Computational Integer Programming

PD Dr. Ralf Borndörfer Dr. Thorsten Koch

Exercise sheet 10

Deadline: Thu, 12 Jan. 2012, by email to borndoerfer@zib.de

Check your proofs using the program GEODUAL by Mike Jünger, Michael Schulz, and Steffen Zychowicz at http://www.informatik.uni-koeln.de/lsjuenger/research/geodual.

Exercise 1.

(Tutorial session)

Construct an example of a 2D Euclidean perfect matching problem in the plane such that no disc packing proves optimality.

[•]10

Solve the following instances of the 2D Euclidean perfect matching problem:

(Tutorial session)

(Tutorial session)

The node covering problem looks for a minimum weight collection of edges in a graph such that each node is covered by at least one edge, in a 2D Euclidean node covering problem the nodes correspond to points in the plane and the weights to Euclidean distances. Prove that an optimal solution of a 2D Euclidean node covering problem for an even number of nodes is a perfect matching.

Exercise 4.

Construct 2-approximate solutions of the following 2D Euclidean spanning tree (left) and Steiner tree problems (right, terminals are black):

Exercise 5.

Call a Steiner node of degree three or more in a Steiner tree a branching node. Prove that a Steiner tree Y for a terminal set R contains at most |R| - 2 branching nodes.

Exercise 6.

Consider two branching nodes v_0 and v_k in a minimum cost Steiner tree that are connected via a path $p = (v_0, v_1, \ldots, v_k)$ such that all inner nodes $v_i, i = 1, \ldots, k-1$, have degree two and none of them is a terminal. Prove that p is a shortest path.

Exercise 7.

There is a one-to-one correspondence between minimum cost Steiner trees on terminals T and branching nodes S in a graph G and minimum spanning trees in a complete graph \tilde{G} on nodes $T \cup S$ whose edge weights correspond to shortest path distances in G.

Exercise 8.

Using the results of the previous three exercises, construct an algorithm for the undirected Steiner tree problem that has pseudo-polynomial running time in the number of terminals. Hint: Enumerate all sets of branching nodes.

10 points

10 points

10 points

Exercise 3.