Network Design and Operation (WS 2015)

Excercise Sheet 5

Submission: Mo, 23. November 2015, tutorial session

Exercise 1.

a) Suppose the smallest circle C enclosing some set V of points in the plane is defined by a two or three point subset $U \subseteq V$ of V and that p is a point outside of C. Show that it is not true that the smallest circle enclosing $V \cup\{p\}$ is defined by a two or three point subset of $U \cup\{p\}$.
b) The algorithm of Elzinga \& Hearn constructs a sequence of circles C_{i} defined by two or three points $p_{i}^{j}, j=1,2$ or $j=1,2,3$, adding and/or dropping a point in each iteration. Show that it is possible that a point that has been dropped is added again later.

Exercise 2.

10 Points
From an expected complexity point of view, is it a good idea to initialize the algorithm of Elzinga \& Hearn with the two points farthest apart? (No rigorous proof is required.)

Exercise 3.

10 Points
Consider the following discrete stop location problems in a network $N=(S \cup T, E)$ with demand points V and covering radius r :

(DSL)	$p=\|U\| / S / \operatorname{cov}_{r}(U)=V / \ell_{2} / p$	(planning from scratch)
(DSL1)	$p=\|U\| / T / \operatorname{cov}_{r}(U)=V / \ell_{2} / p$	(closing stops)
(DSL2)	$p=\|U\| / S / \operatorname{cov}_{r}(U \cup T)=V / \ell_{2} / p$	(opening stops)
(DSL3)	$p=\|U\| / S \cup T / \operatorname{cov}_{r}(U)=V / \ell_{2} / p$	(closing and opening stops).

Prove that (DSLi) can be reduced to (DSL), $i=1,2,3$.
Exercise 4.
Consider a set covering problem $(\mathrm{SCP}) \min c^{T} x, A x=\mathbb{1}, x \in\{0,1\}^{n}$ with constraint matrix $A \in\{0,1\}^{m \times n}$ and objective $c \in \mathbb{R}_{>0}^{n}$. Prove the validity of the following preprocessing rules:
a) $A_{i}=e_{j} \Longrightarrow x_{j}=1$ in every solution of (SCP).
b) $A_{\cdot j} \leq A_{\cdot k}$ and $c_{j}<c_{k} \Longrightarrow x_{j}=0$ in every optimal solution of (SCP).
c) $A_{i} \leq A_{k} \Longrightarrow A_{k} \cdot x \geq 1$ is redundant.
d) Find, formulate, and prove another preprocessing rule.

Figure 1: 1-center ℓ_{2}-problem.

Exercise 5.

Tutorial Session
Solve the 1-center problem $1 / \mathbb{R}^{2} / \cdot / \ell_{2} / \max$ w.r.t. Euclidean distances for the set of points $V=\{(2,0),(2,8),(6,3),(8,2)\}$ in the plane graphically by reducing to all 2and 3 -point configurations; use Fig. 1.

Exercise 6.
Tutorial Session
Solve the 1-center ℓ_{2}-problem in Fig. 2 using the algorithm of Elzinga \& Hearn, starting with the two closest points, always adding the outside point closest to the current circle.
Exercise 7.
Tutorial Session
Solve the restricted 1-center ℓ_{2}-problem in Fig. 3. Hint: Start with the solution of the unrestricted problem. Consider circles at the three defining points meeting in the center. What happens when you blow up the circles?

Figure 2: 1-center ℓ_{2}-problem.

Figure 3: Restricted 1-center ℓ_{2}-problem.

