Network Design and Operation (WS 2015)

Excercise Sheet 6

Submission: Mo, 30. November 2015, tutorial session

Exercise 1.

8+2 Points

Let $w^1 \ge \cdots \ge w^s > w^{s+1} = 0$ be integers and denote by $H(n) := \sum_{i=1}^n \frac{1}{i}$ the *n*-th harmonic number, $n \in \mathbb{N}$. Prove that

$$\sum_{i=1}^{s} (w^{i} - w^{i+1}) / w^{i} \le \sum_{i=1}^{s} (H(w^{i}) - H(w^{i+1})) \le H(w^{1}).$$

Exercise 2.

4+4+2 Points

10 Points

2+6+2 Points

Consider a discrete stop location problem on a line, i.e., in a network N = (S, E) of collinear nodes. Prove:

- a) The covering matrix A_r^{cov} associated with a discrete stop location problem on a line has the *consecutive ones property*, i.e., the columns and rows of A_r^{cov} can be permuted in such a way that $a_{ri} = 1 = a_{rk}$ implies $a_{rj} = 1$, $i \leq j \leq k$, for all $r \in V$, $i, k \in S$.
- b) A 0/1 matrix with the consecutive ones property is totally unimodular.
- c) The set covering problem associated with a discrete stop location problem on a line can be solved by linear programming.

Exercise 3.

Consider the *continuous* stop location problem in a network N = (S, E) with demand points V and covering radius r:

(CSL)
$$p = |U|/N/\operatorname{cov}_r(U) = V/\ell_2/p.$$

Prove: If (CSL) is feasible, the optimum is finite.

Exercise 4.

Consider the *continuous stop location problem* in a network N = (S, E) with demand points V and covering radius r

(CSL)
$$p = |U|/N/\operatorname{cov}_r(U) = V/\ell_2/p$$

and denote

$$S_r := S \cup \{ x \in N : \exists v \in V : ||x - v||_2 = r \}.$$

Prove that (CSL) can be reduced to (DSL):

- a) S_r is finite.
- b) Consider an edge $e = uv \in E$ and let $S_r^e := S_r \cap e = \{s_1, s_2, \dots, s_k\}$. Order $\{s_1, \dots, s_k\}$ as $u = s_1 <_e \cdots <_e s_n = v$ with respect to the natural order along the edge e = uv, starting from u. Let s be a point on uv between s_i and s_{i+1} , i.e., $s_i <_e s <_e s_{i+1}$. Then $\operatorname{cov}_r(s_i) \supseteq \operatorname{cov}_r(s)$ and $\operatorname{cov}_r(s_{i+1}) \supseteq \operatorname{cov}_r(s)$.
- c) (CSL) has an optimal solution $S^* \subseteq S_r$.

Exercise 5.

Tutorial Session

Consider the bus stop location problem on the left of Fig. ?? with unit costs, potential stops $S = \{s_1, \ldots, s_7\}$, demand points $V = \{v_1, \ldots, v_5\}$ and covering radius r with associated covering matrix

$A_r^{ m cov}$ =	s_1	s_2	s_3	s_4	s_5	s_6	s_7	
	1	0	0	0	0	0	0	p_1
	0	1	1	1	1	0	0	p_2
	0	0	0	1	1	1	1	p_3
	0	0	0	0	0	1	1	p_4
	1	1	1	1	0	1	0	p_5 /

(cf. Schöbel [2003]). Solve this problem using set covering techniques, illustrating your reasoning in the figure.

Figure 1: Bus stop location problem.

Exercise 6.

Tutorial Session

Peter wants to buy a new computer but has little money. To save costs, he decides to purchase individual parts that he plans to assemble himself. In a tedious internet search, he identifies five suppliers that sell the parts that he wants at the following prices (in Euros):

supplier	1	2	3	4	5
main board CPU RAM	100 190 65	120 200 50	105 205 45	120 190 50	110 210 65
frame	$\frac{105}{45}$	$\frac{80}{45}$	$\frac{85}{50}$	40	105 40

All suppliers charge (in Peter's opinion) ridiculously high delivery costs independent of the size of the order, namely, suppliers 1, 2, and 3 charge 20 Euros, supplier 4 charges 25 Euros, and supplier 5 charges 10 Euros. Clenching his teeth, Peter recalls his math class. After all, a computer is also a kind of infrastructure. At least, he can ... yeah, what can he do?

- a) Develop an optimization model for Peter's computer acquisition problem.
- b) What kind of model is this?
- c) Solve the model. What is the optimal solution?
- d) Solve the linear programming relaxation of the model. What happens?
- e) Fix the suppliers and resolve the linear programming relaxation of the model. What happens now?
- f) Peter is seldom at home, and his neighbors don't want to store more than one parcel for him. What should he do?