
Sorting Criteria for Line-based Periodic
Timetabling Heuristics

Patricia Ebert1,2, Berenike Masing1[0000−0001−7201−2412],
Niels Lindner1[0000−0002−8337−4387], and
Ambros Gleixner1,2[0000−0003−0391−5903]

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
2 Hochschule für Technik und Wirtschaft Berlin, 10313 Berlin, Germany

{ebert,masing,lindner,gleixner}@zib.de

Abstract. It is well-known that optimal solutions are notoriously hard
to find for the Periodic Event Scheduling Problem (PESP), which is the
standard mathematical formulation to optimize periodic timetables in
public transport. We consider a class of incremental heuristics that have
been demonstrated to be effective by Lindner and Liebchen (2023), how-
ever, for only one fixed sorting strategy of lines along which a solution is
constructed. Thus, in this paper, we examine a variety of sortings based
on the number, weight, weighted span, and lower bound of arcs, and test
for each setting various combinations of the driving, dwelling, and trans-
fer arcs of lines. Additionally, we assess the impact on the incremental
extension of the event-activity network by minimizing resp. maximiz-
ing a connectivity measure between subsets of lines. We compare our 27
sortings on the railway instances of the benchmarking library PESPlib
within the ConcurrentPESP solver framework. We are able to find five
new incumbent solutions, resulting in improvements of up to 2%.

Keywords: Public Transport, Timetabling, Periodic Event Scheduling

1 Introduction

As many European countries use periodic timetables for public transport, their
construction becomes an indispensable task. Even more, their optimization offers
an inexpensive possibility to exploit the existing network in an efficient way.

A frequently used mathematical foundation allowing for the construction and
optimization of periodic timetables is the Periodic Event Scheduling Problem
(PESP) by Serafini and Ukovich [7], which is known to be NP-hard [5]. Although
PESP can be formulated as a mixed-integer linear program, its instances are
notoriously hard to solve not only in theory but also in practice, as is evidenced,
e.g., by the fact that none of the instances of the benchmark library PESPlib [2]
– introduced in 2012 – could be solved to proven optimality so far.

Besides efforts to strengthen dual bounds [4], Lindner and Liebchen showed
with their primal incremental heuristic that improvements of the primal bound
for PESPlib instances are still achievable [3]. They tested two approaches to in-
crementally build up and optimize subinstances by utilizing information about



2 P. Ebert et al.

the underlying structure, which became available through the recently published
library TimPassLib [6]. Their approach consists of iteratively adding arcs to the
instance based on line association and station association, respectively. In their
computational experiment, they observed a superior behavior of the line-based
approach, which quickly generated qualitatively competitive solutions for the
PESPlib rail instances. However, the order in which the lines are processed has
been fixed. Therefore, we want to examine in this work how different sortings
of the lines affect the outcome of the incremental heuristic. To this end, we
discuss nine sorting strategies that can be arbitrarily combined with three con-
nectivity rules, and compare them by their best primal objective value with the
computational setup of [3], using the ConcurrentPESP solver [1] as subroutine.

We define the Periodic Event Scheduling Problem and explain a line-based
incarnation of the incremental heuristic in Section 2. After discussing our sorting
strategies in Section 3, we conclude with computational experiments in Section 4.

2 Problem Definition and Incremental Heuristic

We begin with some necessary theoretical background.

2.1 Periodic Event Scheduling Problem

For the Periodic Event Scheduling Problem (PESP) [7] we are given a period
time T ∈ N and an event-activity-network N = (V,A) with lower bounds l ∈ ZA

and upper bounds u ∈ ZA on the activity durations as well as activity weights
w ∈ RA

≥0. A periodic timetable π ∈ {0, 1, ..., T − 1}V is a periodic node potential
such that for each activity a = (i, j) ∈ A the periodic span constraint

la ≤ (πj − πi) mod T =: xa ≤ ua

is satisfied. Given an instance (N , T, l, u, w) the optimization version of PESP
asks for a feasible periodic timetable π minimizing the weighted periodic tension
w⊤x. We call an activity a = (i, j) ∈ A free if ua − la ≥ T − 1 holds for its span,
as then any choice of πi and πj corresponds to a valid tension xa.

