

Primal Heuristics in SCIP

Timo Berthold Zuse Institute Berlin

DFG Research Center MATHEON Mathematics for key technologies

Berlin, 10/11/2007

- Basics
- Integration Into SCIP

2 Available Heuristics

- Rounding Heuristics
- (Objective) Diving
- LNS & Others

3 Remarks & Results

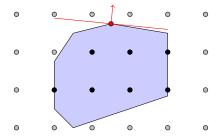
- Basics
- Integration Into SCIP
- Available Heuristics
 Rounding Heuristics
 (Objective) Diving
 LNS & Others

- Basics
- Integration Into SCIP

Available Heuristics
Rounding Heuristics
(Objective) Diving
LNS & Others

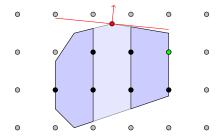
Exact methods

- Branch-And-Bound
- ▷ Cutting planes
- Branch-And-Cut



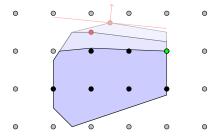
Exact methods

- Branch-And-Bound
- ▷ Cutting planes
- Branch-And-Cut



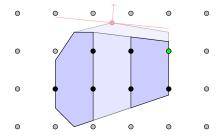
Exact methods

- Branch-And-Bound
- ▷ Cutting planes
- Branch-And-Cut



Exact methods

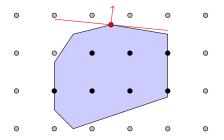
- Branch-And-Bound
- ▷ Cutting planes
- Branch-And-Cut



- Branch-And-Bound
- Cutting planes
- Branch-And-Cut

Heuristics

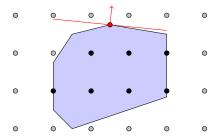
Often find good solutions



- Branch-And-Bound
- Cutting planes
- Branch-And-Cut

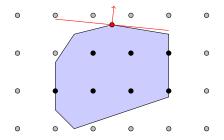
Heuristics

Often find good solutions
 in a reasonable time



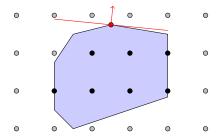
- Branch-And-Bound
- Cutting planes
- Branch-And-Cut

- $\triangleright~$ Often find good solutions
- in a reasonable time
- without any warranty!



- Branch-And-Bound
- Cutting planes
- Branch-And-Cut

- Often find good solutions
- in a reasonable time
- without any warranty!
- $\triangleright \rightsquigarrow$ Integrate into exact solver



Why use heuristics inside an exact solver?

- ▷ Able to prove feasibility of the model
- Often nearly optimal solution suffices in practice
- Feasible solutions guide remaining search process

Characteristics

Why use heuristics inside an exact solver?

- ▷ Able to prove feasibility of the model
- Often nearly optimal solution suffices in practice
- Feasible solutions guide remaining search process

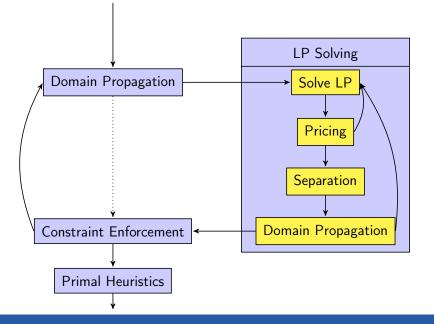
Characteristics

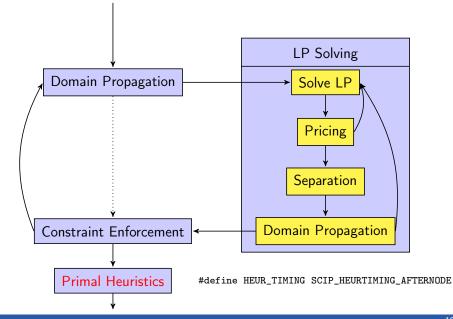
- Highest priority to feasibility
- Keep control of effort!
- Use as much information as you can get

