Network Design and Operation (WS 2015)

Excercise Sheet 10

Submission: Mo, 18. January 2016, tutorial session

Exercise 1.

6 Points

Let P be a polyhedron defined over \mathbb{R}^n , $c \in \mathbb{R}^n$ a cost vector and $x \in \mathbb{R}^n$ a decision vector. Prove that if P is *bounded*, then the linear cost function c'x achieves its minimum on P at an extreme point of P.

Exercise 2.

8 + 5 Points

Let $A \in \mathbb{R}^{m \times n}$ be a matrix with linearly independent columns and let C be a nonempty convex subset of \mathbb{R}^n .

- a) Show that a vector $x \in C$ is an extreme point of C if and only if Ax is an extreme point of the image AC;
- b) Show through an example that if the columns of A are linearly dependent, then Ax can be an extreme point of AC for some non-extreme point x of C.

Exercise 3.

7+7+7 Points

Let S be a non-empty convex subset of \mathbb{R}^n . Prove that the following statements are equivalent:

- a) all the boundary points of S are extreme points of S;
- **b)** every hyperplane that supports S in some point intersects S only in that point;
- c) every line intersects the boundary of S in no more than two points.