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Abstract. In mobile telephone systems stationary antennas broadcast and receive data from and to handies
inside a geographical region of service around an antenna called a cell. Use of the same or adjacent frequen-
cies in nearby cells results in interference. The frequency assignment problem is to find an assignment of
frequencies to the antennas such that the resulting total interference is minimized.
We give two integer programming formulations for this problem. The first model is a stable set-type formu-
lation, the second is called the orientation model. We discuss some of the properties of these formulations
and use them to develop a number of heuristics for the frequency assignment problem. The methods are
in use at the German mobile telephone system provider eplus. Our computational results for frequency
assignment problems arising there show that significant improvements in network quality can be achieved.
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1 Frequency Assignment in Mobile Telephone Systems

Mobile telephone systems use stationary antennas to receive and broadcast data from and to the mobile
stations (handies). The low powered radio signals used can be received only inside a (small) geographical
region around the sending device. The region of service around an antenna is called a cell. Depending on
an estimated demand, one or more radio frequencies are assigned to each antenna to transmit phone calls
in its cell. Each assigned frequency provides a communication channel for a number of phone calls in a cell;
such a communication channel is called a carrier.
Each mobile telephone system provider has only a limited number of frequencies at his disposal; these are
spaced out evenly along the electromagnetic spectrum such that each frequency is separated by a constant
distance from the following one. However, if the same or adjacent frequencies are used to establish carriers
in nearby cells, co- or adjacent channel interference causes loss of transmission quality or breakdown of
connections. This leads to stipulations that frequencies used in nearby pairs of cells have to be separated
by a minimum distance, called channel separation, while smaller interferences might be unavoidable, but
should at least be minimum. The frequency assignment problem is to assign to each carrier an available
frequency such that minimum channel separations are respected and the resulting interference is minimized.
The point in this formulation is that it asks for use of the complete available spectrum of frequencies
to minimize interference. This concept is relatively new, an early reference is Plehn [Plehn]. Previous
approaches attacked the problem by minimizing the number of used frequencies, see Box [1978] or Gamst
[1988].
In mathematical terms, the frequency assignment problem can be stated as follows. Let

G = (V,E)

be a graph,
d ∈ NE

0 , and p, p ∈ [0, 1]E
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be vectors with the property
p ≤ p,

and
C = {0, 1, . . . , ζ} ⊆ N0

be the set of zero and the first ζ integers. Each node i ∈ V corresponds to a carrier, each edge ij ∈ E
has an associated minimum channel separation dij , an adjacent channel interference pij and a co-channel
interference pij (some of them possibly zero), and C is the set of available frequencies.
The frequency assignment problem can now be stated as follows. Introducing variables

yi ∈ C ∀i ∈ V

for the frequency assigned to carrier i, the frequency assignment problem becomes:

min
∑

|yi−yj |=0

pij +
∑

|yi−yj |=1

pij

|yi − yj | ≥ dij ∀ij ∈ E
yi ≤ ζ ∀i ∈ C
yi ≥ 0 ∀i ∈ C
yi ∈ Z ∀i ∈ C.

(FAP)

This formulation is non-linear because of the channel-separation constraints and the objective function.

2 The Stable-Set Model

There is a natural connection between frequency assignment and graph coloring that was first noticed by
Metzger [1970]: If the frequencies are interpreted as colors and all channel separations are 1, the frequency
assignment problem asks for an assignment of colors to the nodes of a graph such that all nodes of the
same color are mutually non-adjacent or, in other words, the nodes of the same color form a stable set. An
adaptation of this idea to the interference case yields the first integer programming model, called the stable
set model. For a similar approach see Aardal & van Hoesel [1995].
We use the following variables.

yf
i =

{
1, if frequency f is assigned to carrier i

0, else
∀i ∈ V, f ∈ C

zij =

{
1, if ∃f : yf

i = yf
j = 1

0, else
∀ij ∈ E

zij =

{
1, if ∃f : yf

i = yf+1
j = 1

0, else
∀ij ∈ E

The y-variables model frequency assignment. Note that there is one variable yf
i for each possible assignment

of a frequency f to a carrier i. The z-variables model co- and adjacent-channel interference: zij or zij will
be set to one if use of the same or adjacent frequencies for carriers i and j leads to interference. With these
variables, the frequency assignment problem can be stated as the following integer linear program.

