
Cloud Branching

Timo Berthold
Zuse Institute Berlin

joint work with Domenico Salvagnin (Università degli Studi di Padova)

DFG Research Center MATHEON
Mathematics for key technologies

21/May/13, CPAIOR 2013, IBM T. J.Watson Research Center

MIP & Branching

min cT x
s.t. Ax ≤ b

x ∈ ZI
≥0 ×RC

≥0

Mixed Integer Program:
. linear objective & constraints
. integer variables
. continuous variables

Branching for MIP:
. based on LP relaxation
. fractional variables
. tries to improve dual bound

xi ≤ bx∗i c ∨ xi ≥ dx∗i e for i ∈ I and x∗i /∈ Z

Timo Berthold: Cloud Branching 2 / 17

MIP & Branching

min cT x
s.t. Ax ≤ b

x ∈ ZI
≥0 ×RC

≥0

Mixed Integer Program:
. linear objective & constraints
. integer variables
. continuous variables

Branching for MIP:
. based on LP relaxation
. fractional variables
. tries to improve dual bound

xi ≤ bx∗i c ∨ xi ≥ dx∗i e for i ∈ I and x∗i /∈ Z

Timo Berthold: Cloud Branching 2 / 17

Branching rules in MIP

Most infeasible branching
. often referred to as a simple, standard rule
. computationally as bad as random branching!

Strong branching [ApplegateEtAl1995]

. solve LP relaxations for some candidates, choose best

. effective w.r.t. number of nodes, expensive w.r.t. time

Pseudocost branching [BenichouEtAl1971]

. try to estimate LP values, based on history information

. effective, cheap, but weak in the beginning

. can be combined with strong branching

Timo Berthold: Cloud Branching 3 / 17

Branching rules in MIP

Most infeasible branching
. often referred to as a simple, standard rule
. computationally as bad as random branching!

Strong branching [ApplegateEtAl1995]

. solve LP relaxations for some candidates, choose best

. effective w.r.t. number of nodes, expensive w.r.t. time

Pseudocost branching [BenichouEtAl1971]

. try to estimate LP values, based on history information

. effective, cheap, but weak in the beginning

. can be combined with strong branching

Timo Berthold: Cloud Branching 3 / 17

Degeneracy
naïvely:
. 1 optimal solution,
determined by n constraints

at a second thought:
. 1 optimal solution,

k > n tight constraints

but really:
. an optimal polyhedron

Goal of this talk:
branch on a set (a cloud) of solutions

Timo Berthold: Cloud Branching 4 / 17

Degeneracy
naïvely:
. 1 optimal solution,
determined by n constraints

at a second thought:
. 1 optimal solution,

k > n tight constraints

but really:
. an optimal polyhedron

Goal of this talk:
branch on a set (a cloud) of solutions

Timo Berthold: Cloud Branching 4 / 17

Degeneracy
naïvely:
. 1 optimal solution,
determined by n constraints

at a second thought:
. 1 optimal solution,

k > n tight constraints

but really:
. an optimal polyhedron

Goal of this talk:
branch on a set (a cloud) of solutions

Timo Berthold: Cloud Branching 4 / 17

Degeneracy
naïvely:
. 1 optimal solution,
determined by n constraints

at a second thought:
. 1 optimal solution,

k > n tight constraints

but really:
. an optimal polyhedron

Goal of this talk:
branch on a set (a cloud) of solutions

Timo Berthold: Cloud Branching 4 / 17

Degeneracy
naïvely:
. 1 optimal solution,
determined by n constraints

at a second thought:
. 1 optimal solution,

k > n tight constraints

but really:
. an optimal polyhedron

Goal of this talk:
branch on a set (a cloud) of solutions

Timo Berthold: Cloud Branching 4 / 17

Two questions

Goal of this talk:
branch on a cloud of solutions

1. How do we get extra optimal solutions?
2. Why should that be a good idea anyway?

Timo Berthold: Cloud Branching 5 / 17

Generating cloud points

1. How do we get extra optimal solutions?

. restrict LP to optimal face

. min/max each variable (OBBT) or

. feasibility pump objective
(pump&reduce [Achterberg2010])

∆(x , x̃) =
∑
|xj − x̃j | =

x1
x2
 intervals instead of values

stalling is cheap!

