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What is Mixed-Integer Linear Programming?

Mixed Integer Linear Program

Objective function:
. linear function

Feasible set:
. described by linear constraints

Variable domains:
. real or integer values min cT x c ∈ Rn

s. t. Ax 6 b A ∈ Rm×n, b ∈ Rm

xi ∈ Z i ∈ I ⊆ {1, . . . , n}
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What is Mixed-Integer Nonlinear Programming?

min cT x c ∈ Rn

such that g(x) 6 0, g ∈ C 1(Rn,Rm)

xi ∈ Z, i ∈ I. I ⊆ {1, . . . , n}

MINLP is difficult due to combination of

. nonlinearity

. nonconvexity

. integrality

x2
1 + 3x2

2 6 3

sin(10x1x2) 6 0
x1 ∈ Z

Important subclass: convex MINLP
MINLP is convex ⇔ each function gj : Rn → R is convex
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Applications

Applications in many areas, e.g.,
. engineering design: e.g., mining with stockpiling constraints
. manufacturing: e.g., sheet metal design
. chemical industry: e.g., design of synthesis processes
. networks: operation and design of water and gas networks
. energy production and distribution: e.g., plant design, power scheduling
. logistics: e.g., public transport
. . . .
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Convex MINLP

min cT x
such that g(x) 6 0

xi ∈ Z, i ∈ I

Assumption: g : Rn → Rm is convex, each gj continuously differentiable

NLP based branch–and–bound
. bounding: solve convex nonlinear relaxation (NLP)

min cT x
such that g(x) 6 0

If g(x̃) > 0, add supporting hyperplane to LP, i.e., add x̃ to S.
. branching: on integer variables with fractional LP value
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Convex MINLP

LP based branch–and–cut
. bounding: solve polyhedral outer-approximation (LP)

x̃ = argmin cT x
such that gj(x̂) +∇gj(x̂)(x − x̂) 6 0, j = 1, . . . ,m, x̂ ∈ S

If g(x̃) > 0, add supporting hyperplane to LP, i.e., add x̃ to S.
. branching: on integer variables with fractional LP value
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Nonconvex MINLP

min cT x
such that g(x) 6 0

xi ∈ Z, i ∈ I

Now: some components of g : Rn → Rm may be nonconvex

⇒ inequalities gj(x̂) +∇gj(x̂)(x − x̂) 6 0 may not be valid!
⇒ use convex underestimator: convex and below g(x) for all x ∈[L,U]
⇒ introduces convexification gap
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Nonconvex MINLP
Spatial branch–and–bound
. bounding: solve polyhedral outer-approximation

min cT x
such that gc

j (x̂) +∇gc
j (x̂)(x − x̂) 6 0, j = 1, . . . ,m, x̂ ∈ S,

x ∈ [L,U]

. branching: close gap between relaxation and problem
I on integer variables with fractional value in LP relax
I on continuous variables in nonconvex terms
⇒ tighter bounds ⇒ better underestimators
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Primal heuristics for generic MINLP

Finding feasible solutions. . .

. wait for the LP relaxation to become feasible

. MIP heuristics applied to LP
I rounding, diving, feasibility pump,. . .

. extend MIP heuristics to MINLP

. MINLP specific heuristics → this talk

Why use primal heuristics inside an exact solver?
. Able to prove feasibility of the model
. Often nearly optimal solutions suffice in practice
. Feasible solutions guide remaining search process
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Primal heuristics for generic MINLP

Source convex nonconvex

MIP heuristics for linear outer approximations X X
NLP local search with fixed integralities X X

Simple NLP Rounding X X
Fractional Diving & Vectorlength Diving

BonamiGonçalves08 X (X)
Iterative Rounding NanniciniBelotti X X

FeasPump BonamiCornuéjolsLodiMargot08 X nonconvex obj.
convex feas. region

D’AmbrosioFrangioniLibertiLodi09 X X
LinderothAbhishekLeyfferSartenaer08 X

Local Branching NanniciniBelottiLiberti08 X X

RECIPE LibertiNanniciniMladenović08 X X

RENS BertholdHeinzVigerske09 (for MIQCPs) X X
...
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Motivation: LargeNeighborhoodSearch

. LNS: common paradigm in MIP heuristics

fix a subset of variables ; easy subproblem ; solve

MIP: “easy” = few integralities MINLP: “easy” = few nonlinearities

. Observation: Any MINLP can be reduced to a MIP by fixing (sufficiently
many) variables.

