Network Design and Operation (WS 2015)

Excercise Sheet 7
Submission: Mo, 7. December 2015, tutorial session

Exercise 1.

10 Points
Consider the uncapacitated facility location problem

(UFL) \min	$\sum_{i \in I} f_{i} y_{i}+\sum_{i j \in A} d_{i j} x_{i j}$
(i)	$\sum_{i \in I} x_{i j} \geq 1 \quad \forall j \in J$

(ii) $\quad y_{i} \geq x_{i j} \quad \forall i j \in A$
(iii) $\quad y_{i} \in \mathbb{Z}_{+} \forall i \in I$
(iv) $\quad x_{i j} \in \mathbb{Z}_{+} \quad \forall i j \in A$,
where $I=\{1, \ldots, m\}, J=\{1, \ldots, n\}, A \subseteq I \times J, f \in \mathbb{R}_{+}^{I}$, and $d \in \mathbb{R}_{+}^{A}$. Prove:
a) (UFL) has an optimal $0 / 1$-solution.
b) (UFL) \Longleftrightarrow (UFL) (i), (ii), (iii), $x_{i j} \geq 0 \forall i j \in A$.

Exercise 2.

10 Points
Consider the following set covering problem associated with model (UFL) of exercise 1:

$$
\begin{aligned}
& \text { (SCP) } \min \sum_{\substack{\left(i, J^{\prime}\right) \in \mathcal{J}}} c_{\left(i, J^{\prime}\right)} z_{\left(i, J^{\prime}\right)} \\
& \text { (i) } \\
& \sum_{J^{\prime} \ngtr j} z_{\left(i, J^{\prime}\right)} \geq \quad 1 \quad \forall j \in J
\end{aligned}
$$

(ii) $\quad z_{\left(i, J^{\prime}\right)} \in\{0,1\} \quad \forall\left(i, J^{\prime}\right) \in \mathcal{J}$.

Here, $J(i):=\{j \in J: i j \in A \forall i \in I\}, \mathcal{J}:=\left\{\left(i, J^{\prime}\right): i \in I, \varnothing \mp J^{\prime} \subseteq J(i)\right\}$, and $c\left(i, J^{\prime}\right):=f_{i}+\sum_{j \in J^{\prime}} d_{i j} \forall\left(i, J^{\prime}\right) \in \mathcal{J}$. Prove:
a) There is a one-to-one correspondence between optimal $0 / 1$-solutions of (UFL) and (SCP).
b) UFL is APX-hard. Hint: SCP is APX-hard.

Exercise 3.

10 Points
In the (Metric) Capacitated Facility Location Problem (MCFL), we are given a natural number u_{i} for each facility i, and a facility i can serve at most u_{i} clients.
Adjust the IP formulation for the (Metric) Uncapacitated Facility Location Problem (MUFL) to this situation and show that the integrality gap between the LP and the IP optimum is unbounded.

Exercise 4.

10 Points

Modify the LP rounding Algorithm for the MUFL as follows:
i) Change the definition of x^{\prime} in the filtering step to

$$
x_{i j}^{\prime} \leftarrow \begin{cases}0, & \text { if } i \notin N_{j}(\beta) \\ \alpha \bar{x}_{i j}, & \text { else }\end{cases}
$$

for an appropriate α of your choice.
ii) Replace in the LP rounding step N_{j} by $N_{j}(\beta):=\left\{i \in I: x_{i j}>0 \wedge d_{i j} \leq \beta D_{j}\right\}$.
a) What is the resulting approximation ratio depending on β ?
b) What is the best approximation ratio that can be obtained by modifying β ?

Exercise 5.

Tutorial Session
Consider a complete graph $G=(V, E)$ on an even number of nodes V in \mathbb{R}^{n} with Euclidean distances as edge weights. The Euclidean Perfect Matching Problem (EPMP) is to find a minimum weight set of edges such that every node is contained in exactly one edge. Edmonds [1965] showed that the EPMP (and, in fact, any perfect matching problem) can be solved using the linear program

$$
\begin{array}{lrl}
\text { (EPMP) } & \min \sum_{u v \in V^{2}} c_{u v} x_{u v} \\
\text { (i) } & x(\delta(v)) & =1 \quad \forall v \in V \tag{i}\\
\text { (ii) } & x(\delta(W)) & \geq 1 \quad \forall W \subseteq V,|W| \text { odd } \\
\text { (iii) } & x_{u v} \geq 0 \quad \forall u v \in V^{2} ;
\end{array}
$$

