

Cloud Branching

Timo Berthold Zuse Institute Berlin

joint work with Domenico Salvagnin (Università degli Studi di Padova)

DFG Research Center MATHEON Mathematics for key technologies

21/May/13, CPAIOR 2013, IBM T. J. Watson Research Center

$$\begin{array}{ll} \min \quad c^{\mathsf{T}}x\\ s.t. \quad Ax \leq b\\ \quad x \in \mathbb{Z}_{\geq 0}^{\mathsf{I}} \times \mathbb{R}_{\geq 0}^{\mathsf{C}} \end{array}$$

Mixed Integer Program:

- linear objective & constraints
- integer variables
- continuous variables

Branching for MIP:

- ▷ based on LP relaxation
- Fractional variables
- tries to improve dual bound

$$\begin{array}{ll} \min \quad c^T x \\ s.t. \quad Ax \leq b \\ \quad x \in \mathbb{Z}_{\geq 0}^I \times \mathbb{R}_{\geq 0}^C \end{array}$$

Mixed Integer Program:

- linear objective & constraints
- integer variables
- continuous variables

Branching for MIP:

- ▷ based on LP relaxation
- Fractional variables
- ▷ tries to improve dual bound

$$x_i \leq \lfloor x_i^* \rfloor \lor x_i \geq \lceil x_i^* \rceil$$
 for $i \in I$ and $x_i^* \notin \mathbb{Z}$

Most infeasible branching

- ▷ often referred to as a simple, standard rule
- computationally as bad as random branching!

Strong branching [ApplegateEtAl1995]

- ▷ solve LP relaxations for some candidates, choose best
- ▷ effective w.r.t. number of nodes, expensive w.r.t. time

Pseudocost branching [BenichouEtAl1971]

- ▷ try to estimate LP values, based on history information
- ▷ effective, cheap, but weak in the beginning
- ▷ can be combined with strong branching

Most infeasible branching

- ▷ often referred to as a simple, standard rule
- computationally as bad as random branching!

Strong branching [ApplegateEtAl1995]

- ▷ solve LP relaxations for some candidates, choose best
- ▷ effective w.r.t. number of nodes, expensive w.r.t. time

Pseudocost branching [BenichouEtAl1971]

- ▷ try to estimate LP values, based on history information
- ▷ effective, cheap, but weak in the beginning
- ▷ can be combined with strong branching

 1 optimal solution, determined by *n* constraints

 1 optimal solution, determined by *n* constraints

at a second thought:

1 optimal solution,
k > n tight constraints

 1 optimal solution, determined by *n* constraints

at a second thought:

1 optimal solution,
k > n tight constraints

but really:

 \triangleright an optimal polyhedron

 1 optimal solution, determined by *n* constraints

at a second thought:

1 optimal solution,
k > n tight constraints

but really:

 \triangleright an optimal polyhedron

 1 optimal solution, determined by *n* constraints

at a second thought:

1 optimal solution,
k > n tight constraints

but really: > an optimal polyhedron

Goal of this talk: branch on a set (a cloud) of solutions

Goal of this talk: branch on a cloud of solutions

- 1. How do we get extra optimal solutions?
- 2. Why should that be a good idea anyway?

- ▷ restrict LP to optimal face
- min/max each variable (OBBT) or
- feasibility pump objective (pump&reduce [Achterberg2010])

- restrict LP to optimal face
- min/max each variable (OBBT) or
- feasibility pump objective (pump&reduce [Achterberg2010])

$$\Delta(x, \tilde{x}) = \sum |x_j - \tilde{x}_j|$$

$$x_1 = 0.4$$

 $x_2 = 0.55$

- ▷ restrict LP to optimal face
- min/max each variable (OBBT) or
- feasibility pump objective (pump&reduce [Achterberg2010])

$$\Delta(x,\tilde{x}) = \sum |x_j - \tilde{x}_j| = -x_1 + x_2$$

 $x_1 = 0.4$ $x_2 = 0.55$

- restrict LP to optimal face
- min/max each variable (OBBT) or
- feasibility pump objective (pump&reduce [Achterberg2010])

