we can “put” mobile powers into the power knapsack
until we meet the upper bound of one exactly. That part of the total offered
mobile reception power K↑

i greater than one is rejected. Thus, for the average
blocking rate b̃↑i at base station antenna i in the given traffic snapshot holds:

b̃↑i =







0 for K↑
i ≤ 1

K
↑
i −1

K
↑
i

for K↑
i > 1.

(5.13)

We prove this formula by deriving that

b̃↑i = 1 − λ↑
i .

If blocking occurs in cell i, that is, λ↑
i < 1, it holds that

pmax↑
i = C↑

ii λ
↑
i pmax↑

i +
∑

j 6=i

C̃↑
ij p̃↑j + ηi

due to (3.16). Hence, the scaling factor λ↑
i is given by

λ↑
i = min

{

1,
pmax↑

i −
∑

j 6=i C̃
↑
ij p̃↑j − ηi

C↑
ii p

max↑
i

}

. (5.14)
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(i) Let K↑
i ≤ 1 hold. That is, inequality (5.10) is satisfied. If we replace

p↑m according to (5.9), this results in

∑

m∈Mi

l↑m pmax↑
i ≤ κ↑

i .

This can be written as

C↑
ii p

max↑
i ≤ pmax↑

i −
∑

j 6=i

C̃↑
ij p̃↑j − ηi.

Therefore, λ↑
i = 1 and b̃↑i = 1 − λ↑

i .

(ii) In the case that K↑
i > 1, it holds that

C↑
ii p

max↑
i > pmax↑

i −
∑

j 6=i

C̃↑
ij p̃↑j − ηi.

Hence follows, that

λ↑
i =

pmax↑
i −

∑

j 6=i C̃
↑
ij p̃↑j − ηi

C↑
ii p

max↑
i

.

For the average blocking rate b̃↑i , we receive

b̃↑i =
K↑

i − 1

K↑
i

= 1 −
1

1

κ
↑
i

∑

m∈Mi
γ↑

mi α
↑
m p↑m

= 1 −
κ↑

i
∑

m∈Mi
l↑m pmax↑

i

= 1 −
pmax↑

i −
∑

j 6=i C̃
↑
ij p̃↑j − ηi

C↑
ii p

max↑
i

= 1 − λ↑
i .

�

5.2 The Expected Power Knapsack

In this section, we understand the variables K↓
i and K↑

i as realizations of
random variables. In this way, the proposed method can be generalized on
the basis of average traffic load distributions. The random variables are
supposed to follow a normal distribution because they are the sum of many
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independent random variables. We determine the expected value of the ave-
rage blocking rate depending on the scaled, accumulated user weight K↑

i

and K↓
i , respectively. As in former chapters, we assume representative CIR

targets µ↓
s, µ↑

s and transmit activity factors α↓
s, α↑

s for every service s ∈ S.
Moreover, the orthogonality factors ω̄p and noise ηp in downlink are location-

specific as well as the attenuation factors γ↓
ip and γ↑

pi.

5.2.1 Downlink

We substitute p↓im according to (5.2) in the definition (5.5) of K↓
i . This results

in

K↓
i =

1

κ↓
i

∑

m∈Mi

(

ω̄m pmax↓
i +

∑

j 6=i

γ↓
jm

γ↓
im

p̃↓j +
ηm

γ↓
im

)

l↓m.

According to (5.4), there is no blocking in downlink at antenna i if

K↓
i ≤ 1

holds. For K↓
i > 1, the average blocking rate is determined by (5.6). Thus,

the expected value of the average blocking rate in cell i can be obtained by

E[̃b↓i ] =

∫ ∞

1

x − 1

x
f̃ ↓

i (x) dx. (5.15)

Here, f̃ ↓
i denotes the probability density function of K↓

i .

The random variable K↓
i can be assumed to follow a normal distribution.

In fact, the limiting distribution as the number of pixels in the cell area |Ai|
goes to infinity is not a normal distribution. The proof is the same as given
in Section 4.4.3 with

ls(p) =
1

κ↓
i

(

ω̄p pmax↓
i +

∑

j 6=i

γ↓
jp

γ↓
ip

p̃↓j +
ηp

γ↓
ip

)

α↓
s µ↓

s

1 + ω̄p α↓
s µ↓

s

.

Nevertheless, the assumption is sensible for the same reasons as discussed in
Section 4.4.4. In order to assess the probability density function f̃ ↓

i of K↓
i we

need to compute the expected value and variance of this random variable.
The expected value of K↓

i is determined by

E[K↓
i ] =

1

κ↓
i

∫

p∈Ai

(

ω̄p pmax↓
i +

∑

j 6=i

γ↓
jp

γ↓
ip

p̃↓j +
ηp

γ↓
ip

)

l↓p dp. (5.16)
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Remember, that l↓p defined in (3.11) is the expected value of l↓m in position p.

The variance of K↓
i satisfies

V[K↓
i ] =

1

(κ↓
i )

2

∫

p∈Ai

(

ω̄p pmax↓
i +

∑

j 6=i

γ↓
jp

γ↓
ip

p̃↓j +
ηp

γ↓
ip

)2

V[l↓m(p)] dp. (5.17)

The user densities in each pixel follow a Poisson distribution and are inde-
pendent (cf. Section 2.5.2). Therefore, the variance of the user number is
equal to its expected value. The variance of l↓m at location p is given by

V[l↓m(p)] =
∑

s∈S

(

α↓
s µ↓

s

1 + ω̄p α↓
s µ↓

s

)2

Ts(p). (5.18)

The effect of coupling can be included as described in Section 4.3 in order
to improve the estimates of the other antennas’ powers and thus to obtain
more accurate results.

5.2.2 Uplink

In the uplink direction, the realization of the random variable K↑
i for a traffic

snapshot reads as

K↑
i =

1

κ↑
i

∑

m∈Mi

l↑m pmax↑
i .

There are all users served in cell i if

K↑
i ≤ 1

holds (cf. (5.11)). The expected value of the uplink blocking rate can be
governed by

E[̃b↑i ] =

∫ ∞

1

x − 1

x
f̃ ↑

i (x) dx (5.19)

in which f̃ ↑
i denotes the probability density function of K↑

i .

