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What is the minimum cost of covering the letters A–L with a 
subset of the following sets s.t. no two sets intersect? 

A Set Partitioning Example  

{A, B, D, G, H, J}, 

{A, H},     

{A, J}, 

{B, G}, 

{B, L}, 

{C, D, K, L}, 

{C, I}, 

{D, I}, 

{D, J}, 

 

{D, K}, 

{E, F, G, H}, 

{E, F, I, J}, 

{E, I}, 

{E, J}, 

{F, G}, 

{F, J}, 

{F, K}, 

{F, L}. 
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Freie Universität      Berlin 
A Set Partitioning Example  

{A, B, D, G, H, J}, {A, H}, {A, J}, {B, G}, {B, L}, {C, D, K, L}, 
{C, I}, {D, I}, {D, J}, {D, K}, {E, F, G, H}, {E, F, I, J}, {E, I}, 
{E, J}, {F, G}, {F, J}, {F;K}, {F; L}. 
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A Set Partitioning Example  

{A, B, D, G, H, J}, {A, H}, {A, J}, {B, G}, {B, L}, {C, D, K, L}, 
{C, I}, {D, I}, {D, J}, {D, K}, {E, F, G, H}, {E, F, I, J}, {E, I}, 
{E, J}, {F, G}, {F, J}, {F;K}, {F; L}. All hyperedges that do not 
intersect {A, B, D, G, H, J}: 

 

 

 

 

 
 

 

 

Hall's Theorem implies that there is no solution of cost < 0. 
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 The Hypergraph Assignment Problem 

 Random Hyperassignments 

 Complexity Results 

 Partitioned Hypergraphs 

 Polyhedral Results 

 A Local Search Heuristic 

 Regular ICE Rotations 

 Vehicle Rotation Planning 

 Coarse-to-Fine Method 
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Bipartite Hypergraphs 

A hypergraph 𝐺 is called bipartite if 

 its vertex set can be written as the disjoint union of two vertex sets 
𝑈 and 𝑉 with the same size 𝑈 = |𝑉|, and 

 every hyperedge 𝑒 ∈ 𝐸 has the same number |𝑒 ∩ 𝑈| = |𝑒 ∩ 𝑉| of 
vertices in 𝑈 and 𝑉. 

We then represent 𝐺 as a triple 𝐺 = (𝑈, 𝑉, 𝐸). 
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Hyperassignments 

A hyperassignment is a subset 𝐻 of 𝐸 such that there is exactly one 
incident hyperedge for every vertex. 
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The Hyperassignment Problem 

The HAP is a special type of set partitioning problem. 
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Definition (Hyperassignment Problem) 

Input: A bipartite hypergraph 𝐺 = (𝑈, 𝑉, 𝐸) with edge costs 𝑐𝑒 ∈ ℝ. 
Output: A minimum cost hyperassignment 𝐻∗  in 𝐺, i.e., a hyper-
assignment 𝐻∗ s.t. 
 

𝑐 𝐻∗ = min{𝑐 𝐻 ,𝐻 is a hyperassignment in 𝐺} 
 
or the statement that no hyperassignment exists. 
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Motivation: ICE Connections 

Vehicle Rotation Planning and Hyperassignments | CO∈TL 2015 9 



Freie Universität      Berlin 
Timetabled Trips: 1 Day 
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Graphics: JavaView, MATHEON F4 
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Timetabled Trips: Standard Week 
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Graphics: JavaView, MATHEON F4 
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Vehicle Rotation (1 Week) 
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Vehicle Rotation (5 Weeks) 
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Rotation Plan: Follow-on Trip Assignment 
(Blue: Timetabled Trips, Red: Deadhead Trips) 

Vehicle Rotation Planning and Hyperassignments | CO∈TL 2015 14 

Graphics: JavaView, MATHEON F4 
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Assignment Solution 
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Timetable Regularity 
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Rotation Regularity 
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Modeling Regularity via Hyperedges 
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Hyperassignment Solution 
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Bipartite Hypergraph Model 
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Random Hypergraph Assignments 
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𝓠 