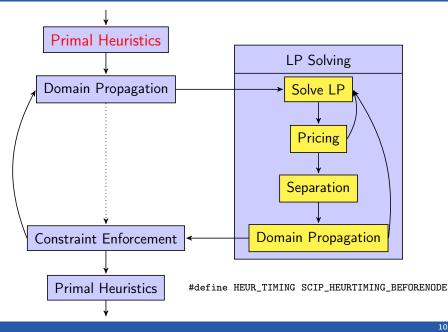
- Basics
- Integration Into SCIP
- Available Heuristics
 Rounding Heuristics
 (Objective) Diving
 LNS & Others

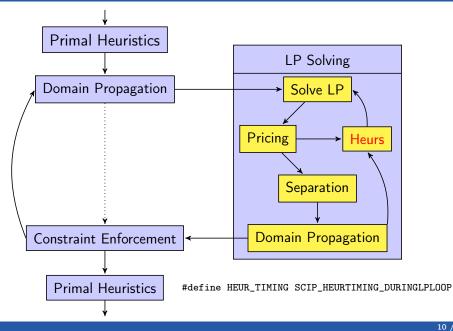

```
SCIPincludeHeur(
  scip,
  "Christofides",
  "Start_heuristic_for_TSP",
  'X',
  -15000,
  0,
  0,
  0,
  SCIP_HEURTIMING_BEFORENODE
);
```

```
// scip
// HEUR_NAME
// HEUR_DESC
// HEUR_DISPCHAR
// HEUR_PRIORITY
// HEUR_FREQ
// HEUR_FREQOFS
// HEUR_MAXDEPTH
// HEUR_TIMING
```







Start heuristics

- Often already at root node
- Mostly start from LP optimum
- Improvement heuristics
 - Require feasible solution
 - Normally at most once for each incumbent

- Start heuristics
 - Often already at root node
 - Mostly start from LP optimum
- Improvement heuristics
 - Require feasible solution
 - Normally at most once for each incumbent

#define HEUR_FREQOFS 0

- Start heuristics
 - Often already at root node
 - Mostly start from LP optimum
- Improvement heuristics
 - Require feasible solution
 - Normally at most once for each incumbent
- if(SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL)
 return SCIP_OKAY;

Start heuristics

- Often already at root node
- Mostly start from LP optimum
- Improvement heuristics
 - Require feasible solution
 - Normally at most once for each incumbent

```
if( SCIPgetNSols(scip) <= 0 )
  return SCIP_OKAY;</pre>
```


Start heuristics

- Often already at root node
- Mostly start from LP optimum
- Improvement heuristics
 - Require feasible solution
 - Normally at most once for each incumbent

```
struct SCIP_HeurData
{
    SCIP_SOL* lastsol;
}
```


Five main approaches

- Rounding assign integer values to fractional variables
- Diving: DFS in the Branch-And-Bound-tree
- Objective diving: manipulate objective function
- $\ \ \, \vdash \ \ L_{arge}N_{eighborhood}S_{earch}: \ \ solve \ \ some \ \ subMIP$
- Pivoting: manipulate simplex algorithm

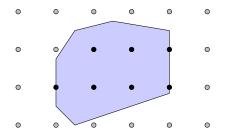
Five main approaches

- Rounding assign integer values to fractional variables
- Diving: DFS in the Branch-And-Bound-tree
- Objective diving: manipulate objective function
- Pivoting: manipulate simplex algorithm

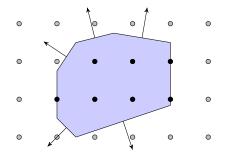
Implemented into SCIP

- ▷ 5 Rounding heuristics
- 8 Diving heuristics
- ▷ 3 Objective divers
- > 4 LNS improvement heuristics
- \triangleright 3 Others

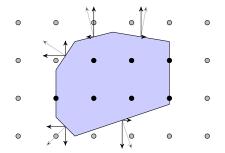
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



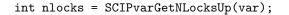
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions

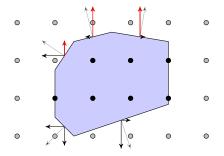


- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions

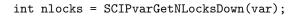


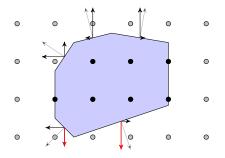
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions





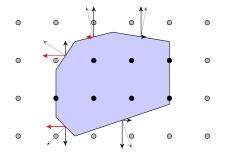
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



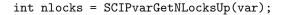


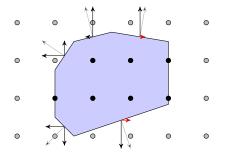
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



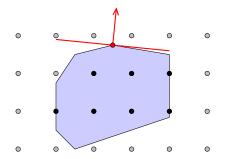


- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



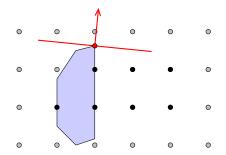


- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



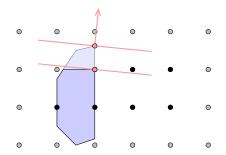
Statistics & points

- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



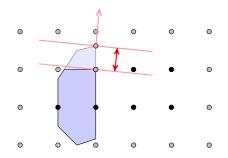
Statistics & points

- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



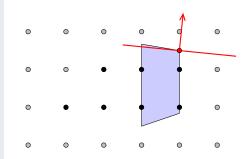
Statistics & points

- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



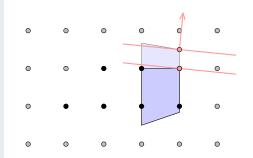
Statistics & points

- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



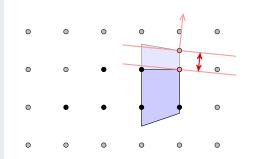
Statistics & points

- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



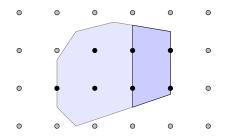
Statistics & points

- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



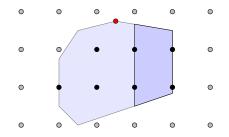
Statistics & points

- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



Statistics & points

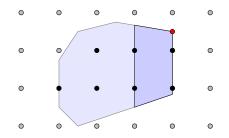
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



SCIP_Real rootsolval = SCIPvarGetRootSol(var);

Statistics & points

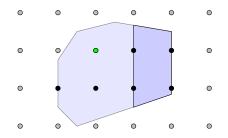
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



SCIP_Real solval = SCIPgetSolVal(scip, NULL, var);

Statistics & points

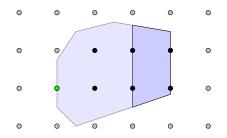
- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



SCIP_Sol* bestsol = SCIPgetBestSol(scip); SCIP_Real solval = SCIPgetSolVal(scip, bestsol, var);

Statistics & points

- Variables' locking numbers: Potentially violated rows
- Variables' pseudocosts: Average objective change
- ▷ Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions



SCIP_Sol** sols = SCIPgetSols(scip); SCIP_Real solval = SCIPgetSolVal(scip, sols[i], var);

Introduction

- Basics
- Integration Into SCIP

2 Available Heuristics

- Rounding Heuristics
- (Objective) Diving
- LNS & Others

3 Remarks & Results

Introduction

Basics

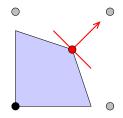
Integration Into SCIP

Available Heuristics
 Rounding Heuristics
 (Objective) Diving
 LNS & Others

- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- ▷ Integer Shifting finally solves an LP.

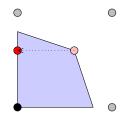
Guideline: Stay feasible!

- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- ▷ Integer Shifting finally solves an LP.



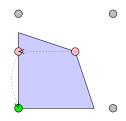
Guideline: Stay feasible!

- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- ▷ Integer Shifting finally solves an LP.



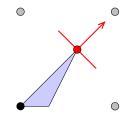
Guideline: Stay feasible!

- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- ▷ Integer Shifting finally solves an LP.



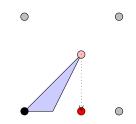
Guideline: Stay feasible!

- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- ▷ Integer Shifting finally solves an LP.