2.2 Free Stratifications

Let I = (N , T, l, u, w) be a feasible PESP instance and Ik a subinstance of I
where we restrict N = (V,A) to a subgraph Nk = (Vk, Ak). A free stratifica-
tion [3] of I is a sequence (I1, ..., In) of subinstances of I such that
1. I = In,
2. for all k ∈ {2, ..., n}, Nk−1 is a subgraph of Nk,
3. for all k ∈ {2, ..., n}, all arcs a ∈ Ak \ Ak−1 with at least one endpoint in

Vk−1 are free.

This allowed Lindner and Liebchen [3] to state an extension theorem:
Theorem 1 ([3, Thm. 1]). Let (I1, ..., In) be a free stratification of a feasible
PESP instance I, and let k ∈ {2, ..., n}. If πk−1 is a periodic timetable for Ik−1,
then there is a periodic timetable πk for Ik such that πk

i = πk−1
i for all i ∈ Vk−1.



Sorting Criteria for Line-based Periodic Timetabling Heuristics 3

2.3 Incremental Line-Based Heuristics for PESPlib Instances

We will consider a special case of free stratifications, as the TimPassLib data [6]
endows the PESPlib rail instances with a special structure: There is a set L of
lines and a map L : V → L that associates each event to a line with the property
that each activity a = (i, j) ∈ A with L(i) ̸= L(j) is free. Each such activity is
a transfer activity, while activities with both events corresponding to the same
line are either driving or dwelling activities. A sorting (ℓ1, ..., ℓn) of the lines in
L induces a free stratification by setting Ik to be the subinstance given by the
events of the first k lines and all activities between them [3]. Another specialty
of the PESPlib instances is that the subgraph Gk[Vk \ Vk−1], i.e., the activities
that belong to line ℓk, is always a disjoint union of two paths.

Algorithm 1: Line-based Incremental Heuristic
Input: PESPlib rail instance I with line association map L : V → L
Output: periodic timetable π on I

1 π0
full ← ∅, V0 ← ∅, A0 ← ∅

2 (ℓ1, . . . , ℓn)← sorting of L
3 for k ← 1 to n do
4 Fk ← spanning forest on Ik s.t. all non-forest arcs are in Ak−1 or free
5 πk

initial ← extend(πk−1
full , F

k)

6 πk
fix ← fix_opt(πk−1

full , π
k
initial)

7 πk
full ← full_opt(πk

fix)

8 end
9 return πn

full

This allows for the incremental Algorithm 1. In the k-th iteration, we are
given a feasible timetable πk−1

full on Ik−1. We construct a spanning forest Fk on
Ik such that all non-forest arcs are part of Ik−1 or free. This essentially means
to take an arbitrary spanning forest on Ik−1, adding the two paths of line ℓk,
and taking at most two free arcs that connect line ℓk with one of the previous
lines. We then construct a timetable πk

initial on Ik by traversing along Fk, using
the tension of πk−1

full on arcs of Ik−1, and lower bounds otherwise. This initial
solution is then improved in two rounds. Firstly, in fix_opt the subinstance Ik
is optimized with πk

initial as an initial solution and πk−1
full still being fixed on Ik,

resulting in the periodic timetable πk
fix. Secondly, the fixation is dropped and Ik

is optimized in full_opt with πk
fix as an initial solution. The resulting timetable

is denoted by πk
full. The procedure is an incarnation of the algorithm in [3].

3 Sortings of Lines

As one can observe that subinstances can only be solved to optimality in earlier
iterations of the incremental heuristic due to their smaller size, we motivate
adding lines with a high impact on the objective value early on. For each sorting,
we define a measure that assigns a line a value of importance, which then allows
us to sort the lines in descending order. These measures take into account the



4 P. Ebert et al.

number (n), the weights (w), the weighted span (ws), and the lower bound (l)
of arcs, which is evaluated by differentiation of driving (-d), versus driving and
dwelling arcs (-dd), all outgoing arcs of a line (-o), and transfer arcs (-t),
respectively. Moreover, we present a scheme for minimizing and maximizing the
connectivity of the added lines in the sortings.

