Network Design and Operation (WS 2015)

Excercise Sheet 9

Submission: Mo, 04. January 2016, tutorial session

Exercise 1. 4+1+4+1 Points

Let $G = (U \cup V, E)$ be a bipartite graph and $M \subseteq E$ a matching. Show that M is maximal (w.r.t. inclusion) if and only if there is no augmenting path in G if and only if there is no augmenting path in any maximal forest of alternating trees in G.

Exercise 2. 10 Points

Show that the Hungarian method has a running time of $O(|V|^3)$.

Exercise 3. 7+3 Points

Let $f: \mathbb{R}^m \to \mathbb{R}$ be a concave function that is differentiable in $\lambda_0 \in \mathbb{R}^m$. Show that

$$\partial f(\lambda_0) = \{f'(\lambda_0)\}.$$

Exercise 4. 10 Points

Show that the Lagrangean relaxation of the optimization problem

(P)
$$\min c^{\mathsf{T}}x, \ Dx \ge d, x \in X$$

is reasonably defined as

$$\max_{\lambda>0} \min c^{\mathrm{T}} x - \lambda T(Dx - d), x \in X.$$

Hint: Introduce slacks variables.

Exercise 5. Tutorial Session

Consider the Dutch intercity network in Fig.1. Data for this network is given in the following files:

- edges.dat edges of the graph. They are directed and the data contains forward and backward directions (useful for Zimpl).
- times.dat travel times for each edge (useful for Zimpl).
- costs.dat costs each edge (useful for Zimpl).
- a) Formulate the shortest path problem as an integer program $\min c^{T}x, x \in X$.
- b) Use Zimpl and SCIP to compute a quickest path from Apeldoorn to Rotterdam in the Dutch network (use times.dat as the objective).

- c) Use Zimpl and SCIP to compute a cheapest path from Apeldoorn to Rotterdam in the Dutch network (use cost.dat as objective).
- d) Upgrade your model to solve constrained shortest path problems of the form $\min c^{\mathsf{T}}x, w^{\mathsf{T}}x \leq \omega, x \in X$, namely, to compute a quickest path subject to a budget constraint.
- e) Compute the quickest path from Apeldoorn to Rotterdam with a maximal cost of 15.000, (i.e., values in times.dat are the objective coefficients and values in cost.dat the weight coefficients).
- f) Solve the LP-relaxation of your constrained shortest path model.
- g) Formulate the Lagrangean relaxation $\max_{\lambda \geq 0} \min_{x \in X} c^{\mathrm{T}}x \lambda(\beta w^{\mathrm{T}}x)$ of the constrained shortest path problem w.r.t. the budget constraint.
- h) Let $X = \{x_1, \ldots, x_k\}$ be the set of paths from Apeldoorn to Rotterdam. Solve the Lagrangean relaxation of the constrained shortest path problem by adding paths to X one at a time in the following way.
 - i) Start with $X' \subseteq X$ containing the cheapest path only.
 - ii) Compute $\lambda' := \operatorname{argmax} f'(\lambda) := \operatorname{argmax}_{\lambda \geq 0} \min_{x \in X'} c^{\mathrm{T}}x \lambda(\omega w^{\mathrm{T}}x)$.
 - iii) Check if $f'(\lambda') = f(\lambda')$ by computing $f(\lambda') = \min_{x \in X} c^{\mathrm{T}}x \lambda'(\omega w^{\mathrm{T}}x)$.
 - iv) If $f'(\lambda') = f(\lambda')$, stop.
 - v) Otherwise, add $\operatorname{argmin}_{x \in X} c^{\mathsf{T}} x \lambda' (\omega w^{\mathsf{T}} x)$ to X' and repeat.

This procedure is known as Kelly's cutting plane method.

Ah	Arnhem	Lls	Lalvatad Contrum
Apd	Apeldoorn		Lelystad Centrum
Asd	Amsterdam CS	Lw	Leeuwarden
Asdz	Amsterdam Zuid WTC	Mt	Maastricht
Asn	Assen	Odzg	Oldenzaal Grens
Bd	Breda	Rsdg	Rosendaal Grens
Ehv	Eindhoven	Rtd	Rotterdam CS
Gn	Groningen	Shl	Schiphol
Gv	Den Haag HS	Std	Sittard
Gvc	Den Haag CS	Ut	Utrecht CS
Hgl	Hengelo	Zl	Zwolle
Hr	Heerenveen	Zvg	Zevenaar Grens

Table 1: Station names and abbreviations in the Dutch high-speed railway network.

Figure 1: The Dutch high-speed railway network.