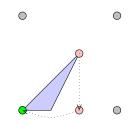
Guideline: Stay feasible!

- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- ▷ Integer Shifting finally solves an LP.



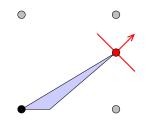
Guideline: Stay feasible!

- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- ▷ Integer Shifting finally solves an LP.



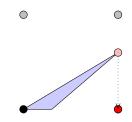
Guideline: Stay feasible!

- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- ▷ Integer Shifting finally solves an LP.



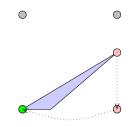
Guideline: Stay feasible!

- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- ▷ Integer Shifting finally solves an LP.

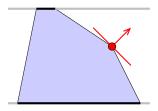


Guideline: Stay feasible!

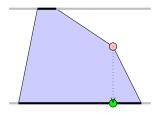
- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- ▷ Integer Shifting finally solves an LP.



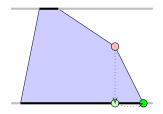
- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- ▷ Integer Shifting finally solves an LP.



- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- ▷ Integer Shifting finally solves an LP.

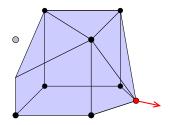


- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- ▷ Integer Shifting finally solves an LP.

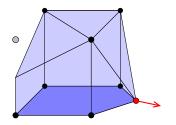


- 1. $\bar{x} \leftarrow LP$ optimum;
- 2. Fix all integral variables: $x_i := \bar{x}_i \quad \forall i : \bar{x}_i \in \mathbb{Z};$
- Reduce domain of fractional variables: x_i ∈ { [x_i]; [x_i]};
- 4. Solve the resulting subMIP

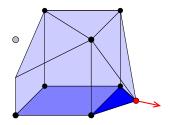
- 1. $\bar{x} \leftarrow LP$ optimum;
- 2. Fix all integral variables: $x_i := \bar{x}_i \ \forall i : \bar{x}_i \in \mathbb{Z};$
- Reduce domain of fractional variables: x_i ∈ { [x_i]; [x_i]};
- 4. Solve the resulting subMIP



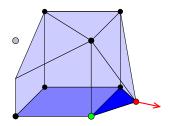
- 1. $\bar{x} \leftarrow LP$ optimum;
- 2. Fix all integral variables: $x_i := \bar{x}_i \ \forall i : \bar{x}_i \in \mathbb{Z};$
- Reduce domain of fractional variables: x_i ∈ { [x_i]; [x_i]};
- 4. Solve the resulting subMIP



- 1. $\bar{x} \leftarrow LP$ optimum;
- 2. Fix all integral variables: $x_i := \bar{x}_i \quad \forall i : \bar{x}_i \in \mathbb{Z};$
- Reduce domain of fractional variables: x_i ∈ { [x_i]; [x_i]};
- 4. Solve the resulting subMIP



- 1. $\bar{x} \leftarrow LP$ optimum;
- 2. Fix all integral variables: $x_i := \bar{x}_i \ \forall i : \bar{x}_i \in \mathbb{Z};$
- Reduce domain of fractional variables: x_i ∈ { [x_i]; [x_i]};
- 4. Solve the resulting subMIP



Observations

- \triangleright Solutions found by Rens are roundings of \bar{x}
- > Yields best possible rounding
- > Yields certificate, if no rounding exists

Results

Observations

- $\triangleright\,$ Solutions found by Rens are roundings of \bar{x}
- > Yields best possible rounding
- > Yields certificate, if no rounding exists

Results

- ▷ 82 of 129 test instances are roundable
- Rens finds a global optimum for 23 instances!
- Dominates all other rounding heuristics

Introduction

Basics

Integration Into SCIP

Available Heuristics
 Rounding Heuristics
 (Objective) Diving
 LNS & Others

3 Remarks & Results

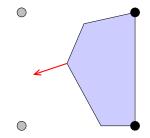
Idea

- Alternately solve the LP and round a variable
- Simulates DFS in Branch-And-Bound-tree
- Complementary target for branching
- Backtracking possible