$$\Delta(x,\tilde{x}) = \sum |x_j - \tilde{x}_j| = -x_1 + x_2$$

 $x_1 \in [0.4, 0.55]$ $x_2 \in [0.55, 0.9]$

- restrict LP to optimal face
- min/max each variable (OBBT) or
- feasibility pump objective (pump&reduce [Achterberg2010])

$$\Delta(x,\tilde{x}) = \sum |x_j - \tilde{x}_j| = +x_1 + x_2$$

 $x_1 \in [0.4, 0.55]$ $x_2 \in [0.55, 0.9]$

- restrict LP to optimal face
- min/max each variable (OBBT) or
- feasibility pump objective (pump&reduce [Achterberg2010])

$$\Delta(x,\tilde{x}) = \sum |x_j - \tilde{x}_j| = +x_1 + x_2$$

 $x_1 \in [0.4, 0.9]$ $x_2 \in [0.55, 1.0]$

- ▷ restrict LP to optimal face
- min/max each variable (OBBT) or
- feasibility pump objective (pump&reduce [Achterberg2010])

$$\Delta(x, \tilde{x}) = \sum |x_j - \tilde{x}_j| = +x_1 + x_2$$

- ▷ restrict LP to optimal face
- min/max each variable (OBBT) or
- feasibility pump objective (pump&reduce [Achterberg2010])

$$\Delta(x, \tilde{x}) = \sum |x_j - \tilde{x}_j| = +x_1 + x_2$$

 $x_1 \in [0.4, 0.9]$ $x_2 \in [0.55, 1.0]$

 \rightsquigarrow intervals instead of values

stalling is cheap!

pseudocost update

$$\,\triangleright\,\,\varsigma_j^+ = rac{\Delta^\uparrow}{\lceil x_j^\star \rceil - x_j^\star}$$
 and $\varsigma_j^- = rac{\Delta^\downarrow}{x_j^\star - \lfloor x_j^\star \rfloor}$

pseudocost-based estimation

$$\triangleright \ \Delta_j^+ = \Psi_j^+(\lceil x_j^\star\rceil - x_j^\star) \text{ and } \Delta_j^- = \Psi_j^-(x_j^\star - \lfloor x_j^\star\rfloor)$$

pseudocost update

$$> \zeta_j^+ = \frac{\Delta^{\uparrow}}{\lceil x_j^{\star} \rceil - x_j^{\star}} \quad \dots \text{ better: } \quad \tilde{\zeta}_j^+ = \frac{\Delta^{\uparrow}}{\lceil x_j^{\star} \rceil - u_j}$$

pseudocost-based estimation

$$\triangleright \ \Delta_j^+ = \Psi_j^+(\lceil x_j^\star\rceil - x_j^\star) \text{ and } \Delta_j^- = \Psi_j^-(x_j^\star - \lfloor x_j^\star\rfloor)$$

pseudocost update

$$> \zeta_j^+ = \frac{\Delta^{\uparrow}}{\lceil x_j^{\star} \rceil - x_j^{\star}} \quad \dots \text{ better: } \quad \tilde{\zeta}_j^+ = \frac{\Delta^{\uparrow}}{\lceil x_j^{\star} \rceil - u_j}$$

pseudocost-based estimation

$$\triangleright \ \Delta_j^+ = \Psi_j^+(\lceil x_j^\star\rceil - x_j^\star) \ \dots \text{better:} \ \tilde{\Delta}_j^+ = \Psi_j^+(\lceil x_j^\star\rceil - u_j)$$

Lemma

Let x^* be an optimal solution of the LP relaxation at a given branch-and-bound node and $\lfloor x_i^* \rfloor \leq l_j \leq x_i^* \leq u_j \leq \lceil x_i^* \rceil$. Then

- 1. for fixed Δ^{\uparrow} and Δ^{\downarrow} , it holds that $\tilde{\varsigma}_{j}^{+} \geq \varsigma_{j}^{+}$ and $\tilde{\varsigma}_{j}^{-} \geq \varsigma_{j}^{-}$, respectively;
- 2. for fixed Ψ_j^+ and Ψ_j^- , it holds that $\tilde{\Delta}_j^+ \leq \Delta_j^+$ and $\tilde{\Delta}_j^- \leq \Delta_j^-$, respectively.