From a passenger’s perspective, lines connecting many stations, preferably
with numerous transfer possibilities, are desired. To model that, we count for
the measure (n-d) the number of driving arcs for each line and for (n-o) the
number of driving, dwelling, and outgoing transfer arcs, which is given by the
total number of outgoing arcs for the nodes corresponding to the line.

Since PESP minimizes the weighted periodic tension, we start for a second
class of measures with lines that imply higher weights. For PESPlib instances
the weight of an activity corresponds to the passenger numbers. Thus, by simply
summing the weights for all driving arcs of a line in measure (w-d), we cumulate
the passenger numbers of each section of the line and with (w-dd) we also add
dwelling arcs, thus also taking into account how long all passengers travel along
this line. However, driving and dwelling arcs in the PESPlib rail instances possess
in general a significantly smaller span u−l as transfer arcs. Since the span directly
impacts the optimization potential, we incorporate the transfer activities for a
line in measure (w-o) and (w-t). For measure (w-o) we accumulate the weights
of all driving, dwelling, and outgoing transfer activities of the line and in measure
(w-t) the weights of all transfer arcs regardless whether they are out- or ingoing.

Lindner and Liebchen consider the weighted span, as the weight w incor-
porates passenger usage and the span u − l the optimization potential [3]. We
examine the weighted span for driving and dwelling arcs in (ws-dd) and for all
outgoing arcs in (ws-o). Due to a lack of information on distances, speeds, and
station positions for our instances, we also utilize (l-dd) as the sum of the lower
bounds on the duration of driving and dwelling activities of a line. The idea is
that long lines covering large areas of the network are included first.

We complete our experiment by minimizing resp. maximizing the connec-
tivity of the subinstances. We start for (min-) resp. (max-) with the most
important line according to one of the previous measures, and then add the lines
one by one. In each iteration, we consider the set of all remaining lines with a
minimal resp. a maximal number of connections to the subinstance in terms of
transfer activities and add the line which maximizes the measure. The hope for
(min-) is, that due to the lower connectivity, we are able to obtain optimal so-
lutions for a larger number of subinstances. In contrast, (max-) allows for early
optimal solutions of the more challenging highly connected parts of the network.

4 Computational Experiment

We tested our heuristic on each of the 16 railway instances of PESPlib for our
various line-sortings on an Intel Xeon E3-1270 machine with 32 GB RAM. In each
iteration, we allowed for 60 seconds wall time for the full_opt procedure in line
7 of Algorithm 1 in ConcurrentPESP [1], and impose no time limit on fix_opt



Sorting Criteria for Line-based Periodic Timetabling Heuristics 5

R1L1 R1L2 R1L3 R1L4 R2L1 R2L2 R2L3 R2L4 R3L1 R3L2 R3L3 R3L4 R4L1 R4L2 R4L3 R4L4

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

%

l-dd
n-d
n-o
w-d
w-dd
w-o
w-t
ws-dd
ws-o
max
min

Fig. 1: Relative best gap of different line sortings: Highlighted values correspond
to improvements w.r.t. current best PESPlib incumbent

in line 6. We display our results in Figure 1 by the gap of the final primal value
of each sorting in comparison to the best performing one for each instance. We
observe that the (min)-runs (dotted lines) are never the best choice: They tend to
be above the dashed and solid lines, so that sorting the lines by low connectivity
and maintaining optimally solved subinstances longer does not pay off. What
is further evident from Figure 1 is that – while there is no clear winner which
consistently provides the best solution – the best performing sorting always
involves the arc weights in some form: E.g., for R1L1 and R1L2 (w-t) is the
best choice, while it is (max-ws-o) for R1L3. In contrast, any sorting based on
lower bounds (l-dd) and number of arcs, (n-d), (n-dt), performs in general
significantly worse. We thus conclude that weight-based sortings are preferable.
This is further supported by Figure 2, where the accumulated relative gap over
all 16 PESPlib instances is depicted. This plot suggests that weights play a larger
role than the influence of connectivity, as indicated by larger average gaps.

However, a close look at Figure 1 reveals that connectivity can, in fact, be
helpful to consider, since – while not the best on average – max-sortings provide
the best solutions for some instances. By Figure 1 it becomes evident that for
each instance – with the exception of R4L1 – the best sorting involves weights
(w), and considers either transfer arcs (which are included in (-t) and (-o)),
or is a max-connectivity sorting. We conclude that sortings based on weighted
connection arcs between lines are the preferred choice for our heuristic.