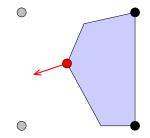
Applied branching rules

- Fractional Diving: lowest fractionality
- Coefficient Diving: lowest locking number
- Linesearch Diving: highest increase since root
- Guided Diving: lowest difference to best known solution
- Pseudocost Diving: highest ratio of pseudocosts
- Vectorlength Diving: lowest ratio of objective change and number of rows containing the variable

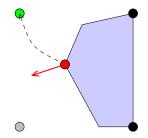
- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change objective;
- 7. Go to 1;



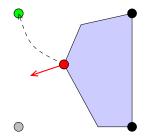
- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change objective;
- 7. Go to 1;



- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change objective;
- 7. Go to 1;

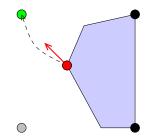


- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change objective;
- 7. Go to 1;



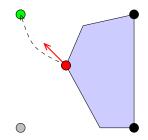
- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change objective;
- 7. Go to 1;

 $\Delta(x,\tilde{x}) = \sum |x_j - \tilde{x}_j|$



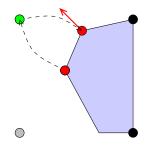
- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change objective;
- 7. Go to 1;

 $\Delta(x,\tilde{x}) = \sum |x_j - \tilde{x}_j|$



- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change objective;
- 7. Go to 1;

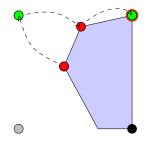
 $\Delta(x,\tilde{x}) = \sum |x_j - \tilde{x}_j|$



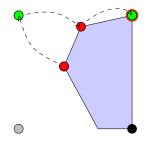
- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change objective;
- 7. Go to 1;



- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change objective;
- 7. Go to 1;



- 1. Solve LP;
- 2. Round LP optimum;
- 3. If feasible:
- 4. Stop!
- 5. Else:
- 6. Change objective;
- 7. Go to 1;



Objective Feasibility Pump (Achterberg & B.)

Improvements

- ▷ Objective $c^T x$ regarded at each step: $\tilde{\Delta} := (1 - \alpha)\Delta(x) + \alpha c^T x$, with $\alpha \in [0, 1]$
- Algorithm able to resolve from cycling
- Quality of solutions much better

Results

Objective Feasibility Pump (Achterberg & B.)

Improvements

- ▷ Objective $c^T x$ regarded at each step: $\tilde{\Delta} := (1 - \alpha)\Delta(x) + \alpha c^T x$, with $\alpha \in [0, 1]$
- Algorithm able to resolve from cycling
- Quality of solutions much better

Results

- ▷ Finds a solution for 74% of the test instances
- ▷ On average 5.5 seconds running time
- \triangleright Optimality gap decreased from 107% to 38%

Other objective divers

- Objective Pseudocost Diving
 - analogon to Pseudocost Diving
 - Punishment by high objective coefficients
- Rootsolution Diving
 - analogon to Linesearch Diving
 - Objective function faded out

Introduction

- Basics
- Integration Into SCIP

2 Available Heuristics

- Rounding Heuristics
- (Objective) Diving
- LNS & Others

3 Remarks & Results

Idea: Create subMIP by fixing variables or adding constraints

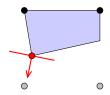
Approaches

- ▷ Rins: fix variables equal in LP optimum and incumbent
- ▷ Crossover: fix variables equal in different feasible solutions
- Mutation: fix variables randomly
- ▷ Local Branching: add distance constraint wrt. incumbent

- ⊳ 1-Opt
 - Shifts value of integer variable
 - Solves LP afterwards

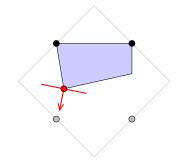
- ⊳ 1-0pt
 - Shifts value of integer variable
 - Solves LP afterwards

- Duality of cube and octahedron
- Ray shooting algorithm



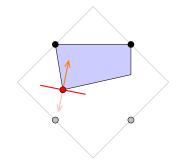
- ⊳ 1-0pt
 - Shifts value of integer variable
 - Solves LP afterwards