The random variable K↑
i is assumed to be normally distributed. As in

the previous chapter, the Central Limit Theorem does not apply. This can
be proved in analogy to Section 4.4.3 with

ls(p) =
pmax↑

i

κ↑
i

α↑
s µ↑

s

1 + α↑
s µ↑

s

.
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However, a justification for this assumption can be found in Section 4.4.4.
The expected value of K↑

i satisfies the expression

E[K↑
i ] =

pmax↑
i

κ↑
i

∫

p∈Ai

l↑p dp. (5.20)

The variance of this random variable is determined by

V[K↑
i ] =

(pmax↑
i )2

(κ↑
i )

2

∫

p∈Ai

V [l↑m(p)] dp. (5.21)

Here, the variance of l↑m at location p is given by

V[l↑m(p)] =
∑

s∈S

(

α↑
s µ↑

s

1 + α↑
s µ↑

s

)2

Ts(p). (5.22)

With E[K↑
i ] and V[K↑

i ], the probability density function f̃ ↑
i of K↑

i is uniquely
determined. For the uplink direction, the effect of coupling can be taken into
account as pointed out in Section 4.3.
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6 Comparison of both Methods

A central question now is how both approaches are related with each other.
In this chapter, we prove that the results of the introduced methods from
the last two chapters are equal. The model from Chapter 4 is considered for
the general case of varying user load. As in the past chapters, the subscript
i marks the cell whose blocking rate shall be assessed. The index j denotes
other base station antennas.

6.1 Uplink

The first approach deals with the random variable

C↑
ii :=

∑

m∈Mi

l↑m.

The expected average blocking rate is determined according to

E[̄b↑i ] =

∫ ∞

0

[1 − λ↑
i (x)] f ↑

i (x) dx (6.1)

with λ↑
i given by

λ↑
i (x) =







min
{

1,
p
max↑
i −

P

j 6=i C̃
↑
ij p̃

↑
j−ηi

x p
max↑
i

}

for x > 0

1 for x = 0.

The second model covers the random variable

K↑
i :=

pmax↑
i

κ↑
i

∑

m∈Mi

l↑m.

The expected average blocking rate reads as

E[̃b↑i ] =

∫ ∞

1

x − 1

x
f̃ ↑

i (x) dx. (6.2)
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When comparing both random variables, it is easy to see that

K↑
i =

pmax↑
i

κ↑
i

C↑
ii (6.3)

holds. For this reason, following equality is satisfied for all x ∈ R:

f ↑
i (x) = f̃ ↑

i

(

pmax↑
i

κ↑
i

x

)

. (6.4)

The average blocking rate b̄↑i (x) = 1−λ↑
i (x) is zero for λ↑

i (x) = 1, that is, for

x ≤
pmax↑

i −
∑

j 6=i C̃
↑
ij p̃↑j − ηi

pmax↑
i

=
κ↑

i

pmax↑
i

.

Therefore, (6.1) is equal to

E[̄b↑i ] =

∫ ∞

κ
↑
i

p
max↑
i

[

1 −
pmax↑

i −
∑

j 6=i C̃
↑
ij p̃↑j − ηi

x pmax↑
i

]

f ↑
i (x) dx. (6.5)

We apply (6.4) to (6.5) and define y :=
p
max↑
i

κ
↑
i

x. This yields

E[̄b↑i ] =

∫ ∞

κ
↑
i

p
max↑
i

[

1 −
κ↑

i

x pmax↑
i

]

f̃ ↑
i

(

pmax↑
i

κ↑
i

x

)

dx

=

∫ ∞

1

[

1 −
1

y

]

f̃ ↑
i (y) dy = E[̃b↑i ].

6.2 Downlink

In the downlink direction, the first model considers the random variable

C↓
i :=

∑

m∈Mi

(

ω̄m pmax↓
i +

∑

j 6=i

γ↓
jm

γ↓
im

p̃↓j +
ηm

γ↓
im

)

l↓m

The average blocking rate is approximated by its expected value in following
way:

E[̄b↓i ] =

∫ ∞

0

[1 − λ↓
i (x)] f ↓

i (x) dx. (6.6)
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The scaling factor λ↓
i is assessed by

λ↓
i (x) =







min
{

1,
p
max↓
i −p

(c)
i

x

}

for x > 0

1 for x = 0.

In the second approach, we define the random variable

K↓
i :=

1

κ↓
i

∑

m∈Mi

(

ω̄m pmax↓
i +

∑

j 6=i

γ↓
jm

γ↓
im

p̃↓j +
ηm

γ↓
im

)

l↓m.

The expected average blocking rate is given by

E[̃b↓i ] =

∫ ∞

1

x − 1

x
f̃ ↓

i (x) dx. (6.7)

From the above representation of K↓
i we derive

K↓
i =

1

κ↓
i

C↓
i . (6.8)

Due to this, it holds that

f ↓
i (x) = f̃ ↓

i

(

x

κ↑
i

)

(6.9)

for all x ∈ R. Because λ↓
i (x) = 1 for

x ≤ pmax↓
i − p

(c)
i = κ↓

i ,

E[̄b↓i ] can be written as

E[̄b↓i ] =

∫ ∞

κ
↓
i

[

1 −
pmax↓

i − p
(c)
i

x

]

f ↓
i (x) dx. (6.10)

With (6.9) and y := x

κ
↑
i

, this can be transformed in following way:

E[̄b↓i ] =

∫ ∞

κ
↓
i

[

1 −
κ↓

i

x

]

f̃ ↓
i

( x

κ↑
i

)

dx

=

∫ ∞

1

[

1 −
1

y

]

f̃ ↓
i (y) dy = E[̃b↓i ].
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7 Computational Results

In this chapter, the computational results of the mathematical models intro-
duced in this thesis are presented and analyzed. First, we focus on the im-
plementation of the approaches. Then, the test cases are introduced briefly.
Afterwards, the results are presented and explained. In doing so, we first
show the general behavior of the methods at a synthetic scenario with an
isolated cell. In a second step, we consider the same simple scenario with a
radio network consisting of two base station antennas. This situation serves
to validate the developed models. Many extensive tests on realistic data are
conducted. In this chapter, we merely give some selected representative re-
sults of them. The complete set of computational results can be found in
Appendix B.

