
Technische Universität Berlin Wintersemester 11/12
Institut für Mathematik

Computational Integer Programming

PD Dr. Ralf Borndörfer
Dr. Thorsten Koch

Exercise sheet 12
Deadline: Thu, 26 Jan. 2012, by email to reuther@zib.de

Exercise 1. (Tutorial session)

Improve the tour in Fig. 1 using the Lin-Kernighan heuristic.

Exercise 2. (Tutorial session)

Consider the sequential k-opt move of the Lin-Kernighan heuristic. Prove:

a) Every improving 2-opt move is sequential.
b) Every improving 3-opt move is sequential.
c) The double-bridge move depicted in Fig. 2 is a non-sequential 4-opt move.

1

2

3 4

5

67

Figure 1: A tour in the Euclidean plane.

1

23

4

5

6 7

8

Figure 2: A double-bridge move.

Exercise 3. (Tutorial session)

Consider a graph G = (V, E) with |V | = n nodes, edge weights c
e
, and a special

node 1 ∈ V . Let T be a cost minimal 1-tree (i.e., T \δ(1) is a spanning tree in G\{1}
and T ∩ δ(1) consists of the two cheapest edges in δ(1), breaking ties arbitrarily).
Let T (e) be a minimum cost 1-tree containing edge e ∈ E and define the α-tolerance
of each edge as

α(e) := c
(

T (e)
)

− c(T).

Prove:

a) α(e) = 0 for every e ∈ T .
b) α(e) ≥ 0 for every e ∈ E.
c) α : E → R can be computed in O(n3) time.

Exercise 4. 10 points

Implement the Lin-Kernighan heuristic for the euclidean TSP by using a template
Java program provided in the tarball jLK.tgz on the lecture’s web page. Download
this archive, copy it into your virtual machine and unpack it with the command tar

xzf jLK.tgz. A detailed description of the contents of jLK is provided in the file
README. A quick start reads as follows:

a) Build the program by typing ant in the jLK/ directory. The jar archive jLK.jar
should be created.

b) Run the program by typing java -jar jLK.jar [problem-file].
c) You can use every file from the instances/ directory as problem-file.

The template program will do the following steps:

a) Parse the TSP instance.
b) Compute the delaunay neighborhood.
c) Compute a initial tour by a very simple construction heuristic.
d) Run the Lin-Kernighan template implementation without doing any improve-

ment.
e) Visualize every step of computation.

Your task is to complete the implementation of the member function step() to make
the algorithm working. This function is located in the file lk/LinKernighan.java

approx. line 167. It is the heart of the algorithm and finds improving k-OPT moves
by a recursive depth first search. The whole implementation of the program is de-
rived form the paper [1]. It provides a very clear, generic, and compact description
of an implementation of the Lin-Kernighan heuristic. So, you do not have to com-
plete the function body by yourself. Moreover you do not have to implement any
data structure and you will find some hints at the affected code locations (search
for write code here).

Your ”only” have to understand what should be going on in this function and to
translate the pseudo code on page 7 of [1] into Java code. A possible solution of this
exercise has approx. 70 lines of code.

References

[1] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding tours in the TSP,
1999. www.tsp.gatech.edu/methods/papers/lk report.ps.

