
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin
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Abstract

The article surveys the development of novel mathematical concepts
and algorithmic approaches based thereon in view of their possible ap-
plicability to biomolecular design. Both a first deterministic approach,
based on the Frobenius-Perron operator corresponding to the flow of the
Hamiltonian dynamics, and later stochastic approaches, based on a spa-
tial Markov operator or on Langevin dynamics, can be subsumed under
the unified mathematical roof of the transfer operator approach to effec-
tive dynamics of molecular systems. The key idea of constructing specific
transfer operators especially taylored for the purpose of conformational
dynamics appears as the red line throughout the paper. Different steps
of the algorithm are exemplified by a trinucleotide molecular system as a
small representative of possible RNA drug molecules.
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1 Introduction

In recent years, biomolecular design has attracted considerable attention both
in the scientific and in the economic world. A few years ago, a research group at
ZIB, partly supported by the DFG research program described in this volume,
has started to work in this field. The problem of biomolecular design exhibits a
huge discrepancy of time scales: those relevant from the pharmaceutical point of
view are in the seconds, whereas present computations reach into the nanosecond
regime at most. The reason for this is twofold: First, all available numerical
integrators allow stepsizes of at most some femtoseconds only [38, 33]. Second,
trajectory-oriented simulations are ill–conditioned after, say, a few thousand
integration steps [1]. As a consequence, whenever dynamical informations (and
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not only averages of physical observables) are wanted—which is actually the case
in biomolecular design—then only short term trajectories should be exploited.
This message seems to be in direct contradiction to the desired aim of long term
prediction in biomolecular design.

Aware of this seemingly contradiction, the ZIB group got inspired by work
of Dellnitz and co-workers [10, 9] on almost invariant sets of dynamical
systems—within the same DFG research program. As documented in [11], the
key idea was to interpret almost invariant sets in phase space as chemical con-
formations. Within chemistry, the latter term describes metastable global states
of a molecule wherein the large scale geometric structure is conserved over long
time spans. As it turned out, the chemists’ dominant interest was anyway just
in these conformations, their life spans, and their patterns of conformational
changes. Therefore, our first approach [11] followed the line of the original pa-
per by Dellnitz and Junge [10]: chemical conformations were identified via
eigenmodes corresponding to an eigenvalue cluster of the Frobenius-Perron oper-
ator associated with the deterministic flow of the Hamiltonian system. However,
upon keeping a clear orientation towards the design of biomolecular systems, the
computational techniques based on this first approach appeared to be unsatis-
factory for reasons of both lack of theoretical clarity and sheer computational
complexity: The theoretical justification of the approach requires the introduc-
tion of artificial stochastic perturbations of the dynamics [10] regardless of any
(physical) interpretation. Moreover, the computational techniques from [10, 11]
are suitable only, if the objects of interest are rather low-dimensional, whereas
the search for conformations will have to include the entire high-dimensional
phase space of the molecular dynamics. Therefore, an almost complete remod-
elling with special emphasis on both physical interpretation and dimensionality
of the problem turned out to be necessary in view of biomolecular applications.

In order to define conformations as experimentally determinable objects, con-
cepts of Statistical Physics needed to be included. In addition, the remodelling
had to include the aspect that chemical conformations are purely spatial ob-
jects determined via molecular geometry. These insights gave rise to the study
of “spatial” Markov operators beyond the Frobenius-Perron operator as well as
the associated Markov chains replacing the Hamiltonian dynamics [35, 34]. The
thus arising special Markov operator was shown to exhibit all the desirable theo-
retical properties needed as a basis for efficient algorithms. Moreover, a Galerkin
approximation of this Markov operator in a weighted L2-space naturally led to
the replacement of the original (expensive) subdivision techniques [9] by newly
developed (cheap) Hybrid Monte Carlo (HMC) methods called reweighted adap-
tive temperature HMC, or short ATHMC [16]. On the basis of suggestions by
Amadei et al. [2], an algorithm for identifying the essential molecular degrees
of freedom has been worked out that drastically reduces the eigenvalue cluster
problem even in larger molecular systems see [22]. With these algorithmic im-
provements the applicability of our approach to realistic biomolecules came into
reach. By applying the above ideas to the stochastic Langevin model of molec-
ular dynamics [36], we succeeded to show that the fruitful coupling between the
concepts of Statistical Physics and the transfer operator approach to effective
dynamics can be exploited in a much more general framework.

The purpose of the present article is to survey what has been achieved, and to
gain further insight from that. As will be shown subsequently, we are now able
to subsume both our first deterministic approach [11] and the different stochastic
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approaches [35, 36] under the unified roof of transfer operators preserving the
key idea of conformation analysis. In order to return to the original problem
of biomolecular design, we illustrate the different steps of our present algorithm
when applied to a small RNA molecular system.