7.1 Implementation

The presented methods are each implemented in two parts. The first one
consists of computing the expected value and variance of the particular ran-
dom variable. Here, we use JavaTM 2 Standard Edition version 5.0 for pro-
gramming. The input data is given in XML-format. After reading this, the
program iterates over all pixels in the planning area. In every iteration, it
adds the computed values to the expected value and variance respectively of
the best server in the current location. The powers of the other antennas
are computed using the expected coupling approach from Section 3.1.2. In
doing so, the load scaling factors λ↑ and λ↓ have to be assessed. The arising
extended linear complementarity problem for the uplink direction is solved
by Ilog Cplex 9.0. In the second part of the implementation, the expected
value of the average blocking rate of each cell is determined by numerical
integration. This is done by Matlab

R© version 7.0.1. The tests were run on
a computer with an IntelR© XeonR© processor with 2.4GHz. The computer
has a RAM of 3.8MB.
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7.2 Test Cases

In order to get a notion of how the methods work, the first test case is a syn-
thetic scenario. We consider very simple network configurations. The first
radio network is an isolated cell. The second one consists of two base station
antennas. Besides those simple cases, the tests are conducted on realistic
datasets from the Momentum project [8, 18]. These scenarios comprise the
downtown regions of The Hague, Berlin and Lisbon. Complex propagation
data is given as well as non-homogeneous traffic distributions for different
services. On each scenario, two different network designs are investigated.
The smallest scenario is The Hague with 12 sites. This scenario covers an
area of 16 km2. The treated network configurations have 19 and 36 cells,
respectively. The Berlin scenario extends over 56 km2 and has 65 sites. The
network designs have each 122 sectors. The region covered by the Lisbon
scenario is 21 km2 large. The scenario has 60 sites. One of the networks has
128 cells, the other one 164. Moreover, the realistic Turin scenario developed
within the Cost 273 Morans activity [19] is one of our test cases. The
complexity and scope of the data is equal to that of the data from the Mo-

mentum project. The network considered on the Turin scenario has 34 sites
and 103 cells.

In all covered radio networks, the maximum transmission power of a
base station antenna is 20W. The downlink load limit is 70%. In the uplink
direction, a maximum noise rise of around 3 dB is assumed. This corresponds
to a load limit of 50%. We scale the traffic intensity with different factors
(traffic scaling factors) in order to vary the amount of traffic. In doing so,
we produce some overload. The considered service mixes vary, too. We test
the single-service case as well as service mixes. In the multi-service case,
we conduct tests when merely circuit-switched (cs) services are included in
the scenarios like speech telephony and video telephony. Furthermore, a
mix of circuit- and packet-switched services is tested for all scenarios. The
essential average parameters for every service class are listed in Table 7.1 for
the downlink direction. The abbreviation R denotes the average bit rate of
the service, α is its transmit activity factor and µ its average CIR target.

Service R [Kbps] α µ [dB]

Speech telephony 12.2 0.5 −15.90
Video telephony 64.0 1.0 −11.56
Data transmission 64.0 0.9 −10.95

Table 7.1: Average service parameters in downlink
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We test two versions of each model. One takes the effect of coupling into
account according to (4.29) and (4.30), respectively (refined version), and one
does not (simple version). The results are compared to those of Monte Carlo
simulation on traffic snapshots introduced in Section 3.1.1. In [7] it is shown
that these results are a good approximation of results obtained by Monte
Carlo simulation including a more extensive load analysis in each trial. The
errorbars around the points belonging to these results represent the confi-
dence intervals for a confidence level of 95% (cf. Section 3.2). Furthermore,
the results of the approach using the expected coupling matrix from Sec-
tion 3.1.2 are given. This model is the basis of the developed methods. In
this way, the achieved improvement is revealed.

7.3 Validation

The synthetic scenario serves to validate the models introduced in this the-
sis. For this reason, the complete curves of the blocking rate are plotted
depending on the different traffic scaling factors. This is done for every cell
in logarithmic scale. The synthetic scenario is denoted by “Synth.” in the
pictures. We additionally plot two dashed, magenta-colored lines in each
illustration marking the region of the blocking rate between 1 and 5%. This
interval is the most important for us. Blocking rates lower than 1% are
negligible. Those higher than 5% are not probable to occur in the network
designs we consider.

7.3.1 One Cell

In the case of an isolated cell there is no difference between the simple and
the refined version since there are no other antennas whose powers could
be estimated. Figure 7.1 depicts the results for the isolated antenna of the
synthetic scenario in the case of the single service speech telephony in uplink
and downlink, respectively. We recognize, that all obtained values lie inside
the confidence intervals. Figure 7.2 illustrates the outcomes for the service
mix including merely the circuit-switched services. Figure 7.3 shows the
results for a general service mix. In both cases, almost all values lie inside
the confidence intervals. That is, the presented approaches deliver reasonable
outcomes for our purpose. Furthermore, the strong improvement compared
to the expected coupling method is noticeable. For low blocking rates, the
results of this method are zero and hence not depicted due to the logarithmic
scale. Only in ranges over 5% the results of the expected coupling method
approach the exact blocking rates.
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Figure 7.1: Synth.: one cell, speech telephony
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Figure 7.2: Synth.: one cell, cs services
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Figure 7.3: Synth.: one cell, service mix
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7.3.2 Two Cells

For 100% speech telephony users, the results are shown in Figure 7.4 for
both cells in the uplink direction. The downlink is depicted in Figure 7.5. Of
course, the outcomes of the approaches are not as precise as for an isolated
antenna since more sources of estimation errors are involved, now. The Fi-
gures 7.6–7.9 depict the results for different service mixes. All figures reveal
that the blocking rate is systematically underestimated in low ranges under
2–4%. We note that this underestimation is stronger in the simple version.
The curve of the blocking rate of the simple variant approaches the curve of
the exact blocking rate later than that of the refined alternative. Particularly
in the downlink direction, the results of the precise version are better. The
powers of the other base station antennas are estimated higher in this variant
and thus the blocking rate. In the uplink, the differences are very small and
thus hardly to recognize in the diagrams. In general, the transmission power
of a cell is considerably higher than its reception power because the mobile
station antennas are much less powerful than the base station antennas.
Therefore, the differences between the simple and the refined alternative are
higher in downlink.