Experience: Often, few fixings are sufficient!

. Idea: Fix a small subset of variables to obtain a linear subproblem (MIP).

. Use solution of a LP or NLP relaxation to determine fixing values

Timo Berthold: Undercover, a primal heuristic for MINLP 15 / 42



Definitions

Definition (cover of a function)
Let
. a function g : D → R, x 7→ g(x) on a domain D ⊆ Rn,
. a point x? ∈ D, and
. a set C ⊆ {1, . . . , n} of variable indices be given.

We call C an x?-cover of g if and only if the set

{(x , g(x)) | x ∈ D, xk = x?
k for all k ∈ C} (1)

is affine.

We call C a (global) cover of g if and only if C is an x?-cover of g for
all x? ∈ D.

Timo Berthold: Undercover, a primal heuristic for MINLP 16 / 42



Definitions

Definition (cover of an MINLP)
Let
. P be an MINLP
. x? ∈ [L,U], and
. C ⊆ {1, . . . , n} be a set of variable indices of P.

We call C an x?-cover of P if and only if C is an x?-cover for g1, . . . , gm.

We call C a (global) cover of P if and only if C is an x?-cover of P for
all x? ∈ [L,U].
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A generic algorithm

Input: MINLP P1
begin2

compute a solution x?3
of an approximation of P
round x?

k for all k ∈ I4

determine an5
x?-cover C of P
solve the sub-MIP of P6
given by fixing xk = x?

k
for all k ∈ C

end7

Remark:

. MIP heuristics: trade-off fixing many
vs. few variables
Here: Eliminate nonlinearities by
fixing as few as possible variables
→ minimum x?-cover!

. How to find minimum cover?

Timo Berthold: Undercover, a primal heuristic for MINLP 18 / 42
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Covering quadratic functions

Let g : Rn → R, x 7→ x T Qx + qx + c, Q ∈ Rn×n symmetric, x? ∈ Rn.

Fixing variables with indices in C ⊆ {1, ..., n} transforms

x T Qx
xk = x?

k ∀k ∈ C y T Q̃y + q̃T y + c̃

with y = (xk)k 6∈C ∈ Rn−|C|, and Q̃ = (Quv )u,v 6∈C ∈ R(n−|C|)×(n−|C|), . . .

Thus: C is a cover of g iff

quv = 0 for all u, v 6∈ C

independent of fix. values.

!

set covering:

cover nonzeros
in Q by incident
rows/columns
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Covering MIQCPs

Auxiliary binary variables:

αk = 1 :⇔ xk is fixed in P

Set Covering constraints:
C(α) := {k | αk = 1} is a cover of P if and only if

αk = 1 for all square nonzeros: Qi
kk 6= 0, (2)

αk + αj > 1 for all bilinear nonzeros: Qi
kj 6= 0, k 6= j . (3)

To find a minimum cover, we solve the covering problem

min
{ n∑

k=1
αk : (2), (3), α ∈ {0, 1}n

}
. (4)
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General covering problems

. (4) is an NP-hard problem, but
standard branch-and-cut is (empirically) very fast.

. For general MINLPs, the covering problem becomes more difficult,
e.g. for a global cover of a monomial xp1

1 · · · x
pn
n , p1, . . . , pn ∈ N0:

αk = 1 for all pk > 2∑
k:pk=1

(1− αk) 6 1.