Theorem (Mézard, Parisi [1985], Aldous [1992, 2001]) 

The expected optimal objective value E of the assignment problem for 
random instances on complete bipartite graphs and uniformly i. i. d. edge 
costs in [0,1] or exponentially i. i. d. edge costs with mean 1 converges to 

E =
𝜋2

6
= 1.6449…  

if the number of vertices tends to infinity. 
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Random Hypergraph Assignment Problems 
(1 000 runs with exponentially i. i. d. edge costs with mean 1) 

 

 

 

 

 

 

 

 

 

 

130 1.054 0.053 6 
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𝑮𝟐,𝒏 E (E) # e: |e|>2 (#e: |e|>2) 

10 1.019 0.206 5.3 2.0 

20 1.039 0.141 10.4 2.8 

30 1.049 0.117  15.3  3.4 

40 1.045 0.097  20.5  3.9 

50 1.054 0.085  25.4  4.3 

60 1.050 0.080  30.6  4.7 

70 1.053 0.079  35.6  5.1 

80 1.054 0.069  40.6  5.4 

90 1.053  0.066  45.9  5.8 

100 1.057  0.063  50.6  6.3 

110 1.054  0.060  56.1  6.4 

120 1.052  0.056  61.1  6.7 

130 1.054 0.053 66.3 6.9 

140 1.053  0.051  71.3  7.1 

150 1.051  0.050  76.2  7.5 

160 1.054  0.048  81.2  7.6 
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Random Hypergraph Assignments 
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Theorem (Mézard, Parisi [1985], Aldous [1992, 2001]) 

The expected optimal objective value E of the assignment problem for 
random instances on complete bipartite graphs and uniformly i. i. d. edge 
costs in [0,1] or exponentially i. i. d. edge costs with mean 1 converges to 

E =
𝜋2

6
= 1.6449…  

if the number of vertices tends to infinity. 
𝓠 

Theorem (B., Heismann [2014]) 

The expected optimal objective value E of the hyperassignment problem 
for random instances on complete bipartite hypergraphs 𝐻2,𝑛 with exactly 

𝑛 proper hyperedges and exponentially i. i. d. edge costs with mean 1 

converges to  
0.3718 <  E <  1.8310 

as the number of vertices tends to infinity. 



Freie Universität      Berlin 
 Relations to Hyperflow Problems 

 Cambini, Gallo, Scutellà [1992] 
Minimum cost flows on hypergraphs; solves only LP relaxation 

 Jeroslow, Martin, Rarding, Wang [1992] 
Gainfree Leontief substitution flows; does not hold for HAP 
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Complexity Results 
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Theorem (B., Heismann [2011], Heismann [2014]) 

1. The HAP is NP-hard and APX-hard, even for bipartite 
hypergraphs with maximum hyperedge size 4. 

2. The set packing/covering relaxations of the HAP are NP-hard, 
even for bipartite hypergraphs with maximum hyperedge size 6. 

3. The LP/IP gap can be arbitrarily large. 
4. The determinants of basis matrices can be arbitrarily large. 
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Solution of the LP Relaxation 

 Fractional solution, cost = 0.615. 
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Solution of the LP Relaxation 

 Fractional solution, cost = 0.615. 

 The red hyperedge clique inequality separates this solution. 

 Cliques can be separated efficiently by exploiting a "partitioning 
structure". 
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Partitioned Hypergraphs 
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Partitioned Hypergraphs 

 A bipartite hypergraph 𝐺 = (𝑈, 𝑉, 𝐸) is called partitioned with 
maximum part size 𝑑 ∈ ℕ if there exist pairwise disjoint ≤ 𝑑-
element sets 𝑈1, … , 𝑈𝑝 and 𝑉1, … , 𝑉𝑞 called the parts of 𝐺 s.t. every 

hyperedge intersects exactly one part in 𝑈 and one part in 𝑉. 
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Partitioned Hypergraphs 
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Theorem (B., Heismann [2012]) 

Every HAP in a bipartite hypergraph 𝐺 = (𝑈, 𝑉, 𝐸) can be 
polynomially transformed into a HAP in a partitioned hypergraph 
with 𝑑 = 0.5max

𝑒∈𝐸
|𝑒|. 

