

From structures to heuristics to global solvers

Timo Berthold Zuse Institute Berlin

DFG Research Center MATHEON Mathematics for key technologies

OR2013, 04/Sep/13, Rotterdam

From structures to heuristics to global solvers

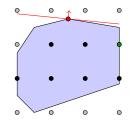
Undercover: the largest sub-MIP [B., Gleixner. Math. Prog., 2013]

- 2 RENS: the optimal rounding [B. Math. Prog. C, under review]
- Measuring the impact of primal heuristics [B. OR Letters, accepted]

MIP & MINLP

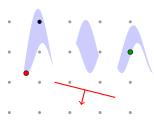
Mixed-Integer Linear Programming (MIP):

$$\begin{array}{ll} \min \quad c^{\intercal}x\\ s.t. \quad Ax \leq b\\ & x_i \in \mathbb{Z} \text{ for all } i \in \mathcal{I} \end{array} \end{array}$$

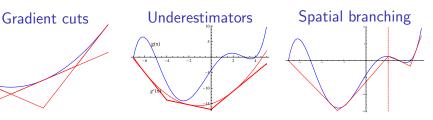


Mixed-Integer Nonlinear Programming (MINLP): •

$$\begin{array}{ll} \min & c^{\mathsf{T}}x\\ s.t. & g(x) \leqslant 0, \quad g \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^m)\\ & x_i \in \mathbb{Z} \text{ for all } i \in \mathcal{I} \end{array}$$

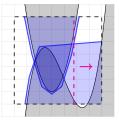


MINLP solving techniques

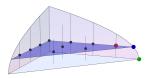


Reformulation

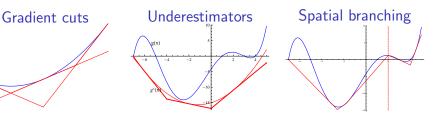
Bound tightening



Primal heuristics

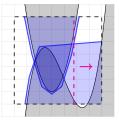


MINLP solving techniques

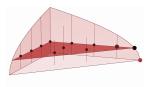


Reformulation

Bound tightening

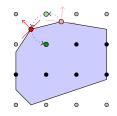


Primal heuristics



Primal heuristics ...

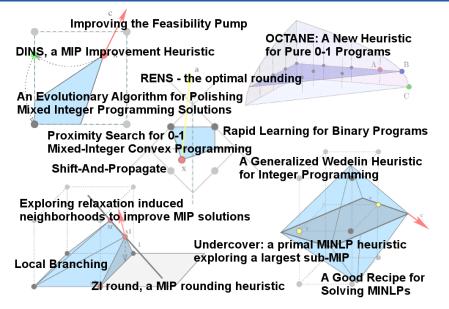
- are incomplete methods which
- often find good solutions
- within a reasonable time
- without any warranty!



Why use primal heuristics inside a global solver?

- ▷ to prove feasibility of the model
- ▷ often nearly optimal solutions suffice in practice
- ▷ feasible solutions guide remaining search process

Active field of research



From structures to heuristics to global solvers

D Undercover: the largest sub-MIP [B., Gleixner. Math. Prog., 2013]

2 RENS: the optimal rounding [B. Math. Prog. C, under review]

3 Measuring the impact of primal heuristics [B. OR Letters, accepted]

 ▷ Large Neighborhood Search: common paradigm in MIP heuristics fix a subset of variables → easy subproblem → solve
 MIP: "easy" = few integralities
 MINLP: "easy" = few nonlinearities

- observation: any MINLP can be reduced to a MIP by fixing (sufficiently many) variables.
- idea: fix a small subset of variables to obtain a linear subproblem
 use solution of an LP or NLP relaxation to determine fixing values

Definition (cover of an MINLP)

Let

▷ a domain box [L, U] = ×_i[L_i, U_i],
▷ a function g_i : [L, U] → ℝ, x ↦ g_j(x) on [L, U], and
▷ a set C ⊆ N := {1,..., n} of variable indices be given.

We call C a *cover of* g if and only if for all $\bar{x} \in [L, U]$ the set

$$\{(x,g_j(x)) \mid x \in [L,U], x_k = \bar{x}_k \text{ for all } k \in \mathcal{C}\}$$

is an affine set intersected with $[L, U] \times \mathbb{R}$.