This systematical estimation error is probably due to the fact that we
estimate the powers of the other base station antennas by using the expected
coupling model. As pointed out in Section 3.3, this approach tends to un-
derestimate the average power of an antenna in low ranges. If the powers of
other antennas are estimated too low, the inter-cell interference in our sec-
tor is underestimated. Thus, the blocking rate is underestimated, too. This
cannot be compensated for completely by considering the effect of coupling
in the refined versions of our methods. This enhancement determines an
estimate for the average powers of the other antennas under the assumption
that the power level of our antenna is at its maximum. However, the other
cells’ powers are still underestimated compared to the exact powers condi-
tioned to the situation when the power of our antenna is at its maximum.
The reasons are the same as given in Section 3.3. Traffic snapshots with
more users than expected contribute above average to the exact power and
blocking rate. These snapshots are as probable to occur in reality as traffic
snapshots with less users than expected. These effects of randomness are
ignored in the expected coupling approach. Furthermore, the assumption of
the random variables of our methods being normally distributed is not valid
(cf. Section 4.4). Hence, this approximation causes errors, too.
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Figure 7.4: Synth.: two cells, speech telephony, uplink
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Figure 7.5: Synth.: two cells, speech telephony, downlink
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Figure 7.6: Synth.: two cells, cs services, uplink
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Figure 7.7: Synth.: two cells, cs services, downlink
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Figure 7.8: Synth.: two cells, service mix, uplink
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Figure 7.9: Synth.: two cells, service mix, downlink
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7.4 Results

We conduct many extensive tests on the described huge real-world scenarios.
All these results are given in Appendix B. In this section, we confine ourselves
to showing only a few selected ones. In fact, the observations are similar in
all cases. In contrast to the synthetic scenario, one diagram is made for one
traffic scaling factor. This diagram shows the blocking rate depending on
the cell index in logarithmic scale. Only cells with a blocking rate greater
than 0.001 are plotted for the sake of clarity. Moreover, a scatter diagram
illustrates the difference between the results of our approaches and those of
Monte Carlo simulation depending on the exact blocking rate. One such
diagram is given for each network design.

In the tests, the traffic scaling factors were chosen such that the maxi-
mum blocking rate in the network lies a little above the limit of 2%. Such
situations are of most interest since the expected coupling approach fails here
completely. The limit is marked in the pictures by a dashed, magenta-colored
line. In the depicted regions, the blocking rates obtained by the expected
coupling approach lie around zero. For this reason, these blocking rates are
not shown in the diagrams due to the logarithmic scale. In all illustrations,
the exact blocking rate of a cell is colored red. The approaches introduced in
this thesis are colored blue (refined) and green (simple), respectively. This
is important since there is no legend due to space limitations. In the caption
of the figures, the scenario, the network, the services mix, the traffic scaling
factor, and the direction of transmission are given. The abbreviation “UL”
stands for “uplink” while “DL” means “downlink”.

Generally, the tests at huge scenarios confirm the observations made at
the simple test cases. Our models underestimate the blocking rate in the
depicted ranges under 3%. This systematical estimation error is lower for
services with a low data rate. Especially for the service speech telephony, the
results of our approaches comply well with those of Monte Carlo simulation,
see for instance Figure 7.10. Services with a low data rate require a low CIR
target and thus have a small user load l↑p and l↓p, respectively. The underlying
random variable in our models is the traffic distribution in the planning area.
The traffic intensity for a specified service in a certain position is weighted
by the average user load for this service. A low user load means, that made
estimation errors in the user intensity are weighted lower than for services
with a high user load. Furthermore, a high user load causes a high variance
of the coupling matrix entries. The variance is a measure for the statistical
dispersion of a random variable. That is, a high variance indicates a possibly
high difference of the realizations of the random variable from its expected
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value. The more the coupling matrix in reality deviates from the expected
value we use, the higher are the estimation errors we make.
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(b) Berlin, network 2: 122 cells, 1.85

Figure 7.10: Examples for speech telephony, uplink

An example for a service with a relative high user load is depicted in
Figure 7.11(a). The diagram illustrates the results in uplink for video tele-
phony. There are fewer cells whose approximated blocking rate lies inside the
confidence interval than before. The same applies for packet-switched ser-
vices. Users of them generally have a high load. An example for the service
e-mail is shown in Figure 7.11(b).
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(a) Video telephony, 2.3

20 40 60 80 100
10

−3

10
−2

10
−1

CellIndex

B
lo

ck
in

g 
R

at
e

(b) e-mail, 1150

Figure 7.11: Berlin, network 2: 122 cells, uplink

The explained differences between services with different user loads are
one reason why the service mixes deliver results with larger differences to
the exact blocking rate. The mixes include services with a high user load.
Another reason is that in contrast to the single-service case more estimation
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errors are involved for several services. The errors made for each service
are accumulated in this case. Examples are depicted in Figure 7.12. In all
presented figures, we see the difference between the simple and the refined
version of our approaches. As in the synthetic scenario, the differences in
downlink are much higher than in the uplink direction. In the uplink, the
results of both versions are roughly equal.
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(a) Network 1, cs services, 0.58

20 40 60 80 100 120
10

−3

10
−2

10
−1

Cell Index

B
lo

ck
in

g 
R

at
e

(b) Network 2, service mix, 0.5

Figure 7.12: Berlin: 122 cells, different service mixes, downlink

Figure 7.13 depicts the scatter diagram for one network of the Berlin
scenario in uplink. Figure 7.13(a) shows the entire diagram for all tested
traffic scaling factors. Figure 7.13(b) illustrates the extract marked by the
black rectangle in Figure 7.13(a). These diagrams visualize the difference
between our refined methods and Monte Carlo simulation depending on the
exact blocking rate. The values of all cells are plotted for all used traffic
scaling factors and services. Each service is marked by a different color.
The legend is merely given in Figure 7.13(a) due to space limitations in
Figure 7.13(b). The different traffic scaling factors used explain the different
heights of the exact blocking rate for different service mixes.

