Network Design and Operation (WS 2015)

Excercise Sheet 2
Submission: Mo, 02. November 2015, tutorial session

Exercise 1.

a) Stable set problem. Show that finding a stable set of size k in a graph is NPcomplete by a transformation from the problem to finding a clique of size ℓ.
b) Longest path problem. Show that finding a path of length at least k in a graph is NP-complete.

Exercise 2.

Give a polynomial time algorithm for testing a graph for connectedness and analyze its running time.

Exercise 3.

Show the following computing rules for the O-notation.
a) $O(1)+O(1)=O(1)$.
b) $O\left(\sum_{i=1}^{k} n^{i}\right)=O\left(n^{k}\right), k \in \mathbb{N}_{0}$.
c) $O\left(n^{k}\right)+O\left(n^{\ell}\right)=O\left(n^{\max \{k, \ell\}}\right), k, \ell \in \mathbb{N}_{0}$.
d) $O\left(n^{k}\right) \cdot O\left(n^{\ell}\right)=O\left(n^{k+\ell}\right), k, \ell \in \mathbb{N}_{0}$.
e) $n!=O\left(n^{n}\right)$.

Exercise 4.
10 Points
Consider a set of points $V \subseteq \mathbb{R}^{2}$ in the plane and let $p^{*} \epsilon \operatorname{argmin} 1 / \mathbb{R}^{2} / \cdot / \ell_{2}^{2} / \sum$ be a median w.r.t. squared Euclidean distances. Prove that $p^{*} \in \operatorname{conv} V$.

Exercise 5.

We will use the graph G in Figure 1 for several exercises; Table 1 lists abbreviations for the station names. Edge data for this graph is contained in the file edges.dat, cap. dat contains capacity data that we will use in this exercise as costs.

Consider the even degree problem (EDP) that asks for a minimum cost set of edges F in G s.t. every node is incident to an even number of F-edges except for the degree one nodes, which must be incident to exactly one F-edge.
a) Model the EDP as an integer program.
b) Write a zimpl model for your formulation; you can use the file deg-skeleton.zpl as a start.
c) Use scip to compute, for all possible even degrees of Utrecht, a min cost solution.
d) Draw all these solutions (a separate drawing for each solution).
e) Compile a table with the optimal objective values.

Exercise 6.

Tutorial Session
Consider the 1 -median problem $1 / \mathbb{R}^{2} / \cdot / \ell_{1} / \sum$ w.r.t. Manhattan distances for a set of points $V \subseteq \mathbb{Z}^{2}$ with integer coordinates. Use Figure 2 to construct an instance of this problem with at least 6 different points s.t.

1. the set of medians is a line segment.
2. the set of medians is a single point.

Figure 1: The Dutch high-speed railway network.

Ah	Arnhem	Lls	Lelystad Centrum
Apd	Apeldoorn	Lw	Leeuwarden
Asd	Amsterdam CS	Mt	Maastricht
Asdz	Amsterdam Zuid WTC	Odzg	Oldenzaal Grens
Asn	Assen	Rsdg	Rosendaal Grens
Bd	Breda	Rtd	Rotterdam CS
Ehv	Eindhoven	Shl	Schiphol
Gn	Groningen	Std	Sittard
Gv	Den Haag HS	Ut	Utrecht CS
Gvc	Den Haag CS	Zl	Zwolle
Hgl	Hengelo	Zvg	Zevenaar Grens
Hr	Heerenveen		

Table 1: Station names and abbreviations in the Dutch high-speed railway network.

Figure 2: 1-median ℓ_{1}-problem.