We call C a *cover of* P if and only if C is a cover for g_1, \ldots, g_m .

Input: MINLP P

begin

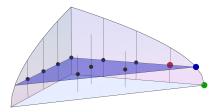
```
compute a solution \bar{x} of an approximation of P;
```

```
round \bar{x}_k for all k \in \mathcal{I};
```

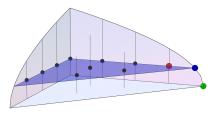
```
determine a
```

```
cover C of P;
```

```
solve the sub-MIP of P
given by fixing x_k = \bar{x}_k
for all k \in C;
```




```
compute a solution \bar{x}
of an approximation
of P:
round \bar{x}_k for all k \in \mathcal{I};
determine a
cover C of P:
solve the sub-MIP of P
given by fixing x_k = \bar{x}_k
for all k \in C:
```

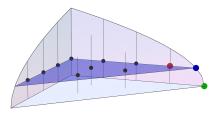



```
compute a solution \bar{x} of an approximation of P;
```

```
round \bar{x}_k for all k \in \mathcal{I};
```

```
determine a cover C of P:
```

```
solve the sub-MIP of P
given by fixing x_k = \bar{x}_k
for all k \in C;
```



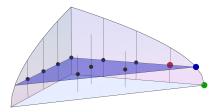

```
compute a solution \bar{x} of an approximation of P;
```

```
round \bar{x}_k for all k \in \mathcal{I};
```

```
determine a
```

```
cover C of P;
```

```
solve the sub-MIP of P
given by fixing x_k = \bar{x}_k
for all k \in C;
```



The heuristic

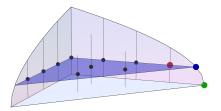
```
compute a solution \bar{x}
of an approximation
of P;
```

```
round \bar{x}_k for all k \in \mathcal{I};
```

```
determine a cover C of P
```

```
cover C of P;
```

```
solve the sub-MIP of P given by fixing x_k = \bar{x}_k for all k \in C;
```

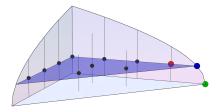



```
compute a solution \bar{x}
of an approximation
of P;
```

```
round \bar{x}_k for all k \in \mathcal{I};
```

determine a cover C of P:

```
solve the sub-MIP of P given by fixing x_k = \bar{x}_k for all k \in C;
```



Remark:

 MIP heuristics: trade-off fixing many vs. few variables

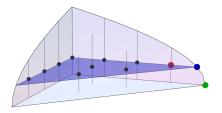
here: eliminate nonlinearities by fixing as few as possible variables


```
compute a solution \bar{x} of an approximation of P;
```

```
round \bar{x}_k for all k \in \mathcal{I};
```

determine a cover C of P;

```
solve the sub-MIP of P given by fixing x_k = \bar{x}_k for all k \in C;
```



Remark:

 MIP heuristics: trade-off fixing many vs. few variables

here: eliminate nonlinearities by fixing as few as possible variables

▶ How to find minimum cover?

Let $g_j : \mathbb{R}^n \to \mathbb{R}, x \mapsto x^{\tau}Qx + qx + c$, $Q \in \mathbb{R}^{n \times n}$ symmetric for all j.

Auxiliary binary variables: $\alpha_k = 1 :\Leftrightarrow x_k$ is fixed in *P*

Set covering constraints:

 $\mathcal{C}(lpha):=\{k\mid lpha_k=1\}$ is a cover of P if and only if

$$\begin{aligned} &\alpha_k = 1 & \text{for all square nonzeros: } Q_{kk}^i \neq 0, \end{aligned} \tag{SN} \\ &\alpha_k + \alpha_j \geqslant 1 & \text{for all bilinear nonzeros: } Q_{kj}^i \neq 0, k \neq j. \end{aligned} \tag{SN}$$

Solve the covering problem

$$\min\left\{\sum_{k=1}^{n} \alpha_{k} : (\mathsf{SN}), (\mathsf{BN}), \alpha \in \{0,1\}^{n}\right\}.$$

Let $g_j : \mathbb{R}^n \to \mathbb{R}, x \mapsto x^{\tau}Qx + qx + c$, $Q \in \mathbb{R}^{n \times n}$ symmetric for all j.