These scatter diagrams show again that our approaches underestimate the
blocking rate of most cells in low regions under around 5%. In higher ranges
over approximately 10%, they usually overestimate the exact blocking rate.
The reason is the same as for the underestimation explained in Section 7.3.2.
We miscalculate the powers of the other antennas. The other cells’ powers
tend to be overestimated by the expected coupling approach in high regions
(cf. Section 3.3). Therefore, the inter-cell interference is overestimated and
thus the blocking rate in our sector. The described estimation error has more
effect on cells with high coupling to their neighbors.

Figure 7.14 shows the scatter diagram for the same network in downlink.
We recognize that the blocking rate of most cells is underestimated under
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Figure 7.13: Berlin, network 1: 122 cells, scatter diagram, uplink

roughly 3%. The overestimation starts earlier than in uplink. From approxi-
mately 5% on, the blocking rate of most sectors is overestimated. This is due
to the fact that we vary the off-diagonal entries of the coupling matrix and the
traffic noise power, too. Moreover, the differences between our approaches
and the exact blocking rates are higher in the downlink direction. This is
due to the service mix. In contrast to the uplink, we include more services
with a high data rate. Besides, the variance of the random variables is higher
in downlink. The scatter diagrams for the other investigated networks can
be found in Appendix B.
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Figure 7.14: Berlin, network 1: 122 cells, scatter diagram, downlink

In Figure 7.15, the overestimation of the blocking rate by our models is
illustrated for the downlink direction. In Figure 7.15(a), the result of the
refined version of our approaches for the cell with the index 8 lies above the
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confidence interval. Actually, such a strong overestimation in these low re-
gions is exceptional. This is the only case of all conducted tests in which the
blocking rate lies above the confidence interval for a cell with an exact block-
ing rate under 2%. In other cases of overestimation in these low regions, the
approximation lies inside the confidence interval as shown in Figure 7.15(b)
for the cell with the index 90.
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(a) The Hague: 19 cells, speech tele-
phony, 6
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Figure 7.15: Examples for overestimation, downlink

7.4.1 Running Time

The average running times for the simple versions of our methods are listed
in Table 7.2. Those of the refined variants are given in Table 7.3. The total
running time is broken down into the two parts of implementation described
in Section 7.1. The entries in the column “Part I” specify the time needed to
compute the expected value and variance of the random variables including
the time for solving the modified equation systems (4.29) and (4.30) in the
refined version. The column “Intg” shows the running time for numerical
integration in the second part. All the times are given in seconds. The
columns with title “I” each refer to the first model introduced in Chapter 4.
The heading “II” stands for the second method given in Chapter 5.

The first approach is a few seconds quicker in the first part of the imple-
mentation. The reason is the computational complexity of calculating the
knapsack size κ↑

i in uplink in the second model. For assessing this value for
every cell, the entries of the coupling matrix are summed up for each row.
This causes additional computational effort of quadratic size in the number
of cells. However, the first approach takes on average more time for the nu-
merical integration in the second part of the implementation. The reason is
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Number Part I Intg Total
Scenario

of Cells I [s] II [s] I [s] II [s] I [s] II [s]

19 34.00 37.46 1.61 0.50 35.16 37.96
The Hague

36 32.92 34.26 1.64 0.43 34.56 34.69
Turin 103 53.93 64.90 5.71 1.34 59.64 66.24
Berlin, network 1 122 41.11 47.21 8.27 2.34 49.38 49.55
Berlin, network 2 122 39.79 51.97 7.57 2.08 47.36 54.05

128 67.73 72.65 7.59 2.11 75.32 74.76
Lisbon

164 61.15 65.16 6.94 1.66 68.09 66.82

Table 7.2: Average running times of the simple versions

that the computation of λ↑
i in the first model is more complex than calcu-

lating x−1
x

in the second method. Again, the entries of the uplink coupling
matrix are summed up for every row. The relative differences between the
models are smaller in the first part of the implementation. This is probably
due to the use of a different program for each part. Altogether, the average
total running time of both approaches is about the same.

Number Part I Intg Total
Scenario

of Cells I [s] II [s] I [s] II [s] I [s] II [s]

19 35.50 39.05 1.60 0.48 37.10 39.53
The Hague

36 38.53 43.04 1.63 0.41 40.16 43.45
Turin 103 71.10 78.35 5.76 1.35 76.86 79.70
Berlin, network 1 122 73.07 75.92 8.31 2.31 81.38 78.23
Berlin, network 2 122 72.81 80.12 7.42 2.10 80.23 82.22

128 102.79 107.87 7.64 2.10 110.43 109.97
Lisbon

164 156.58 158.44 6.91 1.72 163.49 160.16

Table 7.3: Average running times of the refined versions

For small scenarios, like The Hague, the difference between the simple
and the refined versions of our approaches is negligible. By contrast, in
larger scenarios solving the modified equation system takes approximately
just as long as computing the expected value and variance of the random
variables. The time for numerical integration is only a few seconds even for
many cells. This time is equal in both versions.

In Table 7.4, the average running times of the refined version of the
approach from Chapter 5 are compared to those of Monte Carlo simulation.
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The times are given in seconds. During Monte Carlo simulation, we evaluate
1000 traffic snapshots for each scenario by using the method introduced in
Section 3.1.1. This analysis is implemented in JavaTM 2 Standard Edition
version 5.0, too. The extended linear complementarity problem arising by
the computation of the load scaling factors λ↑ in uplink is again solved by
Ilog Cplex 9.0. Besides the given time for computing the blocking rates,
the time for creating the traffic snapshots has to be taken into account. This
issue is not considered here.

Number Monte Model II
Scenario

of Cells Carlo [s] [s]

19 612 40
The Hague

36 765 44
Turin 103 4864 80
Berlin, network 1 122 3680 78
Berlin, network 2 122 3680 82

128 4843 110
Lisbon

164 9914 160

Table 7.4: Comparison of the average running times

7.5 Conclusions

In order to find a compromise between accuracy and complexity, we do not
consider the complete underlying system in full detail. The powers of the
other antennas in the radio network are estimated by average values. More-
over, we assume the random variables to be normally distributed. These
simplifications cause systematical estimation errors.

