

Undercover

A primal heuristic for MINLP based on sub-MIPs generated by set covering

> Timo Berthold Zuse Institute Berlin • MATHEON • BMS

joint work with Ambros M. Gleixner

DFG Research Center MATHEON Mathematics for key technologies

Introduction: MINLP & primal heuristics
A generic algorithm for Undercover
Finding minimum covers
Computational environment and experiments
Extensions: fix-and-propagate etc.
Conclusion

1 Introduction: MINLP & primal heuristics

- A generic algorithm for Undercover
- 3) Finding minimum covers
- 4 Computational environment and experiments
- 5 Extensions: fix-and-propagate etc.
- 6 Conclusion

Mixed Integer Linear Program

Objective function:

▷ linear function

Feasible set:

described by linear constraints

Variable domains:

▷ real or integer values

- LP relaxation
- LP-based branch-and-bound

- feasible solutions
- optimal solutions

- LP relaxation
- LP-based branch-and-bound

- feasible solutions
- optimal solutions

Important terms

- LP relaxation
- LP-based branch-and-bound

feasible solutionsoptimal solutions

- LP relaxation
- LP-based branch-and-bound

- feasible solutions
- optimal solutions

- LP relaxation
- LP-based branch-and-bound

- feasible solutions
- optimal solutions

- LP relaxation
- LP-based branch-and-bound

- feasible solutions
- optimal solutions

- LP relaxation
- LP-based branch-and-bound

- feasible solutions
- optimal solutions

- LP relaxation
- LP-based branch-and-bound

- feasible solutions
- optimal solutions

- LP relaxation
- LP-based branch-and-bound

- feasible solutions
- optimal solutions

- LP relaxation
- LP-based branch-and-bound

- feasible solutions
- optimal solutions

- LP relaxation
- LP-based branch-and-bound

- feasible solutions
- ▷ optimal solutions

- LP relaxation
- LP-based branch-and-bound

- feasible solutions
- optimal solutions

$$\begin{array}{ll} \min c^{\mathsf{T}}x & c \in \mathbb{R}^n\\ \text{such that } g(x) \leqslant 0, & g \in C^1(\mathbb{R}^n, \mathbb{R}^m)\\ & x_i \in \mathbb{Z}, & i \in \mathcal{I}. & \mathcal{I} \subseteq \{1, \dots, n\} \end{array}$$

 \triangleright nonlinearity $x_1^2 + 3x_2^2 \leqslant 3$

$$\begin{array}{ll} \min c^{\mathsf{T}}x & c \in \mathbb{R}^n\\ \text{such that } g(x) \leqslant 0, & g \in C^1(\mathbb{R}^n, \mathbb{R}^m)\\ & x_i \in \mathbb{Z}, & i \in \mathcal{I}. & \mathcal{I} \subseteq \{1, \dots, n\} \end{array}$$

- ▷ nonlinearity x_1^2
- nonconvexity
- $x_1^2 + 3x_2^2 \leqslant 3$
- $\sin(10x_1x_2)\leqslant 0$

$$\begin{array}{ll} \min c^{\mathsf{T}}x & c \in \mathbb{R}^n\\ \text{such that } g(x) \leqslant 0, & g \in C^1(\mathbb{R}^n, \mathbb{R}^m)\\ & x_i \in \mathbb{Z}, & i \in \mathcal{I}. & \mathcal{I} \subseteq \{1, \dots, n\} \end{array}$$

- nonlinearity \triangleright
- integrality $x_1 \in \mathbb{Z}$

nonlinearity
$$x_1^2 + 3x_2^2 \leqslant 3$$
nonconvexity $sin(10x_1x_2) \leqslant 0$ integrality $x_1 \in \mathbb{Z}$

$$\begin{array}{ll} \min c^{\mathsf{T}}x & c \in \mathbb{R}^n\\ \text{such that } g(x) \leqslant 0, & g \in C^1(\mathbb{R}^n, \mathbb{R}^m)\\ & x_i \in \mathbb{Z}, & i \in \mathcal{I}. & \mathcal{I} \subseteq \{1, \dots, n\} \end{array}$$

▷ nonlinearity $x_1^2 + 3x_2^2 \leq 3$

▷ nonconvexity $sin(10x_1x_2) \leq 0$

 $\triangleright \ \ \text{integrality} \qquad \quad x_1 \in \mathbb{Z}$

Important subclass: convex MINLP MINLP is convex \Leftrightarrow each function $g_i \colon \mathbb{R}^n \to \mathbb{R}$ is convex

▷ ...