Auxiliary binary variables: $\alpha_k = 1 : \Leftrightarrow x_k$ is fixed in *P*

Set covering constraints:

 $\mathcal{C}(lpha):=\{k\mid lpha_k=1\}$ is a cover of P if and only if

 $\begin{aligned} &\alpha_{k} = 1 & \text{for all square nonzeros: } Q_{kk}^{i} \neq 0, \end{aligned} \tag{SN}$ $&\alpha_{k} + \alpha_{j} \ge 1 & \text{for all bilinear nonzeros: } Q_{kj}^{i} \neq 0, k \neq j. \end{aligned} \tag{BN}$

Solve the covering problem

$$\min\left\{\sum_{k=1}^{n} \alpha_{k} : (\mathsf{SN}), (\mathsf{BN}), \alpha \in \{0, 1\}^{n}\right\}.$$

Let $g_j : \mathbb{R}^n \to \mathbb{R}, x \mapsto x^{\tau}Qx + qx + c$, $Q \in \mathbb{R}^{n \times n}$ symmetric for all j.

Auxiliary binary variables: $\alpha_k = 1 : \Leftrightarrow x_k$ is fixed in *P*

Set covering constraints:

 $\mathcal{C}(lpha):=\{k\mid lpha_k=1\}$ is a cover of P if and only if

$$\begin{aligned} &\alpha_k = 1 & \text{for all square nonzeros: } Q_{kk}^i \neq 0, \end{aligned} \tag{SN}$$
$$&\alpha_k + \alpha_j \geqslant 1 & \text{for all bilinear nonzeros: } Q_{kj}^i \neq 0, k \neq j. \end{aligned} \tag{SN}$$

Solve the covering problem

$$\min\left\{\sum_{k=1}^{n} \alpha_{k} : (\mathsf{SN}), (\mathsf{BN}), \alpha \in \{0,1\}^{n}\right\}.$$

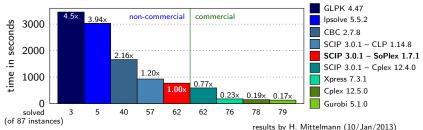
- ▷ Covering problem is *NP*-hard, but branch-and-cut (empirically) very fast
- ▷ For general MINLPs, the covering problem becomes more difficult, e.g. for a global cover of a monomial $x_1^{p_1} \cdots x_n^{p_n}$, $p_1, \ldots, p_n \in \mathbb{N}_0$:

$$lpha_k = 1$$
 for all $p_k \ge 2$
 $\sum_{k:p_k=1} (1 - lpha_k) \leqslant 1.$

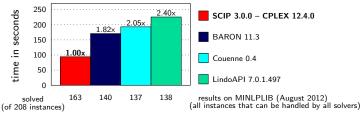
▷ For general MINLPs, global covers become larger and larger.

Implementation within SCIP

▷ one of the fastest non-commercial MIP solvers

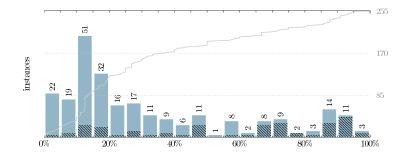


MINLP solver benchmark



How big are minimum covers?

▷ SCIP 3.0 on 255 instances from MINLPLib



▷ \leq 14% on 85, \leq 36% on 170 instances ▷ similar on MIQCPs and general MINLPs

Test set

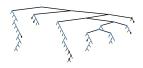
▷ 149 MIQCPs from GloMIQO test set

Comparison to other heuristics

- ▷ Undercover: solution for 76 instances (typically less than 0.1 sec)
- ▷ root heuristics: Baron 65, Couenne 55, SCIP 98
- Iower success rate on general MINLPs

Extensions

- cover structure can be further exploited
- ▷ Undercover branching [B., Gleixner. Proc. of SEA 2013]



From structures to heuristics to global solvers

1) Undercover: the largest sub-MIP [B., Gleixner. Math. Prog., 2013]

2 RENS: the optimal rounding [B. Math. Prog. C, under review]

3 Measuring the impact of primal heuristics [B. OR Letters, accepted]

The motivation(s)

0

First motivation:

- many MIP heuristics based on rounding
- ▷ How likely to succeed?
- How good can they get?

