TECHNISCHE UNIVERSITAT BERLIN Wintersemester 11/12
INSTITUT FUR MATHEMATIK

Computational Integer Programming

PD Dr. Ralf Borndorfer
Dr. Thorsten Koch

Exercise sheet 7
Deadline: Thu, 15 Dez. 2011, by email to borndoerfer@zib.de

The symmetric Traveling Salesman Problem (TSP) on a complete graph G = (V, E) with
edge lengths c. can be formulated as the following integer program, which uses a binary
variable z, for each edge e € F.

min E Ce Te

eck

s.t. Z ze=2 YveV (1)
e€d(v)

Y zez2 VSCV,S£o (2)
e€d(S)

z. € {0,1} Veec E.

Here, z. is equal to 1 if the edge e € E is contained in a tour and equal to 0 otherwise.
The degree constraints (1) ensure that each node is incident to exactly two edges and the
subtour elimination inequalities (2) rule out “small cycles”.

The symmetric TSP can also be stated as the constraint integer program (CIP)

min g Ce Te

eck
s.t. Z Te =2 YvoeV
e€d(v)
nosubtour(G,) (3)
ze € {0,1} Vee E.

The nosubtour constraint (3) is defined as

nosubtour(G,z) & PC C{e€ E|z.=1}:C is a cycle of length |C| < |V].

This constraint must be supported by a constraint handler, which — given an integral
solution = € {0,1}¥ — has to check whether the corresponding set of edges contains a
subtour C' (in scip_check, scip_enfolp, and scip_enfops).

To improve the performance of the solving process of SCIP, the constraint handler may
provide additional information about its constraints to the framework: for example, a
linear relaxation that strengthens the LP relaxation of the CIP. The linear relaxation of the

nosubtour constraint consists of exponentially many subtour elimination inequalities (2)
which can be separated and added on demand to the LP relaxation (in scip_sepalp
and scip_sepasol).

Implement a constraint handler that supports nosubtour constraints. It should contain
algorithms for feasibility checks and cutting plane separation.

In the doxygen documentation of SCIP, you will find the entry "How to add constraint
handlers” which explains all steps of implementing a constraint handler in detail. Since
not all of these steps are needed for this exercise, the following instruction will guide you
through this documentation.

Getting started

(a) You must install the ZIBOptSuite 1.2.0 from zibopt.zib.de in order to do this exer-
cise. Download ziboptsuite-1.2.0.tgz from the webpage and execute the following
commands:

e tar xvf ziboptsuite-1.2.0.tgz
e cd ziboptsuite-1.2.0
e make

e make test

(b) Extract the TSP project COatWork-TSP.tgz (file tar xzf COatWork-TSP.tgz posted
on the webpage). Amongst others, it contains:

src/cppmain.cpp Main file, which initializes SCIP, includes the default plugins of
SCIP, includes the user defined plugins, e.g., a reader for TSP instances in TSP
format and the constraint handler for nosubtour constraints to be implemented,
and invokes the solving process of SCIP.

src/ProbDataTSP.cpp and src/ReaderTSP.cpp Provide methods for reading a TSP
instance from a file and for creating and storing the corresponding CIP model.

src/ConsNosubtour.cpp Constraint handler to be implemented/completed. Note,
that the following steps of the "How to add constraint handlers” instruction
have already been implemented: Properties of a Constraint Handler, Constraint
Data and Constraint Handler Data, Interface Methods. Furthermore, the fun-
damental callback methods scip_lock (C++ for CONSLOCK) and the additional
callback methods scip_delete (C++ for CONSDELETE) and scip_trans (C++
for CONSTRANS) have already been implemented.

src/GomoryHuTree.cpp Gomory-Hu-tree algorithm. See also see next point.

src/GomoryHuTree.h Structure for a complete directed graph. The GRAPH consists of
GRAPHNODES, each with a unique number id € {0,...,|V|— 1} and a GRAPHEDGE
pointer to first_edge, which is the first element of an adjacency list. Each
GRAPHEDGE stores its target node adjac, the next element next in the adjacency
list of its start node, its reverse edge back, its corresponding problem variable
var, and weights cap and rcap for the Gomory-Hu algorithm.

Makefile Makefile for the TSP project. In particular, it links the necessary files of
SCIP and the constraint handler to be implemented to the TSP project.

tspdata/*.tsp Some TSP instances in TSP format.

(c¢) In the folder COatWork-TSP/1ib, create a softlink to your SCIP directory, e.g.
1n -s /home/coatwork/software/ziboptsuite-1.2.0/scip-1.2.0 scip

(d) In the folder COatWork-TSP, try to compile the provided code: make depend and
make.