In the end, applying the heuristic by Lindner and Liebchen [3] with new
sortings resulted in 5 new incumbent solutions for PESPlib (see Table 1).

Acknowledgments. Berenike Masing: Research Campus MODAL, funded by the
German Federal Ministry of Education and Research (BMBF) (fund no. 05M20ZBM).

Disclosure of Interests. The authors have no competing interests to declare.



6 P. Ebert et al.

w-
t

ws
-o w-
d

w-
dd w-

o

ws
-d

d

m
ax

-w
s-d

d

m
ax

-w
-t

m
ax

-w
s-o

m
in

-w
s-o

m
ax

-w
-d

d

m
ax

-w
-d

m
ax

-w
-o

m
ax

-l-
dd n-

o

m
in

-w
-o

m
ax

-n
-o

m
ax

-n
-d

m
in

-w
s-d

d

m
in

-w
-t

m
in

-w
-d

d

m
in

-w
-d

m
in

-n
-o n-
d

l-d
d

m
in

-l-
dd

m
in

-n
-d

0

25

50

75

100

125

150

175

ac
cu

m
ul

at
ed

 g
ap

 in
 %

R1Ly
R2Ly
R3Ly
R4Ly

0

2

4

6

8

10

av
er

ag
e 

ga
p 

in
 %

Fig. 2: Ranking of relative best gaps of different line sortings, color blocks cor-
respond to one instance

instance incumbent new incumbent old improvement by sorting
R2L2 40424788 40642186 0.54% (max-w-t)
R2L4 32286164 32307020 0.06% (ws-o)
R3L3 39674349 40424380 1.89% (ws-dd)
R3L4 32889035 33335852 1.36% (max-ws-dd)
R4L3 45138727 45177738 0.09% (ws-o)

Table 1: New incumbents in comparison to current best solutions

References

1. Borndörfer, R., Lindner, N., Roth, S.: A Concurrent Approach to the Periodic Event
Scheduling Problem. Journal of Rail Transport Planning & Management 15, 100175
(2020). https://doi.org/10.1016/j.jrtpm.2019.100175

2. Goerigk, M.: PESPlib – A benchmark library for periodic event scheduling (2012),
http://num.math.uni-goettingen.de/~m.goerigk/pesplib/

3. Lindner, N., Liebchen, C.: Incremental Heuristics for Periodic Timetabling. Tech.
Rep. 23-22, Zuse-Institut Berlin (2023)

4. Masing, B., Lindner, N., Ebert, P.: Forward and Line-Based Cycle Bases for Periodic
Timetabling. Operations Research Forum 4(5) (2023). https://doi.org/10.1007/
s43069-023-00229-0

5. Odijk, M.A.: Construction of periodic timetables, part 1: A cutting plane algorithm.
Tech. Rep. 94-61, TU Delft (1994)

6. Schiewe, P., Goerigk, M., Lindner, N.: Introducing TimPassLib – A library for inte-
grated periodic timetabling and passenger routing. ZIB-Report 23-06, Zuse Institute
Berlin (2023), https://nbn-resolving.org/urn:nbn:de:0297-zib-89741

7. Serafini, P., Ukovich, W.: A Mathematical Model for Periodic Scheduling Problems.
SIDMA 2(4), 550–581 (1989). https://doi.org/10.1137/0402049

https://doi.org/10.1016/j.jrtpm.2019.100175
https://doi.org/10.1016/j.jrtpm.2019.100175
http://num.math.uni-goettingen.de/~m.goerigk/pesplib/
https://doi.org/10.1007/s43069-023-00229-0
https://doi.org/10.1007/s43069-023-00229-0
https://doi.org/10.1007/s43069-023-00229-0
https://doi.org/10.1007/s43069-023-00229-0
https://nbn-resolving.org/urn:nbn:de:0297-zib-89741
https://doi.org/10.1137/0402049
https://doi.org/10.1137/0402049

	Sorting Criteria for Line-based Periodic Timetabling Heuristics