Timo Berthold: Cloud Branching 6 / 17

Generating cloud points

1. How do we get extra optimal solutions?

. restrict LP to optimal face

. min/max each variable (OBBT) or

. feasibility pump objective
(pump&reduce [Achterberg2010])

∆(x , x̃) =
∑
|xj − x̃j |

=

x1= 0.4
x2= 0.55

 intervals instead of values

stalling is cheap!

Timo Berthold: Cloud Branching 6 / 17

Generating cloud points

1. How do we get extra optimal solutions?

. restrict LP to optimal face

. min/max each variable (OBBT) or

. feasibility pump objective
(pump&reduce [Achterberg2010])

∆(x , x̃) =
∑
|xj − x̃j | = −x1 + x2

x1= 0.4
x2= 0.55

 intervals instead of values

stalling is cheap!

Timo Berthold: Cloud Branching 6 / 17

Generating cloud points

1. How do we get extra optimal solutions?

. restrict LP to optimal face

. min/max each variable (OBBT) or

. feasibility pump objective
(pump&reduce [Achterberg2010])

∆(x , x̃) =
∑
|xj − x̃j | = −x1 + x2

x1∈ [0.4, 0.55]

x2∈ [0.55, 0.9]

 intervals instead of values

stalling is cheap!

Timo Berthold: Cloud Branching 6 / 17

Generating cloud points

1. How do we get extra optimal solutions?

. restrict LP to optimal face

. min/max each variable (OBBT) or

. feasibility pump objective
(pump&reduce [Achterberg2010])

∆(x , x̃) =
∑
|xj − x̃j | = +x1 + x2

x1∈ [0.4, 0.55]

x2∈ [0.55, 0.9]

 intervals instead of values

stalling is cheap!

Timo Berthold: Cloud Branching 6 / 17

Generating cloud points

1. How do we get extra optimal solutions?

. restrict LP to optimal face

. min/max each variable (OBBT) or

. feasibility pump objective
(pump&reduce [Achterberg2010])

∆(x , x̃) =
∑
|xj − x̃j | = +x1 + x2

x1∈ [0.4, 0.9]

x2∈ [0.55, 1.0]

 intervals instead of values

stalling is cheap!

Timo Berthold: Cloud Branching 6 / 17

Generating cloud points

1. How do we get extra optimal solutions?

. restrict LP to optimal face

. min/max each variable (OBBT) or

. feasibility pump objective
(pump&reduce [Achterberg2010])

∆(x , x̃) =
∑
|xj − x̃j | = +x1 + x2

x1∈ [0.4, 0.9]

x2∈ [0.55, 1.0]

 intervals instead of values

stalling is cheap!

Timo Berthold: Cloud Branching 6 / 17

Generating cloud points

1. How do we get extra optimal solutions?

. restrict LP to optimal face

. min/max each variable (OBBT) or

. feasibility pump objective
(pump&reduce [Achterberg2010])

∆(x , x̃) =
∑
|xj − x̃j | = +x1 + x2

x1∈ [0.4, 0.9]

x2∈ [0.55, 1.0]

 intervals instead of values

stalling is cheap!

Timo Berthold: Cloud Branching 6 / 17

Exploiting cloud points (pseudocost)

2. Why should that be a good idea anyway?

z = cT x

bx?
j c x?

j dx?
j e

∆↓

∆↑

lj uj

z = cT x

bx?
j c x?

j dx?
j e

∆−j

∆+
j

lj uj

∆̃−j ∆̃+
j

. pseudocost update
. ς+

j = ∆↑

dx?
j e−x?

j
and ς−j = ∆↓

x?
j −bx

?
j c

. pseudocost-based estimation
. ∆+

j = Ψ+
j (dx?

j e − x?
j) and ∆−j = Ψ−j (x?

j − bx?
j c)

Timo Berthold: Cloud Branching 7 / 17

Exploiting cloud points (pseudocost)

2. Why should that be a good idea anyway?

z = cT x

bx?
j c x?

j dx?
j e

∆↓

∆↑

lj uj

z = cT x

bx?
j c x?