(e) Open the file COatWork-TSP/src/ConsNosubtour.cpp and implement all missing
methods as indicated below. For each section, please read all given instructions,
before you begin the implementation.

Implementing fundamental callback methods: Feasibility check

(a) The scip_check, scip_enfolp, and scip_enfops methods all call the local method
consCheck(), which currently only loops through all nosubtour constraints in the
array conss. For each of these constraints, you should implement an algorithm that
checks whether the given solution sol satisfies the nosubtour constraint (3). Note that
in the TSP, there is only one nosubtour constraint, but in general, several constraints
of this type could be present.

(b) In ConsNosubtour.h, the parameters scip_checkpriority_and scip_enfopriority._
(C++ for CONSHDLR_CHECKPRIORITY and CONSHDLR _ENFOPRIORITY) have been set such
that the nosubtour constraint handler is called after the integrality and the linear
constraint handler. This ensures that all feasibility checks are only called for solutions
that are already integral and satisfy the degree

constraints (1).

(c) For example, a feasibility check could follow a path of edges whose corresponding
problem variables have an LP value (which you get by SCIPgetSolVal()) numerically
equal to one (to be checked by calling SCIPisFeasEQ()). Since consCheck() only gets
called, when the degree constraints (1) are fulfilled, it can conclude feasibility, iff this
path contains all nodes of the graph G.

(d) The constraint data SCIP_CONSDATA of a nosubtour constraint contains a pointer to
the GRAPH on which it is defined.

(e) For detailed information on SCIP methods, see the “List of callable functions” in the
doxygen documentation on the SCIP homepage http://scip.zib.de.

Intermediate test

(a) Compile your project and test it on the provided TSP instances, e.g., ulysses16.tsp
(optimal value 6859). Since all fundamental callbacks are implemented now, the re-
sulting code should be correct and find an optimal solution to a given problem in-
stance. However, it might be very slow, because additional features like cutting plane
separation are missing.

Implementing additional callback methods: Cutting plane
separation

(a)

The methods scip_sepalp and scip_sepasol also call a common method sepaCons (),
which you should implement. It is supposed to separate subtour elimination inequal-
ities (2) that are violated by the given LP solution and the given arbitrary primal
solution passed by scip_sepalp and scip_sepasol, respectively.

Use SCIPallocBufferArray() to allocate memory for the arrays which you pass
to ghc_tree(), see next point. Use SCIPfreeBufferArray() to free the allocated
memory afterwards. Note that the cuts array is two-dimensional and you have to
allocate all entries.

The separation problem can be solved by the ghc_tree() algorithm, which is defined
in GomoryHuTree.cpp. It should operate on the GRAPH stored in the constraint’s
data. Before calling this method, you have to install the LP values (which you get by
SCIPgetSolVal()) of each edge variable to the capacities cap and rcap of each arc
and its backwards arc in the GRAPH. The Gomory-Hu algorithm fills the array cuts.
A cut 6(9) is defined by a bipartition S and V' \ S of the nodes of the graph. Each
cuts[i] corresponds to the incidence vector of S. For each such cut §(.5), you should
construct an inequality (LP row) of type (2), and add it to the separation storage of
SCIP.

As an example, the following lines of code create an LP row corresponding to the
cutting plane 1z + 2y < 3 and add it to the separation storage:

SCIP_ROW *row;
char rowname [SCIP_MAXSTRLEN];
(void) SCIPsnprintf(rowname, SCIP MAXSTRLEN, "cut_%d", ncuts);

SCIP_CALL(SCIPcreateEmptyRow(scip, &row, rowname,
-SCIPinfinity(scip), 3.0, FALSE, FALSE, TRUE));

SCIP_CALL(SCIPcacheRowExtensions(scip, row));
SCIP_CALL(SCIPaddVarToRow(scip, row, varx, 1.0));
SCIP_CALL(SCIPaddVarToRow(scip, row, vary, 2.0));
SCIP_CALL(SCIPflushRowExtensions(scip, row));
SCIP_CALL(SCIPaddCut(scip, NULL, row, FALSE));
SCIP_CALL(SCIPreleaseRow(scip, &row));

By the way: In ConsNosubtour.h, scip_sepapriority_ and scip_sepafreq. (C++
for parameters CONSHDLR_SEPAPRIORITY and CONSHDLR_SEPAFREQ) have been set such
that your separation algorithm will be performed at each branch-and-bound node and
will always be called as the first cutting plane routine.

Final test

(a)

Compile your project and test it on the provided TSP instances.

Good luck!