Applications in many areas, e.g.,

- ▷ engineering design: e.g., mining with stockpiling constraints
- manufacturing: e.g., sheet metal design
- chemical industry: e.g., design of synthesis processes
- networks: operation and design of water and gas networks
- \triangleright energy production and distribution: e.g., plant design, power scheduling
- ▷ logistics: e.g., public transport

$$\begin{array}{ll} \min & c^{\intercal}x\\ \text{such that} & g(x) \leqslant 0\\ & x_i \in \mathbb{Z}, \quad i \in \mathcal{I} \end{array}$$

Assumption: $g : \mathbb{R}^n \to \mathbb{R}^m$ is convex, each g_j continuously differentiable

NLP based branch-and-bound

▷ bounding: solve convex nonlinear relaxation (NLP)

 $\begin{array}{ll} \min & c^{\intercal}x\\ \text{such that} & g(x) \leqslant 0 \end{array}$

▷ branching: on integer variables with fractional LP value

LP based branch-and-cut

bounding: solve polyhedral outer-approximation (LP) \triangleright

 $\tilde{x} = \operatorname{argmin} c^{T} x$ such that $g_j(\hat{x}) + \nabla g_j(\hat{x})(x - \hat{x}) \leq 0, \quad j = 1, \dots, m, \quad \hat{x} \in S$

If $g(\tilde{x}) > 0$, add supporting hyperplane to LP, i.e., add \tilde{x} to S.

branching: on integer variables with fractional LP value

 $\begin{array}{ll} \min & c^{\intercal}x\\ \text{such that} & g(x) \leqslant 0\\ & x_i \in \mathbb{Z}, \quad i \in \mathcal{I} \end{array}$

Now: some components of $g : \mathbb{R}^n \to \mathbb{R}^m$ may be nonconvex

 \Rightarrow inequalities $g_j(\hat{x}) + \nabla g_j(\hat{x})(x - \hat{x}) \leq 0$ may not be valid!

⇒ use convex underestimator: convex and below g(x) for all $x \in [L, U]$ ⇒ introduces convexification gap

Spatial branch-and-bound

bounding: solve polyhedral outer-approximation

min $c^T x$

such that $g_j^c(\hat{x}) + \nabla g_j^c(\hat{x})(x - \hat{x}) \leq 0, \quad j = 1, \dots, m, \quad \hat{x} \in S,$ $x \in [L, U]$

- branching: close gap between relaxation and problem
 - on integer variables with fractional value in LP relax
 - on continuous variables in nonconvex terms
 - \Rightarrow tighter bounds \Rightarrow better underestimators

Finding feasible solutions...

- ▷ wait for the LP relaxation to become feasible
- ▷ MIP heuristics applied to LP
 - rounding, diving, feasibility pump,...
- \triangleright extend MIP heuristics to MINLP
- \triangleright MINLP specific heuristics \rightarrow this talk

Why use primal heuristics inside an exact solver?

- Able to prove feasibility of the model
- Often nearly optimal solutions suffice in practice
- Feasible solutions guide remaining search process

Source		convex	nonconvex
MIP heuristics for linear outer approximations		\checkmark	\checkmark
NLP local search with fixed integralities		\checkmark	\checkmark
Simple NLP Rounding		\checkmark	\checkmark
Fractional Diving & Vectorlength Diving			
	BonamiGonçalves08	\checkmark	(\checkmark)
Iterative Rounding NanniciniBelotti		\checkmark	\checkmark
FeasPump	BonamiCornuéjolsLodiMargot08	\checkmark	nonconvex obj. convex feas. region
	D'AmbrosioFrangioniLibertiLodi09	\checkmark	\checkmark
	${\sf LinderothAbhishekLeyfferSartenaer08}$	\checkmark	
Local Branc	ning NanniciniBelottiLiberti08	\checkmark	\checkmark
RECIPE	LibertiNanniciniMladenović08	\checkmark	\checkmark
RENS	BertholdHeinzVigerske09 (for MIQCPs)	\checkmark	\checkmark

Introduction: MINLP & primal heuristics A generic algorithm for Undercover

Finding minimum covers

Computational environment and experiments

- Extensions: fix-and-propagate etc.
- 6 Conclusion

▷ LNS: common paradigm in MIP heuristics

fix a subset of variables \rightsquigarrow easy subproblem \rightsquigarrow solve

MIP: "easy" = few integralities MINLP: "easy" = few nonlinearities

 Observation: Any MINLP can be reduced to a MIP by fixing (sufficiently many) variables.