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 
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Partitioned Hypergraphs 
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Theorem (B., Heismann [2011]) 

 Every (hyperedge) clique in a partitioned hypergraph is a subset 
of the incident hyperedges 𝛿 𝑃  of some part 𝑃. 

 The (hyperedge) conflict graph contains no holes of any size and 
no antiholes of size < 7. 

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 

𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6 
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Extended Formulation 
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Theorem (B., Heismann [2011]) 

There exists an extended formulation with 𝑂( 𝑈 𝑑+1) variables that 

implies all clique inequalities. 
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configuration 2 configuration 3 



Freie Universität      Berlin 
Further Polyhedral Results 

 Let 𝐺2,𝑛 be the complete partitioned directed hypergraph on 2𝑛 nodes 

with 𝑛 parts of size 2. 

 Let P 𝐺2,𝑛  be the HAP polytope associated with 𝐺2,𝑛. 

 P 𝐺2,6  is completely described by 14 049 facets. 
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Further Polyhedral Results 

 Let 𝐺2,𝑛 be the complete partitioned directed hypergraph on 2𝑛 nodes 

with 𝑛 parts of size 2. 

 Let P 𝐺2,𝑛  be the HAP polytope associated with 𝐺2,𝑛. 

 P 𝐺2,6  is completely described by 14 049 facets. 

 Every facet of P 𝐺2,6  can be described in many different ways, in 

particular, in the form  

 𝑥𝑒
𝑒∈𝐸1

−  𝑥𝑒
𝑒∈𝐸−1

≤ 1. 
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Hyperedges are drawn as connections 
between the surroundings  

of the corresponding vertices.  
 

Red: coefficient -1 
Black: coefficient 1 

Example of two facets with coefficients -1 and +1 only 
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Further Polyhedral Results 

 Let 𝐺2,𝑛 be the complete partitioned directed hypergraph on 2𝑛 nodes 

with 𝑛 parts of size 2. 

 Let 𝑃 𝐺2,𝑛  be the HAP polytope associated with 𝐺2,𝑛. 

 P 𝐺2,6  is completely described by 14 049 facets. 

 Every facet of P 𝐺2,6  can be described in many different ways, in 

particular, in the form  

 𝑥𝑒
𝑒∈𝐸1

−  𝑥𝑒
𝑒∈𝐸−1

≤ 1. 

 
 The 14 049 facets fall into 30 symmetry classes, generated by swapping 𝑈 

and 𝑉, permuting parts inside 𝑈 and 𝑉, permuting vertices inside of parts, 
resulting in 4 608 vertex and hyperedge permutations. 

 16 symmetry classes are understood, including nonnegativity constraints, 
clique inequalities, and odd clique set inequalities. 

 Facet classification done by HUHFA program available at 
http://comopt.ifi.uni-heidelberg.de/people/hildenbrandt/HUHFA/ . 
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Solution of the LP Relaxation 

 Fractional solution, cost = 0.635. 

 Consider the 7=2⋅3+1 cliques associated with the vertices 
𝑣1, 𝑣3, 𝑣4, 𝑢2, 𝑢3, 𝑢4 and the clique 𝑣5, 𝑣6, 𝑢3, 𝑢4 , 𝑣5, 𝑢3 , 𝑣5, 𝑢4 . 
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Solution of the LP Relaxation 
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Solution of the LP Relaxation 

 Fractional solution, cost = 0.635. 

 Consider the 7=2⋅3+1 cliques associated with the vertices 
𝑣1, 𝑣3, 𝑣4, 𝑢2, 𝑢3, 𝑢4 and the clique 𝑣5, 𝑣6, 𝑢3, 𝑢4 , 𝑣5, 𝑢3 , 𝑣5, 𝑢4 . 