 \triangleright

 \triangleright

The motivation(s)

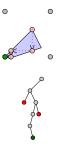
many MIP heuristics based on rounding

How likely to succeed? How good can they get? \triangleright

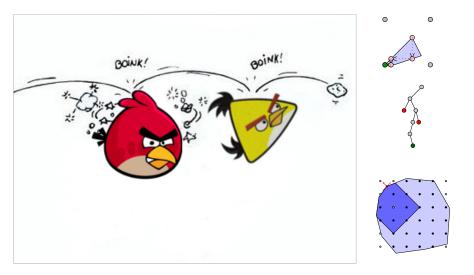
Second motivation:

First motivation:

- Large Neighborhood Search
 - ▷ e.g., RINS, Local Branching
- ▷ typically requires incumbent solution



The motivation(s)



The structure

Definition (rounding)

Let $\bar{x} \in [L, U]$. The set

 $\mathcal{R}(\bar{x}) \coloneqq \{x \in [L, U] \mid x_j \in \{\lfloor \bar{x}_j \rfloor, \lceil \bar{x}_j \rceil\} \ \forall j \in \mathcal{I}\}$

is called the set of *roundings* of \bar{x} .

Definition (optimal rounding)

Let $\bar{x} \in [L, U]$ and $\tilde{x} \in \mathcal{R}(\bar{x})$.

- 1. We call \tilde{x} a *feasible rounding* of \bar{x} , if $g_i(\tilde{x}) \leq 0 \ \forall i \in \mathcal{M}$.
- 2. We call \tilde{x} an *optimal rounding* of \bar{x} , if $\tilde{x} \in \operatorname{argmin} \{ d^{\tau}x \mid x \in \mathcal{R}(x), g_i(x) \leq 0 \ \forall i \in \mathcal{M} \}.$
- 3. We call \bar{x} roundable if it has a feasible rounding.

Input: MINLP P

begin

 $\bar{x} \leftarrow$ relaxation optimum;

```
Fix all integral variables
```

```
x_i := \bar{x}_i for all i : \bar{x}_i \in \mathbb{Z};
```

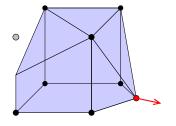
```
Reduce domain of fractional variables x_i \in \{\lfloor \bar{x}_i \rfloor; \lceil \bar{x}_i \rceil\};\
```


 $\bar{x} \leftarrow \text{relaxation optimum};$

Fix all integral variables

 $x_i := \bar{x}_i$ for all $i : \bar{x}_i \in \mathbb{Z}$;

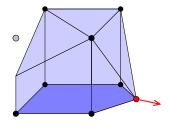
Reduce domain of fractional variables $x_i \in \{\lfloor \bar{x}_i \rfloor; \lceil \bar{x}_i \rceil\};\$



 $\bar{x} \leftarrow$ relaxation optimum;

```
Fix all integral variables x_i := \bar{x}_i for all i : \bar{x}_i \in \mathbb{Z};
```

```
Reduce domain of fractional variables x_i \in \{\lfloor \bar{x}_i \rfloor; \lceil \bar{x}_i \rceil\};\
```

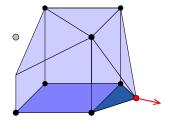


 $\bar{x} \leftarrow$ relaxation optimum;

Fix all integral variables

$$x_i := \bar{x}_i$$
 for all $i : \bar{x}_i \in \mathbb{Z}$;

```
Reduce domain of fractional variables x_i \in \{\lfloor \bar{x}_i \rfloor; \lceil \bar{x}_i \rceil\};\
```

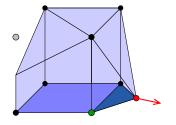


 $\bar{x} \leftarrow$ relaxation optimum;

Fix all integral variables

$$x_i := \bar{x}_i$$
 for all $i : \bar{x}_i \in \mathbb{Z}$;

Reduce domain of fractional variables $x_i \in \{\lfloor \bar{x}_i \rfloor; \lceil \bar{x}_i \rceil\};\$



Lemma

Let the starting point \bar{x} be feasible for a relaxation.