min pT z + p
T
z

yf
i + yg

j ≤ 1 ∀ij ∈ E, f, g ∈ C : |f − g| < dij (1)∑
f∈C yf

i = 1 ∀i ∈ V (2)
yf

i + yf
j − zij ≤ 1 ∀ij ∈ E, f ∈ C (3)

yf
i + yf+1

j − zij ≤ 1 ∀ij ∈ E, f, f + 1 ∈ C (4)
yf

i + yf−1
j − zij ≤ 1 ∀ij ∈ E, f, f − 1 ∈ C (5)

yf
i ∈ {0, 1} ∀i ∈ V, f ∈ C (6)

zij ∈ {0, 1} ∀ij ∈ E (7)
zij ∈ {0, 1} ∀ij ∈ E (8)

(SIP)
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Constraints (1) models minimum channel separations by forbidding all pairs of conflicting assignments. (2)
guarantees that each carrier gets a frequency assigned, (3) takes care of co-channel interference, (4) and (5)
of adjacent channel interference by forcing the corresponding z-variables to 1.

3 The Orientation Model

In this section, we will give an alternative formulation for the frequency assignment problem that is based
on different ideas. We introduce binary decision variables

∆ij ∈ {0, 1} ∀ij ∈ E

with the meaning

∆ij =

{
1 if yj − yi ≥ 0
0 if yj − yi ≤ 0.

Let us assume here that i < j for an edge ij ∈ E. Then, ∆ij is 1 if the edge ij is oriented ‘upward’ from
the lower channel yi to the higher (or equal) channel yj and 0 if the edge ij is oriented ‘downward’, that is,
channel yi is larger than or equal to channel yj ; if yi and yi are equal, ∆ij can be both zero or one.
We can now state the frequency assignment problem as another integer linear program.

min pTz + p
T
z

yj − yi ≥ dij∆ij − ζ(1−∆ij) ∀ij ∈ E (1)
−yj + yi ≥ dij(1−∆ij)− ζ∆ij ∀ij ∈ E (2)

yj − yi + zij ≥ ∆ij − ζ(1−∆ij) ∀ij ∈ E (3)
−yj + yi + zij ≥ (1−∆ij)− ζ∆ij ∀ij ∈ E (4)

yj − yi + 2zij + zij ≥ 2∆ij − ζ(1−∆ij) ∀ij ∈ E (5)
−yj + yi + 2zij + zij ≥ 2(1−∆ij)− ζ∆ij ∀ij ∈ E (6)

yi ≤ ζ ∀i ∈ V (7)
∆ij ≤ 1 ∀ij ∈ E (8)

zij , zij ≤ 1 ∀ij ∈ E (9)
yi ≥ 0 ∀i ∈ V (10)

∆ij , zij , zij ≥ 0 ∀ij ∈ E (11)
yi ∈ Z ∀i ∈ V (12)

∆ij , zij , zij ∈ Z ∀ij ∈ E (13)

(TIP)

Conditions (7), (10), and (12) state that the channel assignment variables have to be chosen from the
available spectrum. The objective sums up total interference; note that the coefficients are all non-negative.
Constraints (1) and (2) model minimum channel separation. If ∆ij = 1, (2) is redundant, but (1) guarantees
that the larger frequency yj has a minimum distance of dij from the smaller one yi, for ∆ij = 0, (1) is
redundant but (2) active. Inequalities (3) and (4) deal with co-channel interference in a very similar way,
(5) and (6) are for adjacent channel interference.
We can write the model in a more compact form using matrix notation.

min pTz + p
T
z

Ay + Bz ≥ d−D∆
−y ≥ −ζ1l
∆ ≤ 1l

y,∆, z ≥ 0
y,∆, z ∈ ZV×E×E×E

(TIP)

Considering the feasible ∆s, this formulation has relations to the linear ordering problem, because feasible
orientations direct the edges of the underlying graph G in such a way that (in a sense) an acyclic digraph
results, where all directed paths are of restricted length.
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If the orientation ∆ is fixed, the remaining problem reads

min pTz
Ay + Bz ≥ d−D∆

−y ≥ −ζ1l
y, z ≥ 0.

(TIP(∆))

It has a special structure because the matrix A is a network matrix and B is almost an identity matrix.
An interesting case arises when each edge with non-zero co-channel interference has zero adjacent-channel
interference and each edge with adjacent channel interference has a minimum channel separation of at least
one, such that co-channel interference cannot occur. If these conditions guarantee that on all edges only
either co- or adjacent channel interference is possible, the frequency assignment problem is called simple. In
this, case, TIP(∆) will be integral for any feasible ∆.

