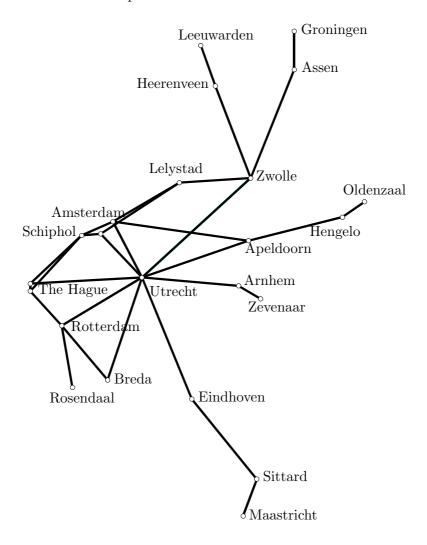
Diskrete Mathematik I (SS 2013)

Übungsblatt 3

Abgabe: Mo, 29. April 2013, 12:00 im Fach von S. Schwartz (Arnimallee 3)

Aufgabe 1. 10 Punkte

Bestimmen Sie in dem folgenden Graphen (aus einem GAMS-Modell von Michael Bussieck) einen minimalen aufspannenden Baum.



Wir verwenden folgende Abkürzungen für die Namen der Bahnhöfe:

Ah Apd Asd Asdz	Arnhem Apeldoorn Amsterdam CS Amsterdam Zuid WTC	Lls Lw Mt	Lelystad Centrum Leeuwarden Maastricht			
Asn	Assen	Odzg	Oldenzaal Grens			
Bd	Breda	Rsdg	Rosendaal Grens			
Ehv	Eindhoven	Rtd	Rotterdam CS			
Gn	Groningen	Shl Std	Schiphol Sittard			
Gv	Den Haag HS	Ut	Utrecht CS			
Gvc	Den Haag CS	Zl	Zwolle			
Hgl	Hengelo	Zvg	Zevenaar Grens			
Hr	Heerenveen	Zvg	Zevenaar Grens			

Die Kanten haben die folgenden Kosten:

Ah	Ut	58	Asdz	Ut	34	Gvc	Shl	43
Ah	Zvg	19	Asn	Gn	28	Gvc	Ut	61
Apd	Asd	89	Asn	Zl	78	Hgl	Odzg	18
Apd	Hgl	69	Bd	Rtd	49	Hr	Lw	29
Apd	Ut	64	Bd	Ut	92	Hr	Zl	66
Asd	Lls	54	Ehv	Std	78	Lls	Zl	50
Asd	Shl	19	Ehv	Ut	81	Mt	Std	21
Asd	Ut	39	Gv	Gvc	1	Rsdg	Rtd	18
Asdz	Lls	56	Gv	Rtd	23	Rtd	Ut	57
Asdz	Shl	9	Gv	Shl	43	Ut	Zl	85

Aufgabe 2. 10 Punkte

Zeigen Sie:

i)
$$\binom{r}{r} + \binom{r+1}{r} + \dots + \binom{n}{r} = \binom{n+1}{r+1}, \quad n, r \in \mathbb{N}_0, n \ge r.$$

ii) Die Anzahl an r-Tupeln $(k_1, \ldots, k_r) \in \mathbb{N}_0^r$, $r \geq 1$, deren Summe $n \in \mathbb{N}_0$ ergibt, ist $\binom{n+r-1}{r-1}$. Beispiel für n=4, r=2: Es gibt $\binom{5}{1}=5$ Möglichkeiten, 4 als Summe von 2 geordneten Zahlen dazustellen, nämlich 4=0+4=1+3=2+2=3+1=4+0.

Aufgabe 3. 10 Punkte

Betrachten Sie ihren Namen als Buchstabenfolge. Wieviele verschiedene Worte (einschließlich unsinniger) kann man aus den Buchstaben ihres Names bilden? Beispiel: Aus OTTO kann man die 6 Worte OOTT, OTOT, OTTO, TOOT, TOTO und TTOO bilden.

Aufgabe 4. 10 Punkte

Sei M eine endliche Menge mit n = |M| Elementen. Zeigen Sie, dass die Hälfte der Teilmengen von M eine gerade Anzahl an Elementen hat.