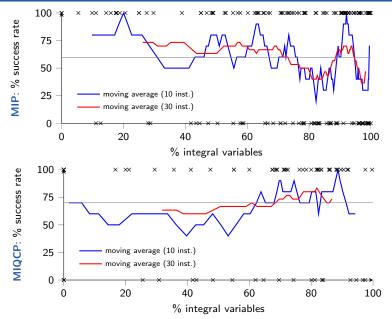
- 1. If the sub-MINLP is infeasible, then no feasible rounding of \bar{x} exists.
- 2. If not, the optimum of the sub-MINLP is the optimal rounding of \bar{x} .

Corollary

 \bar{x} either has an optimal rounding or is not roundable.

Results when using an LP relaxation:
MIPLIBMIPLIBMIQCPMINLPLibintegrality(% vars)71.759.963.5roundability(% inst)59.770.061.9

A closer look at roundability



Results when using an LP relaxation:

	MIPLIB	MIQCP	MINLPLib
integrality (% vars)	71.7	59.9	63.5
roundability (% inst)	59.7	70.0	61.9

Further findings

- ▷ cuts: no effect on integrality, bad for roundability
- ▷ NLP solutions much less integral, similar roundability

Results when using an LP relaxation:

	MIPLIB	MIQCP	MINLPLib
integrality (% vars)	71.7	59.9	63.5
roundability (% inst)	59.7	70.0	61.9

Further findings

- ▷ cuts: no effect on integrality, bad for roundability
- ▷ NLP solutions much less integral, similar roundability

RENS as primal heuristic

- \triangleright defensive version succeeds in \approx 50% (MIP and MIQCP)
- ▷ inferior to portfolio, superior to single best
- $\triangleright\,$ mixed runtimes: mostly ≤ 5 sec, for MIP sometimes ≈ 1 min

From structures to heuristics to global solvers

1 Undercover: the largest sub-MIP [B., Gleixner. Math. Prog., 2013]

2 RENS: the optimal rounding [B. Math. Prog. C, under review]

Measuring the impact of primal heuristics [B. OR Letters, accepted]

How important are primal heuristics in global solvers?

A MIP software vendor says:

Our advanced MIP heuristics for quickly finding feasible solutions often produce good quality solutions where other solvers fall flat, leading to some of our biggest wins vs. the competition.

How important are primal heuristics in global solvers?

A MIP software vendor says:

Our advanced MIP heuristics for quickly finding feasible solutions often produce good quality solutions where other solvers fall flat, leading to some of our biggest wins vs. the competition.

Which heuristics?

- ▷ trade secret
- ▷ few parameters to influence behavior of heuristics
- ▷ output only tells you that solution was found by **some** heuristic

How important are primal heuristics in global solvers?

A MIP software vendor says:

Our advanced MIP heuristics for quickly finding feasible solutions often produce good quality solutions where other solvers fall flat, leading to some of our biggest wins vs. the competition.

Which heuristics?

- trade secret
- ▷ few parameters to influence behavior of heuristics
- ▷ output only tells you that solution was found by **some** heuristic

\rightsquigarrow very important

Typical measure: running time to prove optimality

Typical measure: running time to prove optimality

Typical measure: running time to prove optimality

- ▷ one vendor: 6% improvement
- ▷ other vendor: 9% improvement
- ▷ non-commercial solver: 15 % improvement

\rightsquigarrow not important at all

Typical measure: running time to prove optimality

- ▷ one vendor: 6% improvement
- ▷ other vendor: 9% improvement
- ▷ non-commercial solver: 15 % improvement

\rightsquigarrow not important at all

So, what is wrong here?

Comparing performance

How to measure the added value of a primal heuristic?

