Ralf Borndörfer, Fabio d'Andreagiovanni Jonad Pulaj

Network Design and Operation (WS 2015)

Excercise Sheet 4

Submission: Mo, 16. November 2015, tutorial session

Exercise 1.

Prove that the smallest enclosing circle of n points in the plane is uniquely determined by 3 points.

Exercise 2.

Solving the 1-center network location problem $1/N/\cdot/\text{sp}/\text{max}$ requires the solution of minimization problems

$$(\mathbf{P}_{uv}) \qquad \min \max_{w \in V} \min_{\lambda \in [0,1]} \{ \operatorname{sp}(u,w) + \lambda c_{uv}, \operatorname{sp}(v,w) + (1-\lambda)c_{uv} \}$$

for all undirected edges $uv \in E$.

a) The functions

$$\lambda \mapsto \max_{w \in V} \min_{\lambda \in [0,1]} \{ \operatorname{sp}(u,w) + \lambda c_{uv}, \operatorname{sp}(v,w) + (1-\lambda)c_{uv} \}$$

are continuous and piecewise affine with at most 2|V| pieces.

b) $(P)_{uv}$ can be solved in linear time.

Exercise 3.

5+3+2 Points

10 Points

Consider a modification of the **select** median finding algorithm that subdivides m given numbers into groups of k elements, where k can be different from 5.

a) Ignoring integrality issues, derive a recursion for the run time.

b) What is the ratio in the resulting geometric series?

c) What is special about k = 5?

Exercise 4.

Consider real number a_1, \ldots, a_m and positive weights w_1, \ldots, s_m ; let $W := \sum_{i=1}^m w_i$. The weighted median of $\{\{a_i\}\}$ w.r.t. w_i is

$$w - \text{med} \left\{ \{a_i\} \} \coloneqq \left[a_k : \sum_{a_i < a_k} w_i < W/2, \sum_{a_i > a_k} w_i \le W/2; a_\ell : \sum_{a_i < a_k} w_i \le W/2, \sum_{a_i > a_\ell} w_i < W/2 \right].$$

Prove that the median of $\{\{a_i\}\}\$ is the weighted median of $\{\{a_i\}\}\$ w.r.t. weights $w \equiv 1/m$.

10 Points

5+5 Points

Exercise 5.

Consider the 6-node graph N = (V, E) in Fig. 1 with distances d_{ij} and demands w_i as drawn next to the edges and nodes.

- a) Solve the warehouse location problem $1/V/ \cdot / \operatorname{sp} / \sum w_i$.
- b) Solve the warehouse location problem $2/V/ \cdot / \operatorname{sp} / \sum w_i$ by fixing the solution of a) and adding a second warehouse in a best possible way.
- c) Develop an IP formulation for $2/V/ \cdot / \operatorname{sp} / \sum w_i$.
- d) Solve your formulation from c).
- e) Did b) produce the optimum?
- f) Solve the network center problem $1/V/\cdot/\text{sp}/\text{max}$.
- g) Solve the network center problem $2/V/\cdot/\operatorname{sp}/\operatorname{max}$ by fixing the solution of f) and adding a second center in a best possible way.
- h) Develop an IP formulation for $2/V/\cdot/sp/max$.
- i) Solve your formulation from h).
- j) Did g) produce the optimum?

Figure 1: Warehouse location/network center problem.