Full strong branching:

- ▷ solves 2·#frac. var's many LPs
- ▷ uses product of improvement values as branching score
 - \triangleright improvement on both sides better than on one

Full strong branching:

- ▷ solves 2·#frac. var's many LPs
- ▷ uses product of improvement values as branching score
 - \triangleright improvement on both sides better than on one

Benefit of cloud intervals:

- $\triangleright\,$ frac. var. gets integral in cloud point \rightsquigarrow one LP spared
- cloud branching acts as a filter
- ▷ new frac. var.'s ~ new candidates (one side known)

- \triangleright if strict improvements in both directions for F_2 , disregard $F_1 \cup F_0$
- \triangleright if strict improvement in one direction for $F_2 \cup F_1$, disregard F_0

- \triangleright if strict improvements in both directions for F_2 , disregard $F_1 \cup F_0$
- ▷ if strict improvement in one direction for $F_2 \cup F_1$, disregard F_0
- \triangleright alternatively: Only use F_2

- \triangleright if strict improvements in both directions for F_2 , disregard $F_1 \cup F_0$
- \triangleright if strict improvement in one direction for $F_2 \cup F_1$, disregard F_0
- \triangleright alternatively: Only use F_2
- stop pump&reduce procedure when new cloud point does not imply new integral bound

- \triangleright if strict improvements in both directions for F_2 , disregard $F_1 \cup F_0$
- ▷ if strict improvement in one direction for $F_2 \cup F_1$, disregard F_0
- \triangleright alternatively: Only use F_2
- stop pump&reduce procedure when new cloud point does not imply new integral bound

Note: In our experiments, we do not use cloud points for anything else (heuristics, cuts)

SCIP: Solving Constraint Integer Programs

- standalone solver / branch-cut-and-price-framework
- > modular structure via plugins
- b free for academic use: http://scip.zib.de
- ▷ very fast non-commercial MIP and MINLP solver

SCIP: Solving Constraint Integer Programs

- better support of MINLP
- ▷ new presolvers and propagators
- AMPL and MATLAB interface (beta)
- ▷ first releases of GCG and UG

MMM

- ▷ MIPLIB 3.0, MIPLIB 2003, MIPLIB2010
- industry and academics
- ▷ 168 instances from diverse applications

Cor@l

- huge collection of 350 instances
- many combinatorial ones
- mainly collected from NEOS server

	cloud statistics					
Test set	%Succ	Pts		LPs	%Sav	
MMM	12.2	2.19		74.34	21.7	
COR@L	40.8	2.71		70.97	51.8	

- ▷ applicable on some MMM, but many COR@L instances
- only few cloud points on average
- ▷ significants amount of LPs saved (if affected)

Tost sot	strong Nodes T	strong branch Nodos Timo (s)		oranch
MMM	691	72.0	661	68.2
COR@L	593	157.3	569	118.3

- little less nodes
- ▷ 5.5% faster on MMM (few affected instances)
- ▷ 30 % faster on COR@L

Conclusion: Cloud branching...

- exploits knowledge of alternative relaxation optima
- can help to improve pseudocost predictions
- ▷ makes full strong branching up to 30% faster

Outlook

- pseudocost, reliability, hybrid branching
- ▷ cloud points from alternative relaxations (MINLP!)
- ▷ nonchimerical + cloud + propagation = ?

Cloud Branching

Timo Berthold Zuse Institute Berlin

joint work with Domenico Salvagnin (Università degli Studi di Padova)

DFG Research Center MATHEON Mathematics for key technologies

21/May/13, CPAIOR 2013, IBM T. J. Watson Research Center