- Duality of cube and octahedron
- Ray shooting algorithm



- ⊳ 1-0pt
 - Shifts value of integer variable
 - Solves LP afterwards

- Duality of cube and octahedron
- Ray shooting algorithm

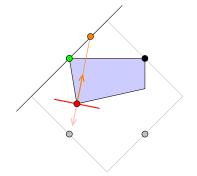


Other Heuristics

Combinatorial heuristics

- ⊳ 1-0pt
 - Shifts value of integer variable
 - Solves LP afterwards

- Duality of cube and octahedron
- Ray shooting algorithm

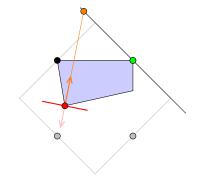


Other Heuristics

Combinatorial heuristics

- ⊳ 1-0pt
 - Shifts value of integer variable
 - Solves LP afterwards

- Duality of cube and octahedron
- Ray shooting algorithm



Introduction

- Basics
- Integration Into SCIP
- Available Heuristics
 Rounding Heuristics
 (Objective) Diving
 LNS & Others

3 Remarks & Results

Some tips and tricks

- ▷ Use limits which respect the problem size
- LNS: stalling node limit
- Diving: try simple rounding on the fly
- Favor binaries over general integers
- Avoid cycling without randomness

Some tips and tricks

- ▷ Use limits which respect the problem size
- LNS: stalling node limit
- Diving: try simple rounding on the fly
- > Favor binaries over general integers
- Avoid cycling without randomness

```
int nlpiterations = SCIPgetNNodeLPIterations(scip);
int maxlpiterations = heurdata→maxlpiterquot * nlpiterations;
```


Some tips and tricks

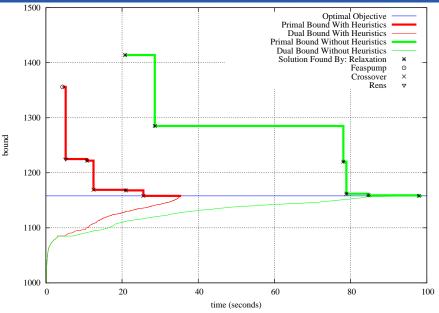
- ▷ Use limits which respect the problem size
- LNS: stalling node limit
- Diving: try simple rounding on the fly
- > Favor binaries over general integers
- Avoid cycling without randomness

```
SCIP_CALL(
```

```
SCIPsetLongintParam(subscip,"limits/stallnodes",nstallnodes)
```

);

An Example



Remarks & Conclusions

Single heuristics

- ▷ Deactivating a single heuristic yields 1%-6% degradation
- No heuristic dominates the others
- Coordination important

Overall effect (SCIP 0.82b)

Remarks & Conclusions

Single heuristics

- ▷ Deactivating a single heuristic yields 1%-6% degradation
- No heuristic dominates the others
- Coordination important

Overall effect (SCIP 0.82b)

- Better pruning, earlier fixing
- \triangleright 7% less instances without any solution
- \triangleright 5% more instances solved within one hour
- only half of the branch-and-bound-nodes
- only half of the solving time

Remarks & Conclusions

Single heuristics

- ▷ Deactivating a single heuristic yields 1%-6% degradation
- No heuristic dominates the others
- Coordination important

Overall effect (SCIP 0.82b)

- Better pruning, earlier fixing
- $\triangleright~7\%$ less instances without any solution
- \triangleright 5% more instances solved within one hour
- \triangleright only half of the branch-and-bound-nodes \rightsquigarrow Not this much
- only half of the solving time

 \rightsquigarrow in SCIP 1.00

To be implemented

- DINS heuristic
- $\triangleright \ \text{k-opt for } k>1$
- probing heuristics

Known problems

- Coordination could be strengthened
- Often poor for pure combinatorial problems

Primal Heuristics in SCIP

Timo Berthold Zuse Institute Berlin

DFG Research Center MATHEON Mathematics for key technologies

Berlin, 10/11/2007