Experience: Often, few fixings are sufficient!

▷ Idea: Fix a small subset of variables to obtain a linear subproblem (MIP).

 $\triangleright\,$ Use solution of a LP or NLP relaxation to determine fixing values

Definition (cover of a function)

Let

- \triangleright a function $g: D \to \mathbb{R}$, $x \mapsto g(x)$ on a domain $D \subseteq \mathbb{R}^n$,
- ▷ a point $x^* \in D$, and
- \triangleright a set $\mathcal{C} \subseteq \{1, \ldots, n\}$ of variable indices be given.

We call C an x^* -cover of g if and only if the set

$$\{(x,g(x)) \mid x \in D, x_k = x_k^* \text{ for all } k \in \mathcal{C}\}$$
(1)

is affine.

We call C a *(global) cover of g* if and only if C is an x^* -cover of g for all $x^* \in D$.

Definition (cover of an MINLP)

Let

- ▷ *P* be an MINLP
- ▷ $x^* \in [L, U]$, and
- $\triangleright \ \mathcal{C} \subseteq \{1, \ldots, n\}$ be a set of variable indices of P.

We call C an x^* -cover of P if and only if C is an x^* -cover for g_1, \ldots, g_m .

We call C a (global) cover of P if and only if C is an x^* -cover of P for all $x^* \in [L, U]$.

2 begin

- 3 compute a solution x^* of an approximation of *P*
- 4 round x_k^{\star} for all $k \in \mathcal{I}$
- 5 determine an x^* -cover C of P
- $\begin{array}{c|c} \mathbf{6} & \text{solve the sub-MIP of } P \\ & \text{given by fixing } x_k = x_k^\star \\ & \text{for all } k \in \mathcal{C} \end{array}$

2 begin

- 3 compute a solution x^* of an approximation of *P*
- 4 round x_k^{\star} for all $k \in \mathcal{I}$
- 5 determine an x^* -cover C of P
- $\begin{array}{c|c} \mathbf{6} & \text{solve the sub-MIP of } P \\ & \text{given by fixing } x_k = x_k^\star \\ & \text{for all } k \in \mathcal{C} \end{array}$

2 begin

- 3 compute a solution x^* of an approximation of *P*
- 4 round x_k^* for all $k \in \mathcal{I}$
- 5 determine an x^* -cover C of P

2 begin

- 3 compute a solution x^* of an approximation of *P*
- 4 round x_k^{\star} for all $k \in \mathcal{I}$
- 5 determine an x^* -cover C of P
- $\begin{array}{c|c} \mathbf{6} & \text{solve the sub-MIP of } P \\ & \text{given by fixing } x_k = x_k^\star \\ & \text{for all } k \in \mathcal{C} \end{array}$

2 begin

- 3 compute a solution x^* of an approximation of *P*
- 4 round x_k^{\star} for all $k \in \mathcal{I}$
- 5 determine an x^* -cover C of P

1 Input: MINLP P

2 begin

- 3 compute a solution x^* of an approximation of *P*
- 4 round x_k^{\star} for all $k \in \mathcal{I}$
- 5 determine an x^* -cover C of P
- $\begin{array}{c|c} \mathbf{6} & \text{solve the sub-MIP of } P \\ & \text{given by fixing } x_k = x_k^\star \\ & \text{for all } k \in \mathcal{C} \end{array}$

7 end

Remark:

 MIP heuristics: trade-off fixing many vs. few variables

Here: Eliminate nonlinearities by fixing as few as possible variables \rightarrow minimum x*-cover!

1 Input: MINLP P

2 begin

- 3 compute a solution x^* of an approximation of *P*
- 4 round x_k^* for all $k \in \mathcal{I}$
- 5 determine an x^* -cover C of P
- $\begin{array}{c|c} \mathbf{6} & \text{solve the sub-MIP of } P \\ & \text{given by fixing } x_k = x_k^\star \\ & \text{for all } k \in \mathcal{C} \end{array}$

7 end

Remark:

 MIP heuristics: trade-off fixing many vs. few variables

Here: Eliminate nonlinearities by fixing as few as possible variables \rightarrow minimum x*-cover!

▶ How to find minimum cover?