1 Theorem If the frequency assignment problem TIP is simple, the problems TIP(∆) will have all integral
solutions for any feasible orientation ∆.

In fact, in this case TIP(∆) will be the dual of a min-cost flow problem. To see this, consider a simple
TIP(∆) in more detail. Let E be the set of edges with non-zero co-channel interference, E the set of edges
with non-zero adjacent-channel interference; further, let A and A be the set of arcs resulting from orienting
the edges in E and E according to ∆. Then, after eliminating redundant constraints, the problem reads

min pTz + p
T
z

(xij) yj − yi ≥ dij ∀(i, j) ∈ A
(xij) yj − yi + zij ≥ 1 ∀(i, j) ∈ A

(xij) yj − yi + zij ≥ 2 ∀(i, j) ∈ A
(xij) −yj + yi ≥ dij ∀(j, i) ∈ A
(xij) −yj + yi + zij ≥ 1 ∀(j, i) ∈ A

(xij) −yj + yi + zij ≥ 2 ∀(j, i) ∈ A
(xtj) −yj ≥ −ζ ∀j ∈ V

y, z ≥ 0

Introducing the dual variables on the left of the inequalities, the dual looks as follows.

max dTx + 1lTx + 21lTx− ζ1lTxt(
x + x + x

) (
δ−(j)

)
−

(
x + x + x

) (
δ+(j)

)
− xtj ≤ 0 ∀j ∈ V (1)

xij ≤ pij ∀ij ∈ E (2)
xij ≤ pij ∀ij ∈ E (3)

x, xt ≥ 0 (4)
(MCF)

(δ−(j) denotes the arcs entering node j, δ+(j) the arcs leaving j). If we interpret x and xt as flow variables,
MCF becomes a min-cost flow problem.
In general, TIP will not be simple. However, if p ≤ 1

2p holds, an easy transformation can be applied to yield
a simple problem. In our applications at eplus, this conditions holds for practically all edges.

2 Theorem Any frequency assignment problem TIP with the property

p ≤ 1
2
p

can be polynomially transformed into an equivalent simple problem.
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4 Frequency Assignment Heuristics

The two integer programming formulations of the last two sections inspire the development of several primal
heuristics. All of these methods can be applied iteratively in combination with each other.

4.1 Heuristics Based on the Stable-Set Model

Elimination. Elimination is a “dual” heuristic. The idea is to iteratively eliminate possibilities to assign
frequencies to carriers instead of choosing an assignment. In each step, each carrier has a set of still eligible
frequencies. To each such frequency, a penalty is associated according to some interference based cost
criterion. The assignment that is worst in this respect is eliminated, the penalties are updated, and the
process is repeated.
Iterated 1-Opt. This is an improvement heuristics. Iteratively, a carrier is picked. If reassignment of its
frequency yields an improvement, this is done until no longer possible or some other stopping criterion is
met. There is also a randomized version of this heuristic.
DSATUR. DSATUR is an adaptation of an algorithm of Brélaz [1979] for graph coloring to the frequency
assignment problem. The heuristic iteratively assigns frequencies to carriers. In each step, a partial assign-
ment has already been computed and then minimum channel separations restrict the choice of frequencies
for carriers that have not yet a frequency assigned. A carrier with the least number of possibilities is picked
and —based on some interference related criterion— an assignment is made.

4.2 Heuristics Based on the Orientation Model

T-Coloring. T-Coloring is an opening heuristic. It neglects interference costs and only tries to find a
feasible assignment that will induce a corresponding orientation. The algorithm is an adaptation of an
algorithm by Costa [1993].
Min-Cost-Flow. Min-Cost-Flow is an improvement heuristic. Given a frequency assignment produced by
some other heuristic, the corresponding orientation is computed. Fixing this orientation and (heuristically)
transforming the problem into a simple frequency assignment problem, a min-cost flow problem results that
is solved.

4.3 Computation

The methods of the previous two subsections were developped for the German telephone system provider
eplus and are in use there. The frequency assignment problems arising there involve up to 2000 cells with
1, 2, 3 or even more carriers per cells and interference relations extend over long distances. Most of the
heuristics produce feasible solutions in a couple of minutes. In our tests, Iterated 1-Opt and DSATUR
performed best, Min-Cost-Flow usually yields small further improvements in interference.
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