# Network Design and Operation (WS 2015)

## Excercise Sheet 7

Submission: Mo, 7. December 2015, tutorial session

### Exercise 1.

10 Points

Consider the uncapacitated facility location problem

where  $I = \{1, \ldots, m\}, J = \{1, \ldots, n\}, A \subseteq I \times J, f \in \mathbb{R}_+^I$ , and  $d \in \mathbb{R}_+^A$ . Prove:

- a) (UFL) has an optimal 0/1-solution.
- b) (UFL)  $\iff$  (UFL) (i), (ii), (iii),  $x_{ij} \ge 0 \forall ij \in A$ .

### Exercise 2.

Consider the following set covering problem associated with model (UFL) of exercise 1:  $\Sigma$ 

(SCP) min 
$$\sum_{\substack{(i,J')\in\mathcal{J}\\ J'\ni j}} c_{(i,J')} z_{(i,J')}$$
  
(i) 
$$\sum_{\substack{J'\ni j\\ Z(i,J')}} z_{(i,J')} \ge 1 \quad \forall j \in J$$
  
(ii) 
$$z_{(i,J')} \in \{0,1\} \quad \forall (i,J') \in \mathcal{J}.$$

Here,  $J(i) \coloneqq \{j \in J : ij \in A \ \forall i \in I\}, \ \mathcal{J} \coloneqq \{(i, J') : i \in I, \emptyset \subsetneq J' \subseteq J(i)\}, \text{ and } c(i, J') \coloneqq f_i + \sum_{j \in J'} d_{ij} \ \forall (i, J') \in \mathcal{J}.$  Prove:

- a) There is a one-to-one correspondence between optimal 0/1-solutions of (UFL) and (SCP).
- b) UFL is APX-hard. **Hint:** SCP is APX-hard.

### Exercise 3.

In the *(Metric) Capacitated Facility Location Problem* (MCFL), we are given a natural number  $u_i$  for each facility i, and a facility i can serve at most  $u_i$  clients.

Adjust the IP formulation for the *(Metric) Uncapacitated Facility Location Problem* (MUFL) to this situation and show that the integrality gap between the LP and the IP optimum is unbounded.

### 10 Points

# 10 Points

Modify the LP rounding Algorithm for the MUFL as follows:

i) Change the definition of x' in the filtering step to

$$x'_{ij} \leftarrow \begin{cases} 0, & \text{if } i \notin N_j(\beta) \\ \alpha \bar{x}_{ij}, & \text{else} \end{cases}$$

for an appropriate  $\alpha$  of your choice.

- ii) Replace in the LP rounding step  $N_j$  by  $N_j(\beta) := \{i \in I : x_{ij} > 0 \land d_{ij} \le \beta D_j\}.$
- a) What is the resulting approximation ratio depending on  $\beta$ ?
- b) What is the best approximation ratio that can be obtained by modifying  $\beta$ ?

### Exercise 5.

### **Tutorial Session**

Consider a complete graph G = (V, E) on an even number of nodes V in  $\mathbb{R}^n$  with Euclidean distances as edge weights. The *Euclidean Perfect Matching Problem* (EPMP) is to find a minimum weight set of edges such that every node is contained in exactly one edge. Edmonds [1965] showed that the EPMP (and, in fact, any perfect matching problem) can be solved using the linear program

(EPMP) 
$$\min \sum_{uv \in V^2} c_{uv} x_{uv}$$
  
(i)  $x(\delta(v)) = 1 \quad \forall v \in V$   
(ii)  $x(\delta(W)) \ge 1 \quad \forall W \subseteq V, |W| \text{odd}$   
(iii)  $x_{uv} \ge 0 \quad \forall uv \in V^2;$ 

constraints (EPMP) (i) and (iii) are the *degree* and *odd set* or *odd cut* constraints, respectively. Consider the following primal-dual algorithm for the EPMP.