j dx?
j e

∆−j

∆+
j

lj uj

∆̃−j ∆̃+
j

. pseudocost update
. ς+

j = ∆↑

dx?
j e−x?

j
. . . better: ς̃+

j = ∆↑

dx?
j e−uj

. pseudocost-based estimation
. ∆+

j = Ψ+
j (dx?

j e − x?
j) and ∆−j = Ψ−j (x?

j − bx?
j c)

Timo Berthold: Cloud Branching 7 / 17

Exploiting cloud points (pseudocost)

2. Why should that be a good idea anyway?

z = cT x

bx?
j c x?

j dx?
j e

∆↓

∆↑

lj uj

z = cT x

bx?
j c x?

j dx?
j e

∆−j

∆+
j

lj uj

∆̃−j ∆̃+
j

. pseudocost update
. ς+

j = ∆↑

dx?
j e−x?

j
. . . better: ς̃+

j = ∆↑

dx?
j e−uj

. pseudocost-based estimation
. ∆+

j = Ψ+
j (dx?

j e − x?
j) . . . better: ∆̃+

j = Ψ+
j (dx?

j e − uj)

Timo Berthold: Cloud Branching 7 / 17

Observation

Lemma
Let x? be an optimal solution of the LP relaxation at a given
branch-and-bound node and bx?

j c ≤ lj ≤ x?
j ≤ uj ≤ dx?

j e. Then
1. for fixed ∆↑ and ∆↓, it holds that ς̃+

j ≥ ς+
j and ς̃−j ≥ ς−j ,

respectively;
2. for fixed Ψ+

j and Ψ−j , it holds that ∆̃+
j ≤ ∆+

j and ∆̃−j ≤ ∆−j ,
respectively.

Timo Berthold: Cloud Branching 8 / 17

Exploiting cloud points (strong branch)

2. Why should that be a good idea anyway?

Full strong branching:
. solves 2·#frac. var’s many LPs
. uses product of improvement values as branching score

. improvement on both sides better than on one

Benefit of cloud intervals:
. frac. var. gets integral in cloud point one LP spared
. cloud branching acts as a filter
. new frac. var.’s new candidates (one side known)

Timo Berthold: Cloud Branching 9 / 17

Exploiting cloud points (strong branch)

2. Why should that be a good idea anyway?

Full strong branching:
. solves 2·#frac. var’s many LPs
. uses product of improvement values as branching score

. improvement on both sides better than on one

Benefit of cloud intervals:
. frac. var. gets integral in cloud point one LP spared
. cloud branching acts as a filter
. new frac. var.’s new candidates (one side known)

Timo Berthold: Cloud Branching 9 / 17

Cloud strong branching algorithm

Idea: Use 3-partition F2,F1,F0 of branching candidates

. if strict improvements in both directions for F2, disregard F1 ∪ F0

. if strict improvement in one direction for F2 ∪ F1, disregard F0

. alternatively: Only use F2

. stop pump&reduce procedure when new cloud point does not imply
new integral bound

Note: In our experiments, we do not use cloud points for anything
else (heuristics, cuts)

Timo Berthold: Cloud Branching 10 / 17

Cloud strong branching algorithm

Idea: Use 3-partition F2,F1,F0 of branching candidates

. if strict improvements in both directions for F2, disregard F1 ∪ F0

. if strict improvement in one direction for F2 ∪ F1, disregard F0

. alternatively: Only use F2

. stop pump&reduce procedure when new cloud point does not imply
new integral bound

Note: In our experiments, we do not use cloud points for anything
else (heuristics, cuts)

Timo Berthold: Cloud Branching 10 / 17

Cloud strong branching algorithm

Idea: Use 3-partition F2,F1,F0 of branching candidates

. if strict improvements in both directions for F2, disregard F1 ∪ F0

. if strict improvement in one direction for F2 ∪ F1, disregard F0

. alternatively: Only use F2

. stop pump&reduce procedure when new cloud point does not imply
new integral bound

Note: In our experiments, we do not use cloud points for anything
else (heuristics, cuts)

