Computational Integer Programming

PD Dr. Ralf Borndörfer
Dr. Thorsten Koch

Exercise sheet 5

Deadline: Thu, 24 Nov. 2011, by email to borndoerfer@zib.de

Exercise 1.
10 points
Prove the following
Theorem: Let $D=(V, A)$ be a digraph and M its node-arc incidence matrix, i.e., $m_{i, j k}=+1$ for $j=i, m_{i, j k}=-1$ for $k=i$, and $m_{i, j k}=0$ otherwise. Then:

$$
\left\{\lambda \in \mathbb{R}^{A}: M \lambda \geq 0, \lambda \geq 0\right\}=\operatorname{cone}\left\{\chi^{C}: C \text { is a directed cyle in } D\right\} .
$$

Hint: Start proving $\left\{\lambda \in \mathbb{R}^{A}: M \lambda \geq 0, \lambda \geq 0\right\}=\left\{\lambda \in \mathbb{R}^{A}: M \lambda=0, \lambda \geq 0\right\}$.
Exercise 2.
10 points
Use ZIMPL to model the capacitated vehicle routing problem described in the file WS11-CIP-UE-05.VRP.pdf. Sample trip data for an instance can be found in file trips.dat. The model file vrp-skeleton.zpl. All files are posted on the webpage. Exercise 3.

10 points
Try to solve the following variants of the VRP problem of exercise 2 for instance trips.dat:

- The maximum distance is 30 (the default).
- The maximum distance is increased to 40 .
- The maximum distance is increased to 50 .
- The maximum distance is increased to ∞.
- The fixed cost is reduced to 0 .

Note: Each group should email their ZIMPL models and their computational results for exercise 3 to borndoerfer@zib. de by Thu, 24 Nov 2011.

