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MIP & MINLP

Mixed-Integer Linear Programming (MIP):

min cTx

s.t. Ax ≤ b

xi ∈ Z for all i ∈ I

Mixed-Integer Nonlinear Programming (MINLP):

min cTx

s.t. g(x) 6 0, g ∈ C1(Rn,Rm)

xi ∈ Z for all i ∈ I
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MINLP solving techniques

Gradient cuts Underestimators
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Primal heuristics inside a global solver

Primal heuristics . . .

. are incomplete methods which

. often find good solutions

. within a reasonable time

. without any warranty!

Why use primal heuristics inside a global solver?

. to prove feasibility of the model

. often nearly optimal solutions suffice in practice

. feasible solutions guide remaining search process
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Active field of research
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The motivation

. Large Neighborhood Search: common paradigm in MIP heuristics

fix a subset of variables  easy subproblem  solve

MIP: “easy” = few integralities
MINLP: “easy” = few nonlinearities

. observation: any MINLP can be reduced to a MIP by fixing
(sufficiently many) variables.

. idea: fix a small subset of variables to obtain a linear subproblem

. use solution of an LP or NLP relaxation to determine fixing values
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The structure

Definition (cover of an MINLP)

Let

. a domain box [L,U] =×i [Li ,Ui ],

. a function gj : [L,U]→ R, x 7→ gj(x) on [L,U], and

. a set C ⊆ N := {1, . . . , n} of variable indices be given.

We call C a cover of g if and only if for all x̄ ∈ [L,U] the set

{(x , gj(x)) | x ∈ [L,U], xk = x̄k for all k ∈ C}

is an affine set intersected with [L,U]× R.

We call C a cover of P if and only if C is a cover for g1, . . . , gm.
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The heuristic

Input: MINLP P
begin

compute a solution x̄
of an approximation
of P ;

round x̄k for all k ∈ I;

determine a
cover C of P ;

solve the sub-MIP of P
given by fixing xk = x̄k
for all k ∈ C;

Remark:

. MIP heuristics: trade-off fixing
many vs. few variables

here: eliminate nonlinearities by
fixing as few as possible variables

. How to find minimum cover?
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Covering quadratic functions

Let gj : Rn → R, x 7→ xTQx + qx + c , Q ∈ Rn×n symmetric for all j .

Auxiliary binary variables: αk = 1 :⇔ xk is fixed in P

Set covering constraints:

C(α) := {k | αk = 1} is a cover of P if and only if

αk = 1 for all square nonzeros: Q i
kk 6= 0, (SN)

αk + αj > 1 for all bilinear nonzeros: Q i
kj 6= 0, k 6= j . (BN)

Solve the covering problem

min
{ n∑

k=1

αk : (SN), (BN), α ∈ {0, 1}n
}
.
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General covering problems

. Covering problem is NP-hard, but
branch-and-cut (empirically) very fast

. For general MINLPs, the covering problem becomes more difficult,
e.g. for a global cover of a monomial xp11 · · · xpnn , p1, . . . , pn ∈ N0:

αk = 1 for all pk > 2∑
k:pk=1

(1− αk) 6 1.

. For general MINLPs, global covers become larger and larger.
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Implementation within SCIP

. one of the fastest non-commercial MIP solvers
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GLPK 4.47

lpsolve 5.5.2

CBC 2.7.8

SCIP 3.0.1 – CLP 1.14.8

SCIP 3.0.1 – SoPlex 1.7.1

SCIP 3.0.1 – Cplex 12.4.0

Xpress 7.3.1

Cplex 12.5.0

Gurobi 5.1.0

results by H. Mittelmann (10/Jan/2013)

. MINLP solver benchmark
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Empirical cover sizes

How big are minimum covers?

. SCIP 3.0 on 255 instances from MINLPLib

. 6 14% on 85, 6 36% on 170 instances

. similar on MIQCPs and general MINLPs
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The results

Test set

. 149 MIQCPs from GloMIQO test set

Comparison to other heuristics

. Undercover: solution for 76 instances (typically less than 0.1 sec)

. root heuristics: Baron 65, Couenne 55, SCIP 98

. lower success rate on general MINLPs

Extensions

. cover structure can be further exploited

. Undercover branching [B., Gleixner. Proc. of SEA 2013]
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The motivation(s)

First motivation:

. many MIP heuristics based on rounding

. How likely to succeed?

. How good can they get?

Second motivation:

. Large Neighborhood Search

. e.g., RINS, Local Branching

. typically requires incumbent solution
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The structure

Definition (rounding)

Let x̄ ∈ [L,U]. The set

R(x̄) := {x ∈ [L,U] | xj ∈ {bx̄jc, dx̄je} ∀ j ∈ I}

is called the set of roundings of x̄ .

Definition (optimal rounding)

Let x̄ ∈ [L,U] and x̃ ∈ R(x̄).