Fixing variables with indices in $\mathcal{C}\subseteq\{1,...,n\}$ transforms

 $x^{\mathsf{T}} Q x \quad \stackrel{x_k = x_k^* \,\forall k \in \mathcal{C}}{\sim} \quad y^{\mathsf{T}} \tilde{Q} y + \tilde{q}^{\mathsf{T}} y + \tilde{c}$

with $y = (x_k)_{k \notin \mathcal{C}} \in \mathbb{R}^{n-|\mathcal{C}|}$, and $\tilde{Q} = (Q_{uv})_{u,v \notin \mathcal{C}} \in \mathbb{R}^{(n-|\mathcal{C}|) \times (n-|\mathcal{C}|)}$, ...

Fixing variables with indices in $\mathcal{C}\subseteq\{1,...,n\}$ transforms

$$x^{\mathsf{T}}Qx \quad \stackrel{x_k = x_k^* \forall k \in \mathcal{C}}{\sim} \quad y^{\mathsf{T}}\tilde{Q}y + \tilde{q}^{\mathsf{T}}y + \tilde{c}$$

with $y = (x_k)_{k \notin \mathcal{C}} \in \mathbb{R}^{n-|\mathcal{C}|}$, and $\tilde{Q} = (Q_{uv})_{u,v \notin \mathcal{C}} \in \mathbb{R}^{(n-|\mathcal{C}|) \times (n-|\mathcal{C}|)}$, ...

Thus: C is a cover of g iff

 $q_{uv} = 0$ for all $u, v \notin C$

independent of fix. values.

Fixing variables with indices in $\mathcal{C} \subseteq \{1,...,n\}$ transforms

$$x^{\mathsf{T}}Qx \quad \stackrel{x_k = x_k^* \forall k \in \mathcal{C}}{\sim} \quad y^{\mathsf{T}}\tilde{Q}y + \tilde{q}^{\mathsf{T}}y + \tilde{c}$$

with $y = (x_k)_{k \notin \mathcal{C}} \in \mathbb{R}^{n-|\mathcal{C}|}$, and $\tilde{Q} = (Q_{uv})_{u,v \notin \mathcal{C}} \in \mathbb{R}^{(n-|\mathcal{C}|) \times (n-|\mathcal{C}|)}$, ...

Fixing variables with indices in $\mathcal{C}\subseteq\{1,...,n\}$ transforms

$$x^{\mathsf{T}} Q x \quad \stackrel{x_k = x_k^* \,\forall k \in \mathcal{C}}{\sim} \quad y^{\mathsf{T}} \tilde{Q} y + \tilde{q}^{\mathsf{T}} y + \tilde{c}$$

with $y = (x_k)_{k \notin \mathcal{C}} \in \mathbb{R}^{n-|\mathcal{C}|}$, and $\tilde{Q} = (Q_{uv})_{u,v \notin \mathcal{C}} \in \mathbb{R}^{(n-|\mathcal{C}|) \times (n-|\mathcal{C}|)}$, ...

Thus: C is a cover of g iffset covering: $q_{uv} = 0$ for all $u, v \notin C$ \longleftrightarrow cover nonzerosindependent of fix. values.rows/columns

Fixing variables with indices in $\mathcal{C}\subseteq\{1,...,n\}$ transforms

$$x^{\mathsf{T}}Qx \quad \stackrel{x_k = x_k^* \forall k \in \mathcal{C}}{\sim} \quad y^{\mathsf{T}}\tilde{Q}y + \tilde{q}^{\mathsf{T}}y + \tilde{c}$$

with $y = (x_k)_{k \notin \mathcal{C}} \in \mathbb{R}^{n-|\mathcal{C}|}$, and $\tilde{Q} = (Q_{uv})_{u,v \notin \mathcal{C}} \in \mathbb{R}^{(n-|\mathcal{C}|) \times (n-|\mathcal{C}|)}$, ...

Thus: C is a cover of g iff

set covering:

 $q_{uv} = 0$ for all $u, v \notin C$ \Leftrightarrow

independent of fix. values.

cover nonzeros in Q by incident rows/columns

Fixing variables with indices in $\mathcal{C} \subseteq \{1,...,n\}$ transforms

$$x^{\mathsf{T}}Qx \quad \stackrel{x_k = x_k^* \,\forall k \in \mathcal{C}}{\sim} \quad y^{\mathsf{T}}\tilde{Q}y + \tilde{q}^{\mathsf{T}}y + \tilde{c}$$

with $y = (x_k)_{k \notin \mathcal{C}} \in \mathbb{R}^{n-|\mathcal{C}|}$, and $\tilde{Q} = (Q_{uv})_{u,v \notin \mathcal{C}} \in \mathbb{R}^{(n-|\mathcal{C}|) \times (n-|\mathcal{C}|)}$, ...