 Every red hyperedge is contained in at least two of these cliques. 

 We can take at most three of these edges. 
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Odd Set Ieqs for the (Perfect) Matching Problem 

 

 

 

 

 

 

 

 
 

 

 

 
 

 Complete description of the matching polytope (together with the 
degree and non-negativity constraints), Edmonds [1965] 
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Odd Clique Set Ieqs for General Hypergraphs 

 

 

 

 

 

 

 

 
 

 

 

 
 

 Generalize the odd set inequalities for the matching problem 

 Related to clique set inequalities by Pêcher & Wagler [2006] 
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Odd Clique Set Ieqs for General Hypergraphs 
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Theorem (B., Heismann [2011]) 

Let 𝓠 be a set of at least three hyperedge cliques in 𝐺 = 𝑉, 𝐸 , 2 ≤ 𝑝 ≤
|𝓠| be an integer number, 𝑟:= 𝓠  mod 𝑝, and 𝑞𝑒 ≔ 𝑄 ∈ 𝓠:𝑄 𝑒 . Then 

 
𝑞𝑒
𝑝
+ max 0,

𝑞𝑒mod 𝑝 − 𝑟 

𝑝 − 𝑟
𝑥𝑒 ≤

𝑒∈𝐸

|𝓠|

𝑝
. 
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A Local Search Heuristic 

 Reduce to assignment problem by gluing vertices together. 

R 

R 

R 
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A Local Search Heuristic 

 Reduce to assignment problem by gluing vertices together. 

 

R 
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A Local Search Heuristic 

 Reduce to assignment problem by gluing vertices together. 

 Cost = 1.46. 

R 
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A Local Search Heuristic 

 Reduce to assignment problem by gluing vertices together. 

R 

R 

R 
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A Local Search Heuristic 

 Reduce to assignment problem by gluing vertices together. 

R 
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𝑣1 𝑣2 𝑣5 𝑣6 

𝑢1 𝑢2 𝑢3 𝑢4 

𝑣3, 𝑣4 

𝑢5, 𝑢6 
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A Local Search Heuristic 

 Reduce to assignment problem by gluing vertices together. 

R 
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A Local Search Heuristic 

 Reduce to assignment problem by gluing vertices together. 

 Cost = 0.96. 

 Iteratively merge/segregate and solve assignment problems. 

 Combine with composite columns method. 
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Regularity of the timetable trips: 
Red: Trip done on one day of the week 
Blue: Trip done on all days of the week 

Regular Timetable 
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Graphics: JavaView, MATHEON F4 
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Regular Rotations 
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Regularity of the deadhead trips: 
Yellow: regular  
Red: irregular  Graphics: JavaView, MATHEON F4 
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Regular Rotations 
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Not explicitly optimizing regularity leads to high irregularity 
Regularity can be enforced by high penalties on arcs 
High variability 

costs 
per 

irreg. 
turn 

costs 
per 

irreg. 
trip   

#  
hyper-
edges 

# 
irregular 

trips   

# 
irregular 

turns   

# 
vehic- 

les   

time 
below 
target 

cost   

dead-
head 

distance 
cost   

0  0 94035  261  310  17  2640  6298.72  

1  1  109299  256  130  17  2640  6298.72  

10  10  109299  76  105  17  2640  6298.72  

100  100  109299  31  121  17  2640  6298.72  

1000  1000  109299  25  47  17  2860  6298.13  

10000  10000  109299  25  37  17  2860  32087.29  

Irregularity in the optimal solution depending on the penalty for irregularity; 
61 trains, 75 tasks, 803 stops, 310 trips, 620 vertices. 
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A New Technology: Vehicle Rotation Planning 