1. We call x̃ a feasible rounding of x̄ , if gi(x̃) 6 0 ∀ i ∈M.

2. We call x̃ an optimal rounding of x̄ , if
x̃ ∈ argmin{dTx | x ∈ R(x), gi(x) 6 0 ∀ i ∈M}.

3. We call x̄ roundable if it has a feasible rounding.
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The heuristic

Input: MINLP P
begin

x̄ ← relaxation optimum;

Fix all integral variables
xi := x̄i for all i : x̄i ∈ Z;

Reduce domain of fractional variables
xi ∈ {bx̄ic; dx̄ie};
Solve the resulting sub-MINLP;
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Observations

Lemma

Let the starting point x̄ be feasible for a relaxation.

1. If the sub-MINLP is infeasible, then no feasible rounding of x̄ exists.

2. If not, the optimum of the sub-MINLP is the optimal rounding of x̄ .

Corollary

x̄ either has an optimal rounding or is not roundable.
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Computational results

Results when using an LP relaxation:
MIPLIB MIQCP MINLPLib

integrality (% vars) 71.7 59.9 63.5
roundability (% inst) 59.7 70.0 61.9

Further findings
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A closer look at roundability
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Results when using an LP relaxation:
MIPLIB MIQCP MINLPLib

integrality (% vars) 71.7 59.9 63.5
roundability (% inst) 59.7 70.0 61.9

Further findings

. cuts: no effect on integrality, bad for roundability

. NLP solutions much less integral, similar roundability

RENS as primal heuristic

. defensive version succeeds in ≈ 50% (MIP and MIQCP)

. inferior to portfolio, superior to single best

. mixed runtimes: mostly ≤ 5 sec, for MIP sometimes ≈ 1 min

Timo Berthold: From structures to heuristics to global solvers 23 / 34



Computational results

Results when using an LP relaxation:
MIPLIB MIQCP MINLPLib

integrality (% vars) 71.7 59.9 63.5
roundability (% inst) 59.7 70.0 61.9

Further findings

. cuts: no effect on integrality, bad for roundability

. NLP solutions much less integral, similar roundability

RENS as primal heuristic

. defensive version succeeds in ≈ 50% (MIP and MIQCP)

. inferior to portfolio, superior to single best

. mixed runtimes: mostly ≤ 5 sec, for MIP sometimes ≈ 1 min

Timo Berthold: From structures to heuristics to global solvers 23 / 34



Outline

From structures to heuristics to global solvers

1 Undercover: the largest sub-MIP [B., Gleixner. Math. Prog., 2013]

2 RENS: the optimal rounding [B. Math. Prog. C, under review]

3 Measuring the impact of primal heuristics [B. OR Letters, accepted]

Timo Berthold: From structures to heuristics to global solvers 24 / 34



And what about the global solvers?

How important are primal heuristics in global solvers?

A MIP software vendor says:

Our advanced MIP heuristics for quickly finding feasible solutions
often produce good quality solutions where other solvers fall flat,
leading to some of our biggest wins vs. the competition.

Which heuristics?

. trade secret

. few parameters to influence behavior of heuristics

. output only tells you that solution was found by some heuristic

 very important
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And what about the global solvers?

How important are primal heuristics?

Typical measure: running time to prove optimality

 not important at all

So, what is wrong here?
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Comparing performance
How to measure the added value of a primal heuristic?

. time to optimality tsolved, number of branch-and-bound nodes
I very much depends on dual bound

. time to best solution topt
I nearly optimal solution might be found long before

. time to first solution t1
I disregards solution quality

. performance profiles
I depend on tsolved, hence on dual bound
I not an absolute number

. primal integral

I favors finding good solutions early
I considers each update of incumbent
I P(tmax)/tmax “average solution quality”
I expected quality of the incumbent, if stopped arbitrarily
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Primal gap function

Let x̃ be a solution, x̃opt be an optimum, tmax ∈ R≥0 be a timelimit.

Primal gap γ ∈ [0, 1] of x̃ :

γ(x̃) :=


0, if |cT x̃opt| = |cT x̃ | = 0,

1, if cT x̃opt · cT x̃ < 0,
|cT x̃opt−cT x̃|

max{|cT x̃opt|, |cT x̃|} , else.

Primal gap function p : [0, tmax] 7→ [0, 1]:

p(t) :=

{
1, if no incumbent until point t,

γ(x̃(t)), with x̃(t) incumbent at point t.
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Primal integral

. step function, changes at points ti when new incumbent found

. p(0) = 1, p(t) = 0 for all t ≥ topt

. monotonically decreasing

Primal integral P(T ) of T ∈ [0, tmax]:

P(T ) :=

T∫
t=0

p(t) dt =
I∑

i=1

p(ti−1) · (ti − ti−1),
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Average primal integral: SCIP / MIP

no heuristics (16.18%)

default ( 9.05%)
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Average primal integral: SCIP / MINLP

no heuristics (23.97%)

default (15.99%)
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Conclusion

Undercover & RENS:

. LNS start heuristics for MINLP

. exploit generic problem structures

. successful application as root node heuristics

Primal integral:

. new performance measure, captures overall solution process

. more robust, though not immune, against randomness

. overall impact of primal heuristics (w.r.t. P(tmax)) significant

slides and technical reports of presented papers: http://www.zib.de/berthold

SCIP Optimization Suite: http://scip.zib.de
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