Thus: $\mathcal C$ is a cover of g iff

set covering:

 $q_{uv} = 0$ for all $u, v \notin C$ \Leftrightarrow

independent of fix. values.

cover nonzeros in Q by incident rows/columns

Auxiliary binary variables:

 $\alpha_k = 1 :\Leftrightarrow x_k$ is fixed in P

Set Covering constraints:

 $\mathcal{C}(\alpha) := \{k \mid \alpha_k = 1\}$ is a cover of P if and only if

 $\alpha_{k} = 1 \qquad \text{for all square nonzeros: } Q_{kk}^{i} \neq 0, \qquad (2)$ $\alpha_{k} + \alpha_{j} \ge 1 \qquad \text{for all bilinear nonzeros: } Q_{kj}^{i} \neq 0, k \neq j. \qquad (3)$

To find a minimum cover, we solve the covering problem

$$\min\Big\{\sum_{k=1}^{n} \alpha_k : (2), (3), \alpha \in \{0, 1\}^n\Big\}.$$
 (4)

Auxiliary binary variables:

 $\alpha_k = 1 : \Leftrightarrow x_k \text{ is fixed in } P$

Set Covering constraints:

 $\mathcal{C}(\alpha) := \{k \mid \alpha_k = 1\}$ is a cover of P if and only if

 $\begin{aligned} \alpha_k &= 1 & \text{for all square nonzeros: } Q_{kk}^i \neq 0, \end{aligned} \tag{2}$ $\alpha_k + \alpha_j &\ge 1 & \text{for all bilinear nonzeros: } Q_{kj}^i \neq 0, k \neq j. \end{aligned} \tag{3}$

To find a minimum cover, we solve the covering problem

$$\min\Big\{\sum_{k=1}^{n} \alpha_k : (2), (3), \alpha \in \{0, 1\}^n\Big\}.$$
 (4)

Auxiliary binary variables:

 $\alpha_k = 1 : \Leftrightarrow x_k$ is fixed in P

Set Covering constraints:

 $\mathcal{C}(\alpha) := \{k \mid \alpha_k = 1\}$ is a cover of P if and only if

 $\alpha_{k} = 1 \qquad \text{for all square nonzeros: } Q_{kk}^{i} \neq 0, \qquad (2)$ $\alpha_{k} + \alpha_{j} \ge 1 \qquad \text{for all bilinear nonzeros: } Q_{kj}^{i} \neq 0, k \neq j. \qquad (3)$

To find a minimum cover, we solve the covering problem

$$\min\Big\{\sum_{k=1}^{n} \alpha_{k} : (2), (3), \alpha \in \{0, 1\}^{n}\Big\}.$$
(4)

- ▷ (4) is an *NP*-hard problem, but standard branch-and-cut is (empirically) very fast.
- ▷ For general MINLPs, the covering problem becomes more difficult, e.g. for a global cover of a monomial $x_1^{p_1} \cdots x_n^{p_n}$, $p_1, \ldots, p_n \in \mathbb{N}_0$:

$$lpha_k = 1$$
 for all $p_k \ge 2$
 $\sum_{k:p_k=1} (1 - lpha_k) \leqslant 1.$

For general MINLPs, global covers become larger and larger.
 However: x*-covers are a weaker notion, may be significantly smaller

SCIP: Solving Constraint Integer Programs

- ▷ a branch-cut-and-price framework
- ▷ incorporates CP, MIP, and SAT-solving features
- provides full-scale MIP solver
- > modular structure via plugins
- b free for academic purposes, http://scip.zib.de

SCIP has recently been extended to handle nonconvex MIQCPs \Rightarrow all nonlinear constraints are of quadratic form $g_i(x) = x^T A_i x + b_i^T x + c_i$

SCIP: MIQCP Plugins

SCIP: MIQCP Plugins

SCIP: Computational Results

- ▷ 94 publicly available instances from 7 sources
- SCIP uses Cplex as LP solver and Ipopt as NLP solver
- 1 hour time limit