To be avoided … 

Vehicle Rotation Planning and Hyperassignments | CO∈TL 2015 58 



Freie Universität      Berlin 
Starting Point: Trip Network 
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Timetabled Trips: 1 Day 
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Graphics: JavaView, MATHEON F4 
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Timetabled Trips: Standard Week 
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Graphics: JavaView, MATHEON F4 
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Vehicle Rotation: 1 Week 
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We 
Tu 

Th 

Fr 

Sa Su 

Mo 

Graphics: JavaView, MATHEON F4 
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Vehicle Rotation: 5 Weeks 
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We 
Tu 

Th 

Fr 

Sa Su 

Mo 

Graphics: JavaView, MATHEON F4 
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All Vehicles Rotations: Rotation Plan 
(Blue: Timetabled Trips, Red: Deadhead Trips) 
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Graphics: JavaView, MATHEON F4 
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Railway Constraints 
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Maintenance 

 

 

 

 

 

 

Train Composition 
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Photos courtesy of DB Mobility Logistics AG 
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Train Composition: Type, Order, Orientation 
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Hypergraph Model 
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Hypergraph Model 
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Hypergraph Model 
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Hypergraph Model 
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Hypergraph Model 
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Hypergraph Model 
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Hyperflow Model 

 

 

 

 

 

 

 

 

 
Hyperarcs for 

 (regular) turns 

 (regular) train compositions 
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Vehicle Rotation 
Planning Problem 

Cover all timetabled trips by 
rotations such that turns 
and train composition are 
regular. 

Hypergraph Multi Com-
modity Flow Problem 

Find a cost minimal 
hyperflow such that every 
node configuration is 
covered by exactly one 
hyperarc. 
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Hyperflow Model 
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 Subarc variables xa 

 Multiarc variables xm for 

 uniform turns 

 uniform train compositions 

 Flow conserv./flow constr. 
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Coarse-to-Fine Method: Setting 

 Row and column index sets 𝐼 = 𝑚 , 𝐽 = [𝑛] 

 Matrix 𝐴 ∈ ℝ𝐼×𝐽 

 Rhs 𝑏 ∈ ℝ𝐼 

 Objective c ∈ ℝ𝐽 

 Linear Program       and its dual 
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Coarse-to-Fine Method: Notation 

 

 Aggregate/project the rows 𝐼 of the (LP) by a problem specific 
coarsening projection []: 𝐼 → [𝐼] (induces an equivalence relation) 

 

 For a column vector 𝑣 ∈ ℝ𝐼 we define the coarsening of 𝑣 as 

𝑣 𝑖 ≔ min 𝑣𝑘: 𝑘 ∈ 𝐼, 𝑘 = 𝑖 ,max 𝑣𝑘: 𝑘 ∈ 𝐼, 𝑘 = 𝑖 ⋅ 𝜏 𝑣, 𝑖  

   where 𝜏 𝑣, 𝑖 ≔ |{𝑣𝑘 ≠ 0: 𝑘 = [𝑖]}| 

 

 Coarse bimatrix 𝐴 , coarse dual vector [𝜋] 

 

 Coarse objective function 𝑐 ≔ 𝑐 (no coarsening) 
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Coarse Reduction 

 

min 𝑐 𝑇𝑥, [𝐴]𝑥 = 𝑏 , 𝑥 ∈ ℝ[𝐽], 

where 

[𝐴]𝑥 = 𝑏 :⟺ 𝑏 𝑖 2 ≤  𝐴⋅𝑗 𝑖 1
𝑥𝑗 , 𝑗∈𝐽   𝐴⋅𝑗 𝑖 1

𝑥𝑗 ≤𝑗∈𝐽  𝑏 𝑖 2,  ∀[𝑖]. 