# Algorithm 1: Primal-dual Euclidean perfect matching algorithm.Input: complete graph $G = (V, E), V \subseteq \mathbb{R}^n, c_{uv} \coloneqq ||u - v||_2 \forall uv \in V^2$ Output: forest $F \subseteq E$ 1 $y \leftarrow 0, k \leftarrow 1, F^k \leftarrow \emptyset$ ;2 If there is no odd tree (with an odd number of nodes) in $F^k$ , output $F \leftarrow F^k$ , stop;3 $uv \leftarrow \operatorname{argmin}_{u \in V(S), v \in V(T), S, T}$ different trees in $F^k \epsilon_{uv} \coloneqq \frac{c_{uv} - y_u - y_v - \sum_{uv \in \delta(W), W \subseteq V} y_W}{|V(S)\% 2 + |V(T)|\% 2}$ ;4 $e^k \leftarrow uv, \epsilon^k \leftarrow \epsilon_{uv}$ ;5 $y_v \leftarrow y_v + \epsilon^k \forall v \in V, y_W \leftarrow y_W + \epsilon^k \forall W = V(T), T$ odd tree in $F^k, |W| > 1$ ;6 $F^{k+1} \leftarrow F^k \cup \{e^k\}, k \leftarrow k+1, \text{ goto } 2$ ;

- a) Set up the dual (EPMD) of (EPMP), associating variables  $y_v$  and  $y_W$  with the degree and odd cut constraints.
- b) At least one of the trees S and T in step 3 is odd.
- c) Algorithm 1 terminates in |V|-1 iterations with a spanning forest F of even trees and a dual feasible solution y, i.e., y is feasible for EPMD.

- d) A spanning forest of even trees can be reduced to a perfect matching of no greater weight by (i) deleting *even edges* (edges whose deletion subdivides an even tree into even trees) (ii) finding in some even tree with at least 4 nodes and all odd edges two leaves w and w' adjacent to a common third node v, deleting edges wv and w'v, and joining w and w'.
- e)  $L := \sum_{v \in V} y_v + \sum_{W \subseteq V} y_W$  is a lower bound for the weight of any perfect matching.
- f) Consider an edge  $uv \in F$ . In iteration k, let  $S^{K}$  and  $T^{k}$  be the trees in F containing u and v, respectively, and let  $c_{uv}^{k} \coloneqq \epsilon^{k}(|S^{k}| \gg 1 + |T^{k}| \gg 1)$ , if  $S^{k} \neq T^{k}$ , and 0 otherwise. Then  $c_{uv}^{k} = 0$  for  $uv \in F^{k}$  and  $c_{uv} = \sum_{k=1}^{t} c_{uv}^{k}$ , if Algorithm 1 terminates after t iterations.
- g) If in each iteration  $\sum_{uv \in F} c_{uv}^k \leq 2\epsilon^k \cdot |\{\text{odd trees in } F^k\}|$ , then  $\sum_{uv \in F} c_{uv} \leq 2L$ , i.e., Algorithm 1 is 2-approximative.
- h) Consider for some arbitrary, but fixed iteration k the forest  $\bar{F}$  obtained from F by shrinking every tree of  $F^k$  into a single node. Partition the nodes of  $\bar{F}$  into two sets  $\bar{V}'$  and  $\bar{V}''$  corresponding to odd and even trees, respectively. Then  $\bar{F}$ has no leaves in  $\bar{V}''$ ,  $\sum_{v \in \bar{V}'} \deg_{\bar{F}}(v) \leq 2|\bar{V}'|$ , and g) holds.
- i) The values of the dual variables y in Algorithm 1 can be interpreted as radii of circles and "moats" around nodes and odd sets. Solve the two problems in Figure 1 graphically using Algorithm 1.
- j) Implement the linear programming formulation EPMP for the Euclidean perfect matching problem. Solve it, and verify the optimality of the solution graphically.



Figure 1: Euclidean perfect matching problem.