Timo Berthold: Cloud Branching 10 / 17

Cloud strong branching algorithm

Idea: Use 3-partition F2,F1,F0 of branching candidates

. if strict improvements in both directions for F2, disregard F1 ∪ F0

. if strict improvement in one direction for F2 ∪ F1, disregard F0

. alternatively: Only use F2

. stop pump&reduce procedure when new cloud point does not imply
new integral bound

Note: In our experiments, we do not use cloud points for anything
else (heuristics, cuts)

Timo Berthold: Cloud Branching 10 / 17

Implementation into SCIP

SCIP: Solving Constraint Integer Programs
. standalone solver / branch-cut-and-price-framework
. modular structure via plugins
. free for academic use: http://scip.zib.de
. very fast non-commercial MIP and MINLP solver

0

1000

2000

3000

ti
m
e
in

se
co
nd

s non-commercial commercial4.5x 3.94x

2.16x

1.20x

1.00x
0.77x

0.23x 0.19x 0.17x

solved
(of 87 instances)

3 5 40 57 62 62 76 78 79

GLPK 4.47
lpsolve 5.5.2
CBC 2.7.8
SCIP 3.0.1 – CLP 1.14.8
SCIP 3.0.1 – SoPlex 1.7.1
SCIP 3.0.1 – Cplex 12.4.0
Xpress 7.3.1
Cplex 12.5.0
Gurobi 5.1.0

results by H. Mittelmann (10/Jan/2013)

Timo Berthold: Cloud Branching 11 / 17

http://scip.zib.de

SCIP 3.0

SCIP: Solving Constraint Integer Programs
. better support of MINLP
. new presolvers and propagators
. AMPL and MATLAB interface (beta)
. first releases of GCG and UG

5.2x

4.0x

3.0x 3.0x
2.5x

2.0x
1.6x

1.3x
1.1x 1.0x

solved
(of 87)

16 23 36 29 48 51 58 63 67 65
0

1000

2000

3000

4000

5000

ti
m
e
in

se
co
nd

s

sip 1.2 – SoPlex 1.2.1a
SCIP 0.7 – SoPlex 1.2.2
SCIP 0.80 – SoPlex 1.2.2
SCIP 0.90 – SoPlex 1.3.0
SCIP 1.00 – SoPlex 1.3.2
SCIP 1.1 – SoPlex 1.4.0
SCIP 1.2 – SoPlex 1.4.2
SCIP 2.0 – SoPlex 1.5.0
SCIP 2.1 – SoPlex 1.6.0
SCIP 3.0 – SoPlex 1.7.0

Timo Berthold: Cloud Branching 12 / 17

Test sets

MMM
. MIPLIB 3.0, MIPLIB 2003, MIPLIB2010
. industry and academics
. 168 instances from diverse applications

Cor@l
. huge collection of 350 instances
. many combinatorial ones
. mainly collected from NEOS server

Timo Berthold: Cloud Branching 13 / 17

Computational results

cloud statistics
Test set %Succ Pts LPs %Sav

MMM 12.2 2.19 74.34 21.7
COR@L 40.8 2.71 70.97 51.8

. applicable on some MMM, but many COR@L instances

. only few cloud points on average

. significants amount of LPs saved (if affected)

Timo Berthold: Cloud Branching 14 / 17

Computational results

strong branch cloud branch
Test set Nodes Time (s) Nodes Time (s)

MMM 691 72.0 661 68.2
COR@L 593 157.3 569 118.3

. little less nodes

. 5.5% faster on MMM (few affected instances)

. 30 % faster on COR@L

Timo Berthold: Cloud Branching 15 / 17

Wrap up

Conclusion: Cloud branching. . .
. exploits knowledge of alternative relaxation optima
. can help to improve pseudocost predictions
. makes full strong branching up to 30% faster

Outlook
. pseudocost, reliability, hybrid branching
. cloud points from alternative relaxations (MINLP!)
. nonchimerical + cloud + propagation = ?

Timo Berthold: Cloud Branching 16 / 17

Cloud Branching

Timo Berthold
Zuse Institute Berlin

joint work with Domenico Salvagnin (Università degli Studi di Padova)

DFG Research Center MATHEON
Mathematics for key technologies

21/May/13, CPAIOR 2013, IBM T. J.Watson Research Center

