Network Design and Operation (WS 2015)

Excercise Sheet 1

Submission: Mo, 26. October 2015, tutorial session

Exercise 1.

Show that connectedness induces an equivalence relation on the nodes of an undirected graph. What are the equivalence classes?

Exercise 2.

Show that an edge is a bridge of an undirected graph if and only if it is not contained in a cycle.

Exercise 3.

Show that an undirected graph is bipartite if and only if it doesn't contain an odd cycle (with an odd number of nodes = number of edges).

Exercise 4.

Show that a tree with maximum degree $\Delta(G) \coloneqq \max_{v \in V} \delta(v)$ has at least $\Delta(G)$ leaves (nodes of degree 1).

10 Points

10 Points

8+2 Points

10 Points

Ralf Borndörfer, Fabio d'Andreagiovanni Jonad Pulaj

Exercise 5.

Tutorial Session

The assignment problem involves a complete bipartite graph G = (U, V, E) with the same number of nodes |U| = |V| on both sides and a matrix of edge weights $c \in \mathbb{Q}^E = \mathbb{Q}^{U \times V}$. An assignment is a set of edges $M \subseteq E$ such that each node u is contained in exactly one edge uv that matches or assigns it to v. The assignment problem is to find an assignment M of minimum cost c(M).

Solve the assignment problem given by the matrix in Table 1.

Table 1: Assignment problem

Exercise 6.

Tutorial Session

Solve the problem in exercise 5 by integer programming using the programs zimpl and scip.

- a) Download zimpl and scip from zibopt.zib.de and have a look at the example section in the zimpl manual.
- b) Formulate the assignment problem as an integer linear program (IP).
- c) Translate your IP model into a zimpl model.
- d) Solve the model using scip.
- e) Construct the LP relaxation of the model.
- f) Solve the LP relaxation using scip.
- g) Prove that the solution of the LP relaxation is always integer.