In general, these errors are similar to those of the basic expected coupling
approach but they are considerably lower. In low regions under approxi-
mately 3–5%, the developed approaches underestimate the blocking rate. In
higher ranges over roughly 5–10%, our methods tend to overestimate the
blocking rate. However, these estimation errors lie in an acceptable range.
Moreover, the average running times of the developed models are very short.
Depending on the frequency of utilization during optimization we can prefer
the more precise variant or the simple alternative which is about twice as
quick. In the uplink, the results of both versions differ hardly from each
other. In the downlink, the refined version yields better results. The total
average running times of both proposed approaches are approximately equal.
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Altogether, we recognize that the developed models approximate the
blocking rates in a UMTS radio network very well. The presented compu-
tational results confirm this statement. They reveal that we have advanced
the basic approach immensely. A further success is that our approaches are
very quick compared to the complexity of Monte Carlo simulation. That is,
we found a trade-off between accuracy and computational effort. In conclu-
sion, the methods introduced in this thesis are very efficient. We reached the
goal to develop a model having about the complexity of the expected coup-
ling approach on the one hand and being about as precise as Monte Carlo
simulation on the other hand.
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8 Summary and Outlook

The goal of this thesis was to develop a mathematical model to efficiently
approximate the blocking rates of the cells in a UMTS radio network. The
blocking rate denotes the fraction of unserved users due to limited radio
resources at a base station antenna. This rate is an important criterion to
evaluate the quality of a radio network design. So far, no adequate method
was known, however, that is able to predict the average blocking rate quickly
and reliably. The difficulty is that the capacity of a UMTS radio cell varies.

In this thesis, two approaches were proposed to approximate the block-
ing rates in UMTS radio networks. These methods are based on an existing
model. In the first method, the inaccuracies of this existing approach were re-
duced by computing the expected value of the average blocking rate depend-
ing on the interference of the own cell. In the second method, the problem
was understood as a kind of fractional Knapsack problem. We considered the
distribution of the total weight of all users in the radio cell. Depending on
this accumulated weight, we determined the expected value of the average
blocking rate. In both approaches, the interference of the other radio cells
was estimated by average values. These estimates were stated more precisely,
however, at the cost of complexity. Moreover, we derived analytically that
the results of both models are equal.

Extensive computational tests revealed that we found a very good com-
promise between accuracy and complexity with the developed methods. The
characteristics of the basic model are still weakly present. That is, in low
ranges the blocking rate is a little underestimated and in higher regions
lightly overestimated. However, in contrast to the situation before these sys-
tematical estimation errors lie inside acceptable bounds. The computational
complexity of both introduced approaches is equal. In contrast to existing
methods with comparable accuracy, the average running times are extremely
short.

The small estimation errors could be reduced by finding more precise es-
timates of the other base station antennas’ powers. So far, we estimated
them by average values, which produce little errors. Another simplification
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we made in our methods is that we assumed the considered random vari-
ables to be normally distributed. We proved that this assumption does not
hold. A more accurate characterization of the distribution of the random
variables with low computational effort could improve our results. Further-
more, the proposed model could be enhanced by including soft handover and
by combining the uplink and the downlink direction instead of treating them
independently.



A Notation

Symbol Meaning

A Planning area
Ai Cell area (best server area) of base station antenna i
p Location in the planning area
d Dimension of the planning area

N Set of base station antennas (cells) in the radio network
i, j Base station antennas

M Set of mobiles
Mi Set of mobiles served by base station antenna i
m Mobile

S Set of services
s Service

Ts Average spatial traffic distribution of service s
Ts(p) Average traffic intensity of service s at location p
λd d-dimensional Lebesgue-Measure
fs User density of service s

p↑m Uplink transmission power from mobile m

p↓im Downlink transmission power from antenna i to mobile m

p
(c)
i Constant power of base station antenna i

p̄↑i Total average reception power at base station antenna i

p̄↓i Total average transmission power of base station antenna i

pmax↑
i Maximum total reception power at base station antenna i

pmax↓
i Maximum total transmission power of base station antenna i

87



88 A Notation

γ↑
mi Uplink attenuation factor between mobile m and antenna i

γ↓
im Downlink attenuation factor between antenna i and mobile m

α↑
m, α↓

m Uplink/downlink transmit activity factor of mobile m
µ↑

m, µ↓
m Uplink/downlink CIR target of mobile m

ηi, ηm Noise at base station antenna i/mobile m
ω̄m Orthogonality factor of mobile m
l↑m, l↓m Uplink/downlink user load of mobile m

γ↑
pi Uplink attenuation factor between location p and antenna i

γ↓
ip Downlink attenuation factor between antenna i and location p

α↑
s, α↓

s Uplink/downlink transmit activity factor of service s
µ↑

s, µ↓
s Uplink/downlink CIR target of service s

ηp Noise at location p
ω̄p Orthogonality factor in location p
l↑p, l

↓
p Expected uplink/downlink user load in location p

C↑, C↓ Uplink/downlink cell load coupling matrix
C̄↑, C̄↓ Expected uplink/downlink cell load coupling matrix

C̃↑, C̃↓ Scaled uplink/downlink cell load coupling matrix

p
(η)
i Traffic noise power at base station antenna i

p̄
(η)
i Expected traffic noise power at base station antenna i

p̃
(η)
i Scaled traffic noise power at base station antenna i

λ↑
i , λ↓

i Scaling factor in uplink/downlink for cell i

p̃↑i Total average reception power at base station antenna i
(solution of the scaled uplink equation system)

p̃↓i Total average transmission power of base station antenna i
(solution of the scaled downlink equation system)

P(A) Probability of event A
E[X] Expected value of random variable X
V[X] Variance of random variable X

Tp Average traffic intensity at location p (single service case)
Ti Average traffic intensity in cell i
PTi

(n) Probability for n users in cell i

b̄↑i , b̄↓i Average uplink/downlink blocking rate of cell i (according to
Chapter 4)
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n̄max↑
i Capacity of cell i in uplink

n̄max↓
i Capacity of cell i in downlink

l↑i , l↓i Average uplink/downlink load for a user in cell i
M Set of mobility types
Pp(m) Probability of mobility type m at location p