constraints (EPMP) (i) and (iii) are the degree and odd set or odd cut constraints, respectively. Consider the following primal-dual algorithm for the EPMP.

```
Algorithm 1: Primal-dual Euclidean perfect matching algorithm.
Input : complete graph \(G=(V, E), V \subseteq \mathbb{R}^{n}, c_{u v}:=\|u-v\|_{2} \forall u v \in V^{2}\)
Output: forest \(F \subseteq E\)
\(1 y \leftarrow 0, k \leftarrow 1, F^{k} \leftarrow \varnothing\);
2 If there is no odd tree (with an odd number of nodes) in \(F^{k}\), output \(F \leftarrow F^{k}\), stop;
\(u v \leftarrow \operatorname{argmin}_{u \in V(S), v \in V(T), S, T}\) different trees in \(F^{k} \epsilon_{u v}:=\frac{c_{u v}-y_{u}-y_{v}-\sum_{u v \epsilon \delta(W), W \subseteq V} y_{W}}{|V(S) \% 2+|V(T)| \% 2} ;\)
\(e^{k} \leftarrow u v, \epsilon^{k} \leftarrow \epsilon_{u v} ;\)
\(y_{v} \leftarrow y_{v}+\epsilon^{k} \forall v \in V, y_{W} \leftarrow y_{W}+\epsilon^{k} \forall W=V(T), T\) odd tree in \(F^{k},|W|>1 ;\)
\(F^{k+1} \leftarrow F^{k} \cup\left\{e^{k}\right\}, k \leftarrow k+1\), goto 2 ;
```

a) Set up the dual (EPMD) of (EPMP), associating variables y_{v} and y_{W} with the degree and odd cut constraints.
b) At least one of the trees S and T in step 3 is odd.
c) Algorithm 1 terminates in $|V|-1$ iterations with a spanning forest F of even trees and a dual feasible solution y, i.e., y is feasible for EPMD.
d) A spanning forest of even trees can be reduced to a perfect matching of no greater weight by (i) deleting even edges (edges whose deletion subdivides an even tree into even trees) (ii) finding in some even tree with at least 4 nodes and all odd edges two leaves w and w^{\prime} adjacent to a common third node v, deleting edges $w v$ and $w^{\prime} v$, and joining w and w^{\prime}.
e) $L:=\sum_{v \in V} y_{v}+\sum_{W \subseteq V} y_{W}$ is a lower bound for the weight of any perfect matching.
f) Consider an edge $u v \in F$. In iteration k, let S^{K} and T^{k} be the trees in F containing u and v, respectively, and let $c_{u v}^{k}:=\epsilon^{k}\left(\left|S^{k}\right| \% 1+\left|T^{k}\right| \% 1\right)$, if $S^{k} \neq T^{k}$, and 0 otherwise. Then $c_{u v}^{k}=0$ for $u v \in F^{k}$ and $c_{u v}=\sum_{k=1}^{t} c_{u v}^{k}$, if Algorithm 1 terminates after t iterations.
g) If in each iteration $\sum_{u v \in F} c_{u v}^{k} \leq 2 \epsilon^{k} \cdot \mid\left\{\right.$ odd trees in $\left.F^{k}\right\} \mid$, then $\sum_{u v \in F} c_{u v} \leq 2 L$, i.e., Algorithm 1 is 2 -approximative.
h) Consider for some arbitrary, but fixed iteration k the forest \bar{F} obtained from F by shrinking every tree of F^{k} into a single node. Partition the nodes of \bar{F} into two sets \bar{V}^{\prime} and $\bar{V}^{\prime \prime}$ corresponding to odd and even trees, respectively. Then \bar{F} has no leaves in $\bar{V}^{\prime \prime}, \sum_{v \in \bar{V}^{\prime}} \operatorname{deg}_{\bar{F}}(v) \leq 2\left|\bar{V}^{\prime}\right|$, and g) holds.
i) The values of the dual variables y in Algorithm 1 can be interpreted as radii of circles and "moats" around nodes and odd sets. Solve the two problems in Figure 1 graphically using Algorithm 1.
j) Implement the linear programming formulation EPMP for the Euclidean perfect matching problem. Solve it, and verify the optimality of the solution graphically.

Figure 1: Euclidean perfect matching problem.

