Network Design and Operation (WS 2015)
 Excercise Sheet 8

Submission: Mo, 14. December 2015, tutorial session

Exercise 1

Proposition 1. The vector x^{0} is a vertex of the polyhedron $P=\left\{x \in \mathbb{R}^{n}: A x \leq b, x \geq 0_{n}\right\}$ if and only if the vector $\left(x^{0}, y^{0}\right) \in \mathbb{R}^{n+m}$ such that:

$$
\binom{x^{0}}{y^{0}}=\binom{x^{0}}{b-A x^{0}}
$$

is a vertex of the polyhedron $P^{S T D}=\left\{\left(x^{0}, y^{0}\right) \in \mathbb{R}^{n+m}: A x+I y=b, x \geq 0_{n}, y \geq 0_{m}\right\}$.
Prove that if $\left(x^{0}, y^{0}\right)$ is a vertex of $P^{S T D}$ then x^{0} is a vertex of P.

Exercise 2

Let $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ be a polyhedron and assume that A has full column rank. Additionally, denote by $I=\{1, \ldots, m\}$ the set of rows of A. Prove that $x^{*} \in P$ is a vertex of P if and only if there exists a set $B \subseteq I$ such that $|B|=n, A_{B}$ is invertible and $A_{B} x^{*}=b_{B}$ (here, we denote by A_{B} and b_{B} the rows of A and the components of b indexed by B, respectively).

Exercise 3

Let $A \in\{-1,0,1\}^{m \times n}$ be a matrix. Prove that A is totally unimodular if and only if the polyhedron

$$
P=\left\{x \in \mathbb{R}^{n}: \beta \leq A x \leq b, \ell \leq x \leq u\right\}
$$

is integral for all vectors $\beta, b \in \mathbb{R}^{m}, \ell, u \in \mathbb{R}^{n}$

Exercise 4

Let A be an $m \times n$ binary matrix (i.e, $A \in\{0,1\}^{m \times n}$) and denote by J the set of the column indices. Prove that if A possesses the property:

$$
\forall j, k, \ell \in J: j \leq k \leq \ell \text {, if } a_{i j}=1 \text { and } a_{i \ell}=1 \text { then } a_{i k}=1
$$

then A is totally unimodular.

Exercise 5

Proposition 2. Let $A \in\{-1,0,1\}^{m \times n}$ be a matrix such that each of its column has at most two non-zero entries.

The matrix A is totally unimodular if and only if there exists a partition $\left(I_{1}, I_{2}\right)$ of the set of rows I of A such that:

$$
a_{i_{1}, j} \cdot a_{i_{2}, j} \leq 0 \Longleftrightarrow\left\{i_{1}, i_{2}\right\} \subset I_{1} \text { or }\left\{i_{1}, i_{2}\right\} \subset I_{2}
$$

for all $i_{1}, i_{2} \in I$ with $i_{1} \neq i_{2}$ and $a_{i_{1}}, a_{j_{2}} \neq 0$

Derive a polynomial time algorithm that can test whether a generic matrix A satisfies the above condition
Hint: checking that a graph is bipartite can be checked in polynomial time

Exercise 6

Let A be an $m \times n$ binary matrix (i.e, $A \in\{0,1\}^{m \times n}$). The matrix A possesses the (column-wise) consecutive-ones property when, after a possible reordering of the rows of A, the non-zero entries appear consecutively in each column.

Prove that A possessing the (column-wise) consecutive-ones property is totally unimodular by exploiting the following proposition.
Proposition 3. Let $A \in\{-1,0,1\}^{m \times n}$ be a matrix. A is totally unimodular if for any subset I^{\prime} of the rows, there exists a partition $\left(I_{1}, I_{2}\right)$ such that each column $j \in J$ satisfies:

$$
\left|\sum_{i \in I_{1}} a_{i j}-\sum_{i \in I_{2}} a_{i j}\right| \leq 1
$$