- \triangleright time to optimality t_{solved} , number of branch-and-bound nodes
 - very much depends on dual bound
- \triangleright time to best solution t_{opt}
 - nearly optimal solution might be found long before
- \triangleright time to first solution t_1
 - disregards solution quality
- performance profiles
 - depend on t_{solved}, hence on dual bound
 - not an absolute number
- primal integral

Primal gap function

Let \tilde{x} be a solution, \tilde{x}_{opt} be an optimum, $t_{max} \in \mathbb{R}_{\geq 0}$ be a timelimit. Primal gap $\gamma \in [0, 1]$ of \tilde{x} :

$$\gamma(\tilde{x}) := \begin{cases} 0, & \text{if } |c^{\tau} \tilde{x}_{\text{opt}}| = |c^{\tau} \tilde{x}| = 0, \\ 1, & \text{if } c^{\tau} \tilde{x}_{\text{opt}} \cdot c^{\tau} \tilde{x} < 0, \\ \frac{|c^{\tau} \tilde{x}_{\text{opt}}| - c^{\tau} \tilde{x}|}{\max\{|c^{\tau} \tilde{x}_{\text{opt}}|, |c^{\tau} \tilde{x}|\}}, & \text{else.} \end{cases}$$

Primal gap function $p: [0, t_{max}] \mapsto [0, 1]$:

 $p(t) := egin{cases} 1, & ext{if no incumbent until point } t, \ \gamma(ilde{x}(t)), & ext{with } ilde{x}(t) ext{ incumbent at point } t. \end{cases}$

 \triangleright step function, changes at points t_i when new incumbent found

$$\triangleright \ p(0) = 1$$
, $p(t) = 0$ for all $t \geq t_{
m opt}$

> monotonically decreasing

Primal integral P(T) of $T \in [0, t_{max}]$:

$$P(T) := \int_{t=0}^{T} p(t) dt = \sum_{i=1}^{l} p(t_{i-1}) \cdot (t_i - t_{i-1}),$$

Comparing performance

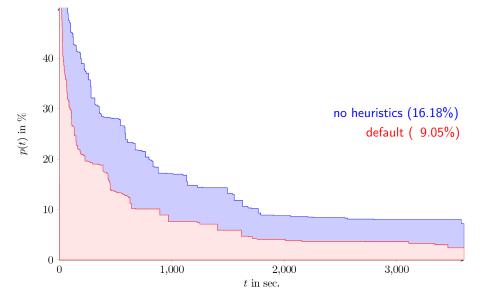
How to measure the added value of a primal heuristic?

- \triangleright time to optimality t_{solved} , number of branch-and-bound nodes
 - very much depends on dual bound
- \triangleright time to best solution t_{opt}
 - nearly optimal solution might be found long before
- \triangleright time to first solution t_1
 - disregards solution quality
- performance profiles
 - depend on t_{solved}, hence on dual bound
 - not an absolute number

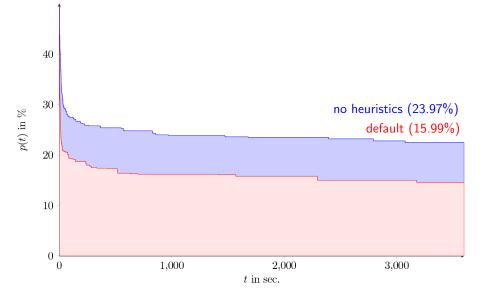
▷ primal integral $P(t_{max})$

- favors finding good solutions early
- considers each update of incumbent
- ▶ $P(t_{max})/t_{max}$ "average solution quality"
- expected quality of the incumbent, if stopped arbitrarily

Average primal integral: SCIP / MIP



Average primal integral: SCIP / MINLP



Undercover & RENS:

- LNS start heuristics for MINLP
- exploit generic problem structures
- successful application as root node heuristics

Primal integral:

- ▷ new performance measure, captures overall solution process
- ▷ more robust, though not immune, against randomness
- \triangleright overall impact of primal heuristics (w.r.t. $P(t_{max})$) significant

slides and technical reports of presented papers: http://www.zib.de/berthold

SCIP Optimization Suite: http://scip.zib.de

From structures to heuristics to global solvers

Timo Berthold Zuse Institute Berlin

DFG Research Center MATHEON Mathematics for key technologies

OR2013, 04/Sep/13, Rotterdam