. For general MINLPs, global covers become larger and larger.
However: x?-covers are a weaker notion, may be significantly smaller
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SCIP: Solving Constraint Integer Programs
. a branch-cut-and-price framework
. incorporates CP, MIP, and SAT-solving features
. provides full-scale MIP solver
. modular structure via plugins
. free for academic purposes, http://scip.zib.de

SCIP Heuristic
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SCIP: An MIQCP solver

SCIP has recently been extended to handle nonconvex MIQCPs
⇒ all nonlinear constraints are of quadratic form gi(x) = x T Ai x + bT

i x + ci

McCormick Undercover
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SCIP: MIQCP Plugins
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SCIP: MIQCP Plugins
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SCIP: Computational Results

. 94 publicly available instances from 7 sources

. SCIP uses Cplex as LP solver and Ipopt as NLP solver

. 1 hour time limit

Impact prim
al heurist

ics: solving tim
e +2%

Impact prim
al heurist

ics: tim
e to first

solution +347%
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Undercover: experiments with MIQCPs

. Goal
I evaluate potential as start heuristic at the root node

. Test set
I 33 MIQCP instances from MINLPLib

. Undercover parameters
I running as only root node heuristic in SCIP
I for sub-MIP: emphasis feasibility and fast presolving settings

. Reference solvers
I SCIP 1.2.1.1
I BARON 9.02
I Couenne 0.2
I default, node limit 1

. Reported
I nonlinear nonzeros/variable
I % variables fixed by Undercover
I solution values of each solver
I best known solution
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Computational results for MIQCPs

12 instances with 6 5% variables fixed

instance nnz/var % cov UC SCIP BARON Couenne known

netmod dol1 0.00 0.30 0 -0.26321 0 – -0.56
netmod dol2 0.00 0.38 -0.07802 -0.50562 0 – -0.56
netmod kar1 0.01 0.88 0 0 0 – -0.4198
netmod kar2 0.01 0.88 0 0 0 – -0.4198
space25 0.12 1.04 – – – – 484.33
ex1266 0.40 3.03 16.3 – – – 16.3
util 0.07 3.13 999.58 1000.5 1006.5 – 999.58
feedtray2 10.70 3.26 – – 0 – 0
ex1265 0.38 3.52 15.1 – – 15.1 10.3
ex1263 0.34 3.88 30.1 – – – 19.6
tln12 1.70 3.99 – – – – 90.5
ex1264 0.36 4.26 11.1 – – – 8.6

. 9 instances feasible, 7 times best solution value

. ex1266 and util optimal
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Computational results for MIQCPs

10 instances with 5–15% variables fixed

instance nnz/var % cov UC SCIP BARON Couenne known

waste 1.10 5.65 608.76 – 712.301 – 598.92
space25a 0.29 5.84 – – – – 484.33
nuclear14a 4.98 6.43 – – – – -1.1280
nuclear14b 2.42 6.43 – – – -1.1105 -1.1135
tln7 1.53 6.67 30.3 – – – 15
tln6 1.47 7.69 20.3 – – – 15.3
tloss 1.47 7.89 16.3 – – – 16.3
tln5 1.39 9.09 15.1 – – 14.5 10.3
sep1 0.40 10.53 -510.08 – -510.08 -510.08 -510.08
tltr 1.10 12.50 74.2 – – – 48.067

. 7 instances feasible, 6 times best solution value

. tloss and sep1 optimal
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Computational results for MIQCPs

11 instances with 15–96% variables fixed

instance nnz/var % cov UC SCIP BARON Couenne known

nous1 2.39 19.44 – – – 1.5671 1.5671
nous2 2.39 19.44 – 1.3843 0.62597 1.3843 0.626
meanvarx 0.19 23.33 15.925 14.369 14.369 18.702 14.369
product2 0.37 26.15 – – – – -2102.4
product 0.17 30.87 – – – – -2142.9
spectra2 3.43 35.71 31.981 13.978 119.87 – 13.978
fac3 0.81 78.26 13065 7213 38329 – 3198
nvs19 8.00 88.89 – 0 -1098 – -1098.4
nvs23 9.00 90.00 – 0 -1124.8 – -1125.2
du-opt5 0.95 94.74 3407.1 14.168 – 1226.0 8.0737
du-opt 0.95 95.24 4233.9 4233.9 108.33 41.304 3.5563

