Network Design and Operation (WS 2015)

Excercise Sheet 5

Submission: Mo, 23. November 2015, tutorial session

Exercise 1.

- a) Suppose the smallest circle C enclosing some set V of points in the plane is defined by a two or three point subset $U \subseteq V$ of V and that p is a point outside of C. Show that it is not true that the smallest circle enclosing $V \cup \{p\}$ is defined by a two or three point subset of $U \cup \{p\}$.
- b) The algorithm of Elzinga & Hearn constructs a sequence of circles C_i defined by two or three points p_i^j , j = 1, 2 or j = 1, 2, 3, adding and/or dropping a point in each iteration. Show that it is possible that a point that has been dropped is added again later.

Exercise 2.

From an expected complexity point of view, is it a good idea to initialize the algorithm of Elzinga & Hearn with the two points farthest apart? (No rigorous proof is required.)

Exercise 3.

Consider the following discrete stop location problems in a network $N = (S \cup T, E)$ with demand points V and covering radius r:

(DSL)	$p = U /S/\operatorname{cov}_r(U) = V/\ell_2/p$	(planning from scratch)
(DSL1)	$p = U /T/\operatorname{cov}_r(U) = V/\ell_2/p$	(closing stops)
(DSL2)	$p = U /S/\operatorname{cov}_r(U \cup T) = V/\ell_2/p$	(opening stops)
(DSL3)	$p = U /S \cup T/\operatorname{cov}_r(U) = V/\ell_2/p$	(closing and opening stops).

Prove that (DSLi) can be reduced to (DSL), i = 1, 2, 3.

Exercise 4.

10 Points

Consider a set covering problem (SCP) $\min c^T x$, $Ax = 1, x \in \{0, 1\}^n$ with constraint matrix $A \in \{0, 1\}^{m \times n}$ and objective $c \in \mathbb{R}^n_{>0}$. Prove the validity of the following preprocessing rules:

a) $A_{i} = e_j \Longrightarrow x_j = 1$ in every solution of (SCP).

- b) $A_{j} \leq A_{k}$ and $c_{j} < c_{k} \Longrightarrow x_{j} = 0$ in every optimal solution of (SCP).
- c) $A_{i} \leq A_{k} \implies A_{k} x \geq 1$ is redundant.
- d) Find, formulate, and prove another preprocessing rule.

8+2 Points

10 Points

10 Points

					•••••		 •	
	÷ .	1						
		.j					 	
	1	1					 	
	1	Ţ						
	ļ						 	
		•	••••••	••••••			 	
	ļ	ļ					 	
	<u>.</u>					•	 	
	1						 	
	1	1						
	ļ	ļ					 	
		ļ					 	
	·	•					 	
	1	1						
	:	1						

Figure 1: 1-center ℓ_2 -problem.

Exercise 5.

Solve the 1-center problem $1/\mathbb{R}^2/\cdot/\ell_2/\max$ w.r.t. Euclidean distances for the set of points $V = \{(2,0), (2,8), (6,3), (8,2)\}$ in the plane graphically by reducing to all 2-and 3-point configurations; use Fig. 1.

Exercise 6.

Tutorial Session

Solve the 1-center ℓ_2 -problem in Fig. 2 using the algorithm of Elzinga & Hearn, starting with the two closest points, always adding the outside point closest to the current circle.

Exercise 7.

Tutorial Session

Solve the restricted 1-center ℓ_2 -problem in Fig. 3. **Hint:** Start with the solution of the unrestricted problem. Consider circles at the three defining points meeting in the center. What happens when you blow up the circles?

Tutorial Session

Figure 2: 1-center ℓ_2 -problem.

Figure 3: Restricted 1-center ℓ_2 -problem.