SCIP: Computational Results

SCIP: Computational Results

⊳ Goal

evaluate potential as start heuristic at the root node

\triangleright Test set

33 MIQCP instances from MINLPLib

> Undercover parameters

- running as only root node heuristic in SCIP
- for sub-MIP: emphasis feasibility and fast presolving settings

Reference solvers

- SCIP 1.2.1.1
- BARON 9.02
- Couenne 0.2
- default, node limit 1

▷ Reported

- nonlinear nonzeros/variable
- % variables fixed by Undercover
- solution values of each solver
- best known solution

12 instances with \leqslant 5% variables fixed

instance	nnz/var	% cov	UC	SCIP	BARON	Couenne	known
netmod_dol1	0.00	0.30	0	-0.26321	0	_	-0.56
netmod_dol2	0.00	0.38	-0.07802	-0.50562	0	-	-0.56
netmod_kar1	0.01	0.88	0	0	0	-	-0.4198
netmod_kar2	0.01	0.88	0	0	0	-	-0.4198
space25	0.12	1.04	-	-	-	-	484.33
ex1266	0.40	3.03	16.3	-	_	-	16.3
util	0.07	3.13	999.58	1000.5	1006.5	-	999.58
feedtray2	10.70	3.26	-	-	0	-	0
ex1265	0.38	3.52	15.1	-	-	15.1	10.3
ex1263	0.34	3.88	30.1	-	-	-	19.6
tln12	1.70	3.99	_	-	-	-	90.5
ex1264	0.36	4.26	11.1	-	-	-	8.6

▷ 9 instances feasible, 7 times best solution value

▷ ex1266 and util optimal

10 instances with 5–15% variab	les fixed
--------------------------------	-----------

instance	nnz/var	% cov	UC	SCIP	BARON	Couenne	known
waste space25a nuclear14a	1.10 0.29 4.98	5.65 5.84 6.43	608.76 		712.301 _ _	- - -	598.92 484.33 -1.1280
nuclear14b	2.42	6.43	-	-	-	-1.1105	-1.1135
tln7	1.53	6.67	30.3	-	-	-	15
t1n6	1.47	7.69	20.3	-	-	-	15.3
tloss	1.47	7.89	16.3	-	-	-	16.3
tln5	1.39	9.09	15.1	-	-	14.5	10.3
sep1	0.40	10.53	-510.08	-	-510.08	-510.08	-510.08
tltr	1.10	12.50	74.2	-	-	-	48.067

- ▷ 7 instances feasible, 6 times best solution value
- $\triangleright\,$ tloss and sep1 optimal

11 instances with 15–96% variables fixed

instance	nnz/var	% cov	UC	SCIP	BARON	Couenne	known
nous1	2.39	19.44	-	_	_	1.5671	1.5671
nous2	2.39	19.44	_	1.3843	0.62597	1.3843	0.626
meanvarx	0.19	23.33	15.925	14.369	14.369	18.702	14.369
product2	0.37	26.15	-	-	-	-	-2102.4
product	0.17	30.87	_	-	-	-	-2142.9
spectra2	3.43	35.71	31.981	13.978	119.87	-	13.978
fac3	0.81	78.26	13065	7213	38329	-	3198
nvs19	8.00	88.89	-	0	-1098	-	-1098.4
nvs23	9.00	90.00	_	0	-1124.8	-	-1125.2
du-opt5	0.95	94.74	3407.1	14.168	-	1226.0	8.0737
du-opt	0.95	95.24	4233.9	4233.9	108.33	41.304	3.5563

▷ 5 instances feasible, no best solution value

Feasible solutions

- Undercover: 21 instances
- SCIP: 13 instances
- BARON: 15 instances
- Couenne: 9 instances
- All: 27 instances

Solution quality if both found a colu

if both found a solution

- ► Undercover : SCIP = 1:6 (2 equal)
- ► Undercover : BARON = 5:2 (3 equal)
- ► Undercover : Couenne = 1:3 (2 equal)

- \triangleright Undercover time always < 0.2 seconds (except for waste with 1.1 sec)
 - covering problem always solved to optimality at root
 - most time spent in sub-MIP
 - 20 of 21 feasible sub-MIPs solved to optimality
 - infeasibility of sub-MIP usually detected in advance (10 of 12)

Fix-and-propagate

- Do not fix variables in C simultaneously, but sequentially and propagate after each fixing.
- ▷ If x_k^{\star} falls out of bounds then
 - fix to the closest bound (similar to FischettiSalvagnin09)
 - recompute the approximation

