TECHNISCHE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK

Computational Integer Programming

PD Dr. Ralf Borndörfer Dr. Thorsten Koch

Exercise sheet 5

Deadline: Thu, 24 Nov. 2011, by email to borndoerfer@zib.de

Exercise 1.

Prove the following

Theorem: Let D = (V, A) be a digraph and M its node-arc incidence matrix, i.e., $m_{i,jk} = +1$ for j = i, $m_{i,jk} = -1$ for k = i, and $m_{i,jk} = 0$ otherwise. Then:

 $\{\lambda \in \mathbb{R}^A : M\lambda \ge 0, \ \lambda \ge 0\} = \operatorname{cone}\{\chi^C : C \text{ is a directed cyle in } D\}.$

Hint: Start proving $\{\lambda \in \mathbb{R}^A : M\lambda \ge 0, \lambda \ge 0\} = \{\lambda \in \mathbb{R}^A : M\lambda = 0, \lambda \ge 0\}.$

Exercise 2.

Use ZIMPL to model the capacitated vehicle routing problem described in the file WS11-CIP-UE-05.VRP.pdf. Sample trip data for an instance can be found in file trips.dat. The model file vrp-skeleton.zpl. All files are posted on the webpage.

Exercise 3.

Try to solve the following variants of the VRP problem of exercise 2 for instance trips.dat:

- The maximum distance is 30 (the default).
- The maximum distance is increased to 40.
- The maximum distance is increased to 50.
- The maximum distance is increased to ∞ .
- The fixed cost is reduced to 0.

10 points

10 points

10 points

Wintersemester 11/12