
Technische Universität Berlin Wintersemester 11/12
Institut für Mathematik

Computational Integer Programming

PD Dr. Ralf Borndörfer
Dr. Thorsten Koch

Exercise sheet 9
Deadline: Thu, 05 Jan. 2012, by email to borndoerfer@zib.de, and to be presented in

the exercise session

Implement a primal heuristic for the symmetric traveling salesman problem (TSP) on a
complete graph G = (V,E). This heuristic should be a greedy start heuristic, which is
based on the current LP solution. It starts with an arbitrary node s ∈ V and iteratively
constructs an [s, u]-path T , as long as there are any nodes left not contained in T . It then
closes the path to a tour. In each iteration, the [s, u]-path is extended to an [s, v]-path
where node v ∈ V is selected in a greedy fashion, such that

x∗uv = max{x∗uw : w ∈ V \V (T), xuw not fixed to be zero}.

Here, x∗uv denotes the value of the variable xuv in the current LP solution. A binary
variable is fixed to be zero if its global upper bound has changed to zero.

In the doxygen documentation of SCIP, you will find the entry ”How to add primal heuris-
tics”, which explains all steps of implementing a primal heuristic in detail. Since not all
of these steps are needed for this exercise, again, the following instruction will guide you
through this documentation.

Getting started

a) Go to the directory COatWork-TSP/src and copy the template files HeurXxx.cpp and
HeurXxx.h to files named HeurLpgreedy.cpp and HeurLpgreedy.h, respectively. Open
the new files with a text editor and replace all occurrences of xxx, Xxx, and XXX by
lpgreedy, Lpgreedy, and LPGREEDY, respectively.

b) Adjust the name, description, and display character parameters in the default con-
structor HeurLpgreedy(), which you find in HeurLpgreedy.h.

c) Include your header file HeurLpgreedy.h into the main file cppmain.cpp. Then, add
SCIPincludeObjHeur() with a correct argument list to the runSCIP() method of
cppmain.cpp and include the line “HeurLpgreedy.o” into the MAINOBJ list of the
Makefile. Compile and test.

d) [src/HeurLpgreedy.cpp:104] ERROR: method of lpgreedy primal heuristic not imple-
mented yet
in the SCIP output means that everything works (for now).

e) Unless otherwise noted, all SCIP methods you need in this exercise are defined in
scip.h, all graph methods are defined in GomoryHuTree.h.

Defining the primal heuristic data and implementing two additional call-
back methods

a) Add two object variables to your class: one for the graph corresponding to the TSP
instance (GRAPH* graph) and one for the current LP solution (SCIP SOL* lpsol).

b) Implement the scip init method. It should initialize the object variables. Therefore,
you have to create the solution lpsol, using SCIPcreateSol() and get the problem
data structure by the following line:
ProbDataTSP* probdata = dynamic cast<ProbDataTSP*>(SCIPgetObjProbData(scip));

Then access the graph from the probdata (struct defined in ProbDataTSP.h) and cap-
ture it, using capture graph().

c) Implement the scip exit method. It should free all of the memory that has been
allocated in the scip init method and release objects that have been captured in
scip init, hence call SCIPfreeSol() and release graph(), respectively.

Implementing the fundamental callback method

a) Implement the scip exec callback. It should realize the actual heuristic outlined above.
Here are some implementation hints:
(a) The following lines of code ensure that the current LP has been solved to optimal-

ity, copy the current LP solution into the object variable lpsol, and use lpsol

for accessing the LP solution value lpsolval of the variable var:

if(SCIPgetLPSolstat(scip) != SCIP LPSOLSTAT OPTIMAL)

return SCIP OKAY;

SCIP CALL(SCIPlinkLPSol(scip, lpsol));

SCIP Real lpsolval = SCIPgetSolVal(scip, lpsol, var);

(b) For the primal solution to be constructed in scip exec, you need a SCIP SOL*

newsol, which you create by SCIPcreateSol(), free by SCIPfreeSol(), and
which you can pass to SCIP by SCIPtrySol(). The value of a variable in this
solution can be set by SCIPsetSolVal(). All variables for which no value is set
explicitly, are treated as zero.

(c) SCIPvarGetUbGlobal() (defined in pub var.h) returns the global upper bound
of a variable, which you need to check that a variable is not globally fixed to 0.

(d) Use the methods SCIPallocBufferArray() and SCIPfreeBufferArray() for al-
locating and freeing memory for arrays in the scip exec method, e.g., for a
SCIP Bool array that stores (at position node->id) whether node is already con-
tained in V (T).

(e) The result pointer should be set to SCIP DIDNOTFIND or SCIP FOUNDSOL.
b) You can adjust the priority, frequency, frequency offset, maximal depth, and timing

parameters of the default constructor in HeurLpgreedy.h to change the performance.

Final test

a) Compile your project and test it on the provided TSP instances tspdata). You should
see your chosen display character as first character in an output line, whenever your
heuristic found a solution.

b) List your results in a readable table.

Merry christmas and a happy new year!

12

3

4 5

6

Figure 1: A tour on 6 nodes.

12

3

4 5

6

Figure 2: Another tour on 6 nodes.

Exercise 1. (Tutorial session)

Porve: 2-OPT produces crossing-free tours for Euclidean TSPs, i.e., TSPs where
the edge weights cij = ||vi − vj||2 are Euclidean distances between the cities.

Exercise 2. (Tutorial session)

Prove: Any tour in a complete graph can be transformed into any other tour by
2-OPT moves.

Exercise 3. (Tutorial session)

a) How many 2-OPT moves can be applied to the tour in Fig. 1?
b) How many 2-OPT moves can be applied to a tour on n nodes?
c) How many 3-OPT moves can be applied to the tour in Fig. 2, deleting the dotted

edges? How many of these are 2-OPT moves? How many 3-OPT moves do not
change the orientation of the tour segments?

d) How many k-OPT moves can be applied to a tour on n nodes (give a good upper
bound)?

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

Figure 3: Draw 2-OPT moves here.

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

Figure 4: Draw 3-OPT moves here.

