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Exercise 1. 10 Points

Consider the uncapacitated facility location problem

(UFL) min ∑
i∈I

fiyi + ∑
ij∈A

dijxij

(i) ∑
i∈I

xij ≥ 1 ∀j ∈ J

(ii) yi ≥ xij ∀ij ∈ A
(iii) yi ∈ Z+ ∀i ∈ I
(iv) xij ∈ Z+ ∀ij ∈ A,

where I = {1, . . . ,m}, J = {1, . . . , n}, A ⊆ I × J , f ∈ RI
+, and d ∈ RA

+ . Prove:

a) (UFL) has an optimal 0/1-solution.
b) (UFL) ⇐⇒ (UFL) (i), (ii), (iii), xij ≥ 0 ∀ij ∈ A.

Exercise 2. 10 Points

Consider the following set covering problem associated with model (UFL) of exer-
cise 1:

(SCP) min ∑
(i,J ′)∈J

c(i,J ′)z(i,J ′)

(i) ∑
J ′∋j

z(i,J ′) ≥ 1 ∀j ∈ J

(ii) z(i,J ′) ∈ {0,1} ∀(i, J ′) ∈ J .

Here, J(i) ∶= {j ∈ J ∶ ij ∈ A ∀i ∈ I}, J ∶= {(i, J ′) ∶ i ∈ I,∅ ⊊ J ′ ⊆ J(i)}, and
c(i, J ′) ∶= fi + ∑

j∈J ′
dij ∀(i, J ′) ∈ J . Prove:

a) There is a one-to-one correspondence between optimal 0/1-solutions of (UFL)
and (SCP).

b) UFL is APX-hard. Hint: SCP is APX-hard.

Exercise 3. 10 Points

In the (Metric) Capacitated Facility Location Problem (MCFL), we are given a
natural number ui for each facility i, and a facility i can serve at most ui clients.

Adjust the IP formulation for the (Metric) Uncapacitated Facility Location Problem
(MUFL) to this situation and show that the integrality gap between the LP and the
IP optimum is unbounded.



Exercise 4. 10 Points

Modify the LP rounding Algorithm for the MUFL as follows:

i) Change the definition of x′ in the filtering step to

x′ij ←
⎧⎪⎪
⎨
⎪⎪⎩

0, if i ∉ Nj(β)

αx̄ij , else

for an appropriate α of your choice.
ii) Replace in the LP rounding step Nj by Nj(β) ∶= {i ∈ I ∶ xij > 0 ∧ dij ≤ βDj}.

a) What is the resulting approximation ratio depending on β?
b) What is the best approximation ratio that can be obtained by modifying β?

Exercise 5. Tutorial Session

Consider a complete graph G = (V,E) on an even number of nodes V in Rn with Eu-
clidean distances as edge weights. The Euclidean Perfect Matching Problem (EPMP)
is to find a minimum weight set of edges such that every node is contained in ex-
actly one edge. Edmonds [1965] showed that the EPMP (and, in fact, any perfect
matching problem) can be solved using the linear program

(EPMP) min ∑
uv∈V 2

cuvxuv

(i) x(δ(v)) = 1 ∀v ∈ V
(ii) x(δ(W )) ≥ 1 ∀W ⊆ V, ∣W ∣odd
(iii) xuv ≥ 0 ∀uv ∈ V 2;

constraints (EPMP) (i) and (iii) are the degree and odd set or odd cut constraints,
respectively. Consider the following primal-dual algorithm for the EPMP.

Algorithm 1: Primal-dual Euclidean perfect matching algorithm.

Input : complete graph G = (V,E), V ⊆ Rn, cuv ∶= ∣∣u − v∣∣2∀uv ∈ V 2

Output: forest F ⊆ E
1 y ← 0, k ← 1, F k ← ∅;
2 If there is no odd tree (with an odd number of nodes) in F k, output F ← F k, stop;

3 uv ← argminu∈V (S),v∈V (T ),S,T different trees in F k ǫuv ∶=
cuv − yu − yv −∑uv∈δ(W ),W⊆V yW

∣V (S)%2 + ∣V (T )∣%2
;

4 ek ← uv, ǫk ← ǫuv;
5 yv ← yv + ǫk∀v ∈ V , yW ← yW + ǫk∀W = V (T ), T odd tree in F k, ∣W ∣ > 1;
6 F k+1 ← F k ∪ {ek}, k ← k + 1, goto 2;

a) Set up the dual (EPMD) of (EPMP), associating variables yv and yW with the
degree and odd cut constraints.

b) At least one of the trees S and T in step 3 is odd.
c) Algorithm 1 terminates in ∣V ∣−1 iterations with a spanning forest F of even trees

and a dual feasible solution y, i.e., y is feasible for EPMD.



d) A spanning forest of even trees can be reduced to a perfect matching of no greater
weight by (i) deleting even edges (edges whose deletion subdivides an even tree
into even trees) (ii) finding in some even tree with at least 4 nodes and all odd
edges two leaves w and w′ adjacent to a common third node v, deleting edges
wv and w′v, and joining w and w′.

e) L ∶= ∑v∈V yv +∑W⊆V yW is a lower bound for the weight of any perfect matching.
f) Consider an edge uv ∈ F . In iteration k, let SK and T k be the trees in F

containing u and v, respectively, and let ckuv ∶= ǫk(∣Sk∣%1 + ∣T k∣%1), if Sk ≠ T k,
and 0 otherwise. Then ckuv = 0 for uv ∈ F k and cuv = ∑

t
k=1 c

k
uv, if Algorithm 1

terminates after t iterations.
g) If in each iteration ∑uv∈F ckuv ≤ 2ǫk ⋅ ∣{odd trees in F k}∣, then ∑uv∈F cuv ≤ 2L, i.e.,

Algorithm 1 is 2-approximative.
h) Consider for some arbitrary, but fixed iteration k the forest F̄ obtained from F

by shrinking every tree of F k into a single node. Partition the nodes of F̄ into
two sets V̄ ′ and V̄ ′′ corresponding to odd and even trees, respectively. Then F̄

has no leaves in V̄ ′′, ∑v∈V̄ ′ degF̄ (v) ≤ 2∣V̄ ′∣, and g) holds.
i) The values of the dual variables y in Algorithm 1 can be interpreted as radii

of circles and “moats” around nodes and odd sets. Solve the two problems in
Figure 1 graphically using Algorithm 1.

j) Implement the linear programming formulation EPMP for the Euclidean perfect
matching problem. Solve it, and verify the optimality of the solution graphically.
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Figure 1: Euclidean perfect matching problem.