 

Let 𝑃 𝐴, 𝑏 ≔ {𝐴𝑥 = 𝑏, 𝑥 ≥ 0} and 𝑃 𝐴 , [𝑏] ≔ {[𝐴]𝑥[=][𝑏], 𝑥 ≥ 0}.  
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Lemma (B., Reuther, Schlechte, Weider [2015]) 

𝑃 𝐴, 𝑏 ⊆ 𝑃 𝐴 , 𝑏 . 
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The Coarse Reduced Cost 

 Multiplication of pairs 𝑎1, 𝑏1 , 𝑎2, 𝑏2 ∈ ℝ
2: 

𝑎1, 𝑏1 ,⋅ 𝑎2, 𝑏2 ≔ max{𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2} 

 Coarse reduced cost for column 𝑗  
 

[𝑐 𝑗] ≔ 𝑐𝑗 − 𝜋
𝑇 ⋅ [𝑎𝑗]  

 

 

 

 

 Use the coarse reduced cost for pricing in the fine model. 
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Lemma (B., Reuther, Schlechte, Weider [2015]) 

The coarse reduced cost always underestimates the original reduced cost 

[𝑐 𝑗] ≔ 𝑐𝑗 − 𝜋
𝑇 ⋅ [𝑎𝑗] ≤ 𝑐𝑗 − 𝜋

𝑇 ⋅ 𝑎𝑗=𝑐 𝑗. 
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Example 
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Example 
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Example 
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Example 

Vehicle Rotation Planning and Hyperassignments | CO∈TL 2015 83 



Freie Universität      Berlin 
Example 
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Example 
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Layers 

Problem specific layers: 

 composition layer (fine, already seen) 

 configuration layer (coarse) 

 vehicle layer (very coarse) 

 

The layers are defined in terms of projections of hypergraphs that 

correspond to the projection of rows of the LP/IP. 
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Coarse-to-Fine Method 
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Railway Constraints 
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Train Composition 

Vehicle Rotation Planning and Hyperassignments | CO∈TL 2015 88 

Photos courtesy of DB Mobility Logistics AG 
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Maintenance: Service Intervals  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Blue: timetabled trips 

Green: 4000 km treatment 

Dark gray: 8250 km treatment 

Yellow: 33000 km treatment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Pink: 66000 km treatment 

Red: 198000 km treatment 

Light gray: 15 days treatment 

Turquoise: 30 days treatment 
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Railway Constraints 
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Photos courtesy of DB Mobility Logistics AG 
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91 

Parking: Keeping It Simple 
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Siding Length/m Feasible Assignments 

1 570 
XXX, YYY, XXX+YYY, 

YYY+YYY 

2 480 XXX, YYY, YYY+YYY 

3 430 XXX, YYY, YYY+YYY 

4,5,6 420 XXX, YYY, YYY+YYY 

7 410 XXX, YYY, YYY+YYY 

8 390 XXX, YYY 

9,10,11 240 YYY 

12,13,14 210 YYY 

XXX 0 

2 

4 

6 

8 

2 4 6 8 10 12 

10 

12 

14 

16 

18 

20 

22 

YYY 
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Real World Example: Scenario 1 
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Input # Objective Goal 

Timetabled trips 798 Coverage 100% 

Connections 171 Rows Minimum 

Maintenance interval 
• Small: every 12500 km @ 1 depot 
• Monthly: every 25000 km @ 1 depot 
• Big: every 50000 km @ 1 depot 

3 No of. 
maintenance 
services 

Minimum 

Stations 14 

Depots 7 

Objective Reference solution VS-OPT rail 

Rows 20 + 300 km deadhead 19 + 300 km deadhead 

CPU time (hh:mm) : 00:20 



Freie Universität      Berlin 
Real World Example: Scenario 2 

93 

Input # Objective Goal 

Timetabled trips 1292 Trip coverage 100% 

Connections 1009 Rows Minimum 

Maintenance intervals  
• Refuel: every 600 km @ 10 depots 
• Small: every 15000 km @ 1 depot 
• Big: every 60000 km @ 1 depot) 

3 No of 
maintenance 
services 

Minimum 

Stations 26 

Depots 34 

Objective Reference solution VS-OPT rail 

Rows 29 + 5500 km deadhead 26 + 3300 km deadhead 

CPU time (hh:mm) : 08:48 
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Thank you for your attention 
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Image courtesy of DB Mobility Logistics AG 