. 5 instances feasible, no best solution value
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Computational results for MIQCPs

. Feasible solutions
I Undercover: 21 instances
I SCIP: 13 instances
I BARON: 15 instances
I Couenne: 9 instances
I All: 27 instances

. Solution quality
if both found a solution
I Undercover : SCIP = 1:6 (2 equal)
I Undercover : BARON = 5:2 (3 equal)
I Undercover : Couenne = 1:3 (2 equal)

. Undercover time always < 0.2 seconds (except for waste with 1.1 sec)
I covering problem always solved to optimality at root
I most time spent in sub-MIP
I 20 of 21 feasible sub-MIPs solved to optimality
I infeasibility of sub-MIP usually detected in advance (10 of 12)
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Outline

1 Introduction: MINLP & primal heuristics
2 A generic algorithm for Undercover
3 Finding minimum covers
4 Computational environment and experiments
5 Extensions: fix-and-propagate etc.
6 Conclusion
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Fix-and-propagate & Backtracking

Fix-and-propagate

. Do not fix variables in C simultaneously,
but sequentially and propagate after each fixing.

. If x?
k falls out of bounds then

I fix to the closest bound (similar to FischettiSalvagnin09)
I recompute the approximation

Backtracking

. If fix-and-propagate deduces infeasibility, apply a one-level backtracking:
undo last fixing and try another value
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Using different covers

Covers minimising different impact measures

. minimum cardinality covers: minimise impact on MINLP

. Alternative impact measures as objective function of covering problem:
I appearance in nonlinear terms
I appearance in violated nonlinear constraints
I domain size
I variable type
I rounding locks on integer variables
I hybrid measures

. In particular: if a minimum cardinality cover yields infeasible sub-MIP
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Recovering

Recovering

. fix-and-propagate may fix variables outside the cover C

. ; variables in C might not need to be fixed

; “re-cover”: solve the covering problem again with propagated bounds
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NLP postprocessing

NLP postprocessing

. All sub-MIP solutions are fully feasible for the original MINLP.

. Still, sub-MIP solution x̃ could be improved by NLP local search:
I fix all integer variables of the original MINLP to their values in x̃
I solve the resulting NLP to local optimality
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Avoiding/exploiting infeasibility

If the sub-MIP is infeasible, this is typically detected
. during fix-and-propagate, or
. via infeasible root LP.

; Generate conflict clauses for the original MINLP .
. Add them to the original MINLP.
. Use them to revise fixing values and/or fixing order.
. Start another fix-and-propagate run.

If the sub-MIP remains infeasible, at least this gives us valid conflicts to
prune the search tree in the original problem.
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Variations: convexification & domain reduction

. Idea of Undercover: fix few variables to obtain an “easy” subproblem.
I switch to easier problem class
I switch to easier problem of the same class

. Switch to easier problem class:
I MIQCP ; MIP
I MINLP ; MIQCP
I nonconvex MINLP ; convex MINLP
I . . .

. Switch to easier problem of the same class: restrict variable domains
I significantly better outer approximations
I leaves more freedom to the problem
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Conclusion

. Scheme of a general-purpose start heuristic for MINLP
I solve a set covering problem
I to identify few variable fixings
I yielding a mixed-integer linear subproblem

. Preliminary experiments
I MIQCPs from MINLPLib – often few fixings sufficient:

6 5% on 1/3 of the test set, 6 15% on 2/3 of the test set
I successfully applied as root node heuristic

. Future research
I extensions and variations
I experiments on general MINLPs
I tuning for efficient use within branch-and-bound tree
I use NLP relaxation instead of LP outer approximation
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