C↓
i Random variable related to cell i in downlink

c↓im/c↓ip Constant factor for mobile m/pixel p in cell i in downlink

f ↑
i , f ↓

i Probability density function of C↑
ii/C

↓
ii or C↓

i

Xkp Random variable for step k ∈ N and pixel p given by a tri-
angular array {Xkp, p = 1, . . . , nk : nk ∈ N}

k Row index in the triangular array
nk Number of random variables Xkp in the kth row of the triangu-

lar array
µkp Expected value of the random variable Xkp

σ2
kp Variance of the random variable Xkp

Xk Sum of the random variables Xkp, p = 1, . . . , nk in the kth step

A
(k)
i Set of pixels in the cell area of base station antenna i in the kth

step

ls(p) Constant factor for service s in position p
ms(p) Number of mobile stations of service s in position p
Yp Random variable in pixel p
Yi Sum of the random variables Yp over all p ∈ Ai

µp Expected value of the random variable Yp

σ2
p Variance of the random variable Yp

s2
k Sum of the variances σ2

p over all p = 1, . . . , nk

l̂i Upper bound of ls(p) in cell i

ľi Lower bound of ls(p) in cell i
ω̌i Lower bound of ω̄p in cell i

γ̌↓
i Lower bound of γ↓

ip

η̂i Upper bound of ηp in cell i
p⋆ Pixel in the cell area of antenna i

κ↑
i , κ↓

i Size of the uplink/downlink power knapsack of cell i

b̃↑i , b̃↓i Average uplink/downlink blocking rate of cell i (according to
Chapter 5)
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K↑
i , K↓

i Random variable representing the offer for the power knapsack
of cell i in uplink/downlink

f̃ ↑
i , f̃ ↓

i Probability density function of K↑
i /K↓

i



B Further Results

* Simple Version

Refined Versionx

+ Monte Carlo

Limit of 2%−−−

Figure B.1: Legend for all following figures
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(a) Traffic scaling factor 2.1
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(b) Traffic scaling factor 2.2

Figure B.2: The Hague: 36 cells, speech telephony, UL
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(a) Traffic scaling factor 4.4
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(b) Traffic scaling factor 4.6

Figure B.3: The Hague: 36 cells, speech telephony, DL
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(a) Traffic scaling factor 1.2, UL
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(b) Traffic scaling factor 0.8, DL

Figure B.4: The Hague: 36 cells, cs services
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(a) Traffic scaling factor 2.55
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(b) Traffic scaling factor 2.65

Figure B.5: The Hague: 19 cells, speech telephony, UL
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Figure B.6: The Hague: 19 cells, speech telephony, traffic scaling 5.8, DL
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(a) Traffic scaling factor 1.4
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(b) Traffic scaling factor 1.5

Figure B.7: The Hague: 19 cells, cs services, UL
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(a) Traffic scaling factor 0.9
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(b) Traffic scaling factor 1.0

Figure B.8: The Hague: 19 cells, cs services, DL



94 B Further Results

10 20 30 40 50
10

−3

10
−2

10
−1

CellIndex

B
lo

ck
in

g 
R

at
e

(a) Traffic scaling factor 1.8
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(b) Traffic scaling factor 1.85

Figure B.9: Berlin, network 1: 122 cells, speech telephony, UL
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(a) Traffic scaling factor 3.3
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(b) Traffic scaling factor 3.4

Figure B.10: Berlin, network 1: 122 cells speech telephony, DL
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(a) Traffic scaling factor 2.2

20 40 60 80 100
10

−3

10
−2

10
−1

CellIndex

B
lo

ck
in

g 
R

at
e

(b) Traffic scaling factor 2.4

Figure B.11: Berlin, network 1: 122 cells, video telephony, UL
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(a) Traffic scaling factor 3.7
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(b) Traffic scaling factor 3.9

Figure B.12: Berlin, network 1: 122 cells, video telephony, DL
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(a) Traffic scaling factor 1100
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(b) Traffic scaling factor 1200

Figure B.13: Berlin, network 1: 122 cells, e-mail, UL
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(a) Traffic scaling factor 750
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(b) Traffic scaling factor 800

Figure B.14: Berlin, network 1: 122 cells, e-mail, DL
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(a) Traffic scaling factor 1.0
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(b) Traffic scaling factor 1.05

Figure B.15: Berlin, network 1: 122 cells, cs services, UL
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Figure B.16: Berlin, network 1: 122 cells, cs services, 0.56, DL
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(a) Traffic scaling factor 1.0
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(b) Traffic scaling factor 1.05

Figure B.17: Berlin, network 1: 122 cells, service mix, UL
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(a) Traffic scaling factor 0.52
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(b) Traffic scaling factor 0.54

Figure B.18: Berlin, network 1: 122 cells, service mix, DL
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Figure B.19: Berlin, network 2: 122 cells, speech telephony, 1.8, UL
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(a) Traffic scaling factor 3.0
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(b) Traffic scaling factor 3.05

Figure B.20: Berlin, network 2: 122 cells, speech telephony, DL
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Figure B.21: Berlin, network 2: 122 cells, video telephony, 2.4, UL
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(a) Traffic scaling factor 3.4
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(b) Traffic scaling factor 3.6

Figure B.22: Berlin, network 2: 122 cells, video telephony, DL
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Figure B.23: Berlin, network 2: 122 cells, e-mail, 1000, UL
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(a) Traffic scaling factor 650

20 40 60 80 100
10

−3

10
−2

10
−1

Cell Index

B
lo

ck
in

g 
R

at
e

(b) Traffic scaling factor 700

Figure B.24: Berlin, network 2: 122 cells, e-mail, DL
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(a) Traffic scaling factor 1.0
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(b) Traffic scaling factor 1.05

Figure B.25: Berlin, network 2: 122 cells, cs services, UL
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(a) Traffic scaling factor 0.52
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(b) Traffic scaling factor 0.54

Figure B.26: Berlin, network 2: 122 cells, cs services, DL
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(a) Traffic scaling factor 0.95
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(b) Traffic scaling factor 1.0

Figure B.27: Berlin, network 2: 122 cells, service mix, UL
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Figure B.28: Berlin, network 2: 122 cells, service mix, 0.48, DL
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(a) Traffic scaling factor 1.35, UL
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(b) Traffic scaling factor 2.05, DL