Backtracking

If fix-and-propagate deduces infeasibility, apply a one-level backtracking: undo last fixing and try another value

Fix-and-propagate

If fix-and-propagate deduces infeasibility, apply a one-level backtracking: undo last fixing and try another value

Covers minimising different impact measures

- ▷ minimum cardinality covers: minimise impact on MINLP
- ▷ Alternative impact measures as objective function of covering problem:
 - appearance in nonlinear terms
 - appearance in violated nonlinear constraints
 - domain size
 - variable type
 - rounding locks on integer variables
 - hybrid measures
- ▷ In particular: if a minimum cardinality cover yields infeasible sub-MIP

Covers minimising different impact measures

- minimum cardinality cov
- Alternative impact meas
 - appearance in nonlinear
 - appearance in violated n
 - domain size
 - variable type
 - rounding locks on intege
 - hybrid measures

on MINLP

ction of covering problem:

▷ In particular: if a minimum cardinality cover yields infeasible sub-MIP

Recovering

- $\triangleright\,$ fix-and-propagate may fix variables outside the cover ${\cal C}$
- $\triangleright \, \rightsquigarrow$ variables in ${\mathcal C}$ might not need to be fixed

 \sim "re-cover": solve the covering problem again with propagated bounds

NLP postprocessing

- ▷ All sub-MIP solutions are fully feasible for the original MINLP.
- ▷ Still, sub-MIP solution \tilde{x} could be improved by NLP local search:
 - fix all integer variables of the original MINLP to their values in \tilde{x}
 - solve the resulting NLP to local optimality

NLP postprocessing

- All sub-MIP solutions ar
- \triangleright Still, sub-MIP solution \tilde{x}
 - fix all integer variables c
 - solve the resulting NLP

e original MINLP.

by NLP local search: o their values in \tilde{x}

- If the sub-MIP is infeasible, this is typically detected
- during fix-and-propagate, or
- ▷ via infeasible root LP.
- \rightsquigarrow Generate conflict clauses for the original MINLP .
- ▷ Add them to the original MINLP.
- \triangleright Use them to revise fixing values and/or fixing order.
- ▷ Start another fix-and-propagate run.
- If the sub-MIP remains infeasible, at least this gives us valid conflicts to prune the search tree in the original problem.

If the sub-MIP is infeasible, this is typically detected

- during fix-and-propagate, or
- via infeasible root
- \rightsquigarrow Generate conflict
- Add them to the o
- Use them to revise
- Start another fix-a

If the sub-MIP remains infeasible, at least this gives us valid conflicts to prune the search tree in the original problem.

- ▷ Idea of Undercover: fix few variables to obtain an "easy" subproblem.
 - switch to easier problem class
 - switch to easier problem of the same class
- ▷ Switch to easier problem class:
 - MIQCP \sim MIP
 - MINLP \rightsquigarrow MIQCP
 - nonconvex MINLP \rightsquigarrow convex MINLP
 - ▶ ...
- ▷ Switch to easier problem of the same class: restrict variable domains
 - significantly better outer approximations
 - leaves more freedom to the problem

- ▷ Idea of Undercover: fix few variables to obtain an "easy" subproblem.
 - switch to easier problem class
 - switch to easier p
- Switch to easier pr
 - MIQCP \sim MIP

. . .

- ► MINLP ~→ MIQCI
- nonconvex MINLF
- Switch to easier problem of the same class: restrict variable domains
 - significantly better outer approximations
 - leaves more freedom to the problem

$\triangleright\,$ Scheme of a general-purpose start heuristic for MINLP

- solve a set covering problem
- to identify few variable fixings
- yielding a mixed-integer linear subproblem

Preliminary experiments

- MIQCPs from MINLPLib often few fixings sufficient:
 - \leqslant 5% on 1/3 of the test set, \leqslant 15% on 2/3 of the test set
- successfully applied as root node heuristic

▷ Future research

- extensions and variations
- experiments on general MINLPs
- tuning for efficient use within branch-and-bound tree
- use NLP relaxation instead of LP outer approximation

Undercover

A primal heuristic for MINLP based on sub-MIPs generated by set covering

> Timo Berthold Zuse Institute Berlin • MATHEON • BMS

joint work with Ambros M. Gleixner

DFG Research Center MATHEON Mathematics for key technologies