Figure B.29: Lisbon: 164 cells, speech telephony
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(a) Traffic scaling factor 750
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(b) Traffic scaling factor 850

Figure B.30: Lisbon: 164 cells, e-mail, UL
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(a) Traffic scaling factor 475
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(b) Traffic scaling factor 500

Figure B.31: Lisbon: 164 cells, e-mail, DL
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(a) Traffic scaling factor 0.72
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(b) Traffic scaling factor 0.74

Figure B.32: Lisbon: 164 cells, cs services, UL
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(a) Traffic scaling factor 0.34
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(b) Traffic scaling factor 0.36

Figure B.33: Lisbon: 164 cells, cs services, DL
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(a) Traffic scaling factor 0.68
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(b) Traffic scaling factor 0.74

Figure B.34: Lisbon: 164 cells, service mix, UL
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(a) Traffic scaling factor 0.3
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(b) Traffic scaling factor 0.32

Figure B.35: Lisbon: 164 cells, service mix, DL
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Figure B.36: Lisbon: 128 cells, speech telephony, 1.6, UL
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(a) Traffic scaling factor 2.5
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(b) Traffic scaling factor 2.6

Figure B.37: Lisbon: 128 cells, speech telephony, DL
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(a) Traffic scaling factor 575
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(b) Traffic scaling factor 600

Figure B.38: Lisbon: 128 cells, e-mail, DL
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(a) Traffic scaling factor 0.85

30 40 50 60 70 80 90 100 110
10

−3

10
−2

10
−1

CellIndex

B
lo

ck
in

g 
R

at
e

(b) Traffic scaling factor 0.9

Figure B.39: Lisbon: 128 cells, cs services, UL
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(a) Traffic scaling factor 0.42
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(b) Traffic scaling factor 0.43

Figure B.40: Lisbon: 128 cells, cs services, DL
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(a) Traffic scaling factor 0.88
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(b) Traffic scaling factor 0.9

Figure B.41: Lisbon: 128 cells, service mix, UL
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(a) Traffic scaling factor 0.4
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(b) Traffic scaling factor 0.42

Figure B.42: Lisbon: 128 cells, service mix, DL
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(a) Traffic scaling factor 3.2
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(b) Traffic scaling factor 3.3

Figure B.43: Turin: 103 cells, service mix, UL
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(a) Traffic scaling factor 4.4
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(b) Traffic scaling factor 4.5

Figure B.44: Turin: 103 cells, service mix, DL
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Figure B.45: The Hague: 36 cells, scatter diagram, UL
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Figure B.46: The Hague: 19 cells, scatter diagram, UL
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Figure B.47: Berlin, network 2: 122 cells, scatter diagram, UL
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Figure B.48: Lisbon: 164 cells, scatter diagram, UL
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Figure B.49: Lisbon: 128 cells, scatter diagram, UL
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Figure B.50: Turin: 103 cells, scatter diagram, UL



108 B Further Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

Monte Carlo Blocking Rate

D
iff

er
en

ce

cs Services
Speech

(a) Scatter diagram

0 0.005 0.01 0.015 0.02 0.025 0.03
0

1

2

3

4

5

6

7

x 10
−3

Monte Carlo Blocking Rate

D
iff

er
en

ce

(b) Extract

Figure B.51: The Hague: 36 cells, scatter diagram, DL
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Figure B.52: The Hague: 19 cells, scatter diagram, DL
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Figure B.53: Berlin, network 2: 122 cells, scatter diagram, DL
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Figure B.54: Lisbon: 164 cells, scatter diagram, DL
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Figure B.55: Lisbon: 128 cells, scatter diagram, DL
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Figure B.56: Turin: 103 cells, scatter diagram, DL
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C Zusammenfassung

Das Ziel der vorliegenden Arbeit ist es, ein mathematisches Modell zu ent-
wickeln, das die Blockier Raten der Zellen in einem UMTS Funknetz effizient
approximiert. Die Blockier Rate bezeichnet den Anteil an Teilnehmern, der
aufgrund der beschränkten Funkressourcen einer Antenne nicht bedient wer-
den kann. Sie stellt ein wichtiges Kriterium für die Qualitätsbewertung eines
Funknetzdesigns dar. Jedoch ist bisher kein Modell bekannt, das die durch-
schnittliche Blockier Rate schnell und verlässlich vorhersagen kann. Die
Schwierigkeit dabei besteht darin, dass die Kapazität einer UMTS Funkzelle
schwankt.

In dieser Arbeit werden zwei Ansätze vorgestellt, um die Blockier Raten
in UMTS Funknetzen zu approximieren. Diese Methoden basieren auf einem
bereits vorhandenen Modell. In der ersten Methode werden dessen Un-
genauigkeiten reduziert, indem der Erwartungswert der durchschnittlichen
Blockier Rate in Abhängigkeit von der Interferenz aus der eigenen Zelle
berechnet wird. In der zweiten Methode wird das vorliegende Problem als
eine Art gebrochenes Rucksack Problem aufgefasst. Wir betrachten dabei
die Verteilung des Gesamtgewichts aller Nutzer in einer Funkzelle. Abhängig
von diesem akkumulierten Gewicht bestimmen wir den Erwartungswert der
durchschnittlichen Blockier Rate. In beiden Ansätzen wird die Interferenz
aus anderen Funkzellen durch Durchschnittswerte abgeschätzt. Diese Schät-
zungen werden mit zusätzlichem Aufwand präzisiert. Außerdem leiten wir
analytisch her, dass die Ergebnisse beider Modelle gleich sind.

Umfangreiche Tests belegen, dass wir mit den entwickelten Methoden
einen sehr guten Kompromiss zwischen Genauigkeit und Komplexität gefun-
den haben. Die Eigenschaften des Basismodells sind in Grundzügen noch
vorhanden. D. h., in niedrigen Bereichen wird die Blockier Rate etwas un-
terschätzt und in höheren leicht überschätzt. Doch im Gegensatz zu vorher
liegen diese systematischen Schätzfehler in einem durchaus akzeptablen Be-
reich. Die Komplexität der beiden vorgestellten Ansätze ist gleich. Im
Gegensatz zu existierenden Methoden mit vergleichbarer Genauigkeit sind
die durchschnittlichen Laufzeiten extrem kurz.
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