2 Molecular Dynamics

In order to introduce our mathematical frame, we need to fix some notation.
Consider a probability space (X,A, μ), where X ⊂ Rm for some m ∈ N denotes
the state space, A the Borel σ–algebra on X and μ a probability measure on A.

We will see below that in classical molecular dynamics the evolution of a
single molecular system with initial data x0 ∈ X is in general described by a
homogeneous Markov process {Xt}t∈M with M = R0

+ orM = N0 in continuous
or discrete time, respectively. We assume that Xt is measurable and non–
singular with respect to μ, i.e., μ(Xt

−1(A)) = 0 for all A ∈ A with μ(A) = 0.
Furthermore, we assume that the process satisfies the semigroup properties:
Xt=0 = Id and Xt+s = Xt ◦Xs for all t, s ∈ M. Then, the evolution of a single
system starting in x(0) = x0 is given by x(t;x0) = Xt(x0) for all t ∈ M. We
choose this more general framework to describe molecular dynamics, since it is
suitable both for the deterministic case and for the stochastic situation.

Markov processes may be defined in terms of stochastic transition kernels.
A function p : M×X×A → [0, 1] is called a stochastic transition kernel [6, 29],
if

1. p(t, x, ·) is a probability measure on A for every t ∈ M, x ∈ X and
furthermore, p(0, x,X \{x}) = 0 for every x ∈ X.

2. p(t, ·, A) is measurable for every t ∈ M, A ∈ A.

3. p(·, x, A) satisfies the Chapman–Kolmogorov equation [19, 29]

p(t+ s, x, A) =

∫
X

p(t, x, dy) p(s, y, A) (1)

for all t, s ∈ M, x ∈ X and A ∈ A.

The family {Xt}t∈M is called a homogeneous Markov process, if [6, 29]

P[Xt ∈ A |X0 = x] = p(t, x, A) (2)

for all t ∈ M and A ∈ A. Thus p(t, x, C) is the probability that the Markov
process started in x stays in A after the time span t.

2.1 Modelling Molecular Motion

Classical models for molecular motion describe the molecular system under con-
sideration via coupled equations of motion for the N atoms in the system (cf.
textbook [1]). The most popular class of equations of motion can be written in
the following general form:

q̇ = M−1p, (3)

ṗ = −∇q V (q) − γ(q, p) p + Fext,
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where q and p are the atomic positions and momenta, respectively, M the di-
agonal mass matrix and V = V (q) a differentiable potential energy function
describing all the interactions between the atoms. The function γ = γ(q, p) de-
notes the friction constant and Fext the external forces acting on the molecular
system. The state space of the system is Γ ⊂ R6N and the solution (qt, pt) of (3)
describes the dynamics of a single molecular system. In the notation introduced
above, we hence have X = Γ and Xt(q0, p0) = (qt, pt).

The Hamiltonian function

H(q, p) =
1

2
pTM−1p + V (q). (4)

denotes the internal energy of the system in state x = (q, p). In the following
we assume M = IdR3N for simplicity. In most cases, the phase space is simply
given by Γ = Ω×R3N for some Ω ⊂ R3N . We will call Ω the position space of
the system and distinguish between two fundamentally different cases:

(B) Bounded system: The position space Ω is unbounded, typically Ω = R3N ,
and the potential energy function is smooth, bounded from below, and
satisfies V → ∞ for |q| → ∞. Such systems are called bounded, since the
energy surfaces {x : H(x) = E} are bounded subsets of Γ.

(P) Periodic systems: The position space Ω is some 3N dimensional torus and
V is continuous on Ω and thus bounded. There is an intensive discussion
concerning the question of whether V can also be assumed to be smooth
on Ω as we will do herein, see Sec. 2 of [34] for details.

Both cases are typical for molecular dynamics applications. Case (P) includes
the assumption of periodic boundaries which is the by far the most popular
modelling assumption for biomolecular systems. Subsequently, we will refer to
these assumptions by referring to systems of type (B) or type (P).

Deterministic Hamiltonian Dynamics. Whenever γ ≡ 0 and Fext = 0,
equation (3) reduces to the classical Newtonian equations of motion:

q̇ = p, ṗ = −∇q V (q). (5)

The flow Φt associated with the Hamiltonian H from (4) aloows to denote the
solution process of (5), i.e., x(t;x0) = Xt(x0) = Φtx0 and the transition kernel
is given by

p(t, x, C) = χC

(
Φtx

)
, (6)

where χC denotes the characteristic function of the set C ⊂ Γ. In this deter-
ministic case, the equations of motion (5) model an energetically closed system,
i.e., the Hamiltonian denotes the total energy of the system, which is preserved
by the dynamics.

Deterministic Thermostatted Dynamics. In general, the term γ(q, p) p
represents the effect of some “thermostat” on the system. In “thermostatted
molecular dynamics”, one designs deterministic descriptions of open but con-
servative molecular systems contained in a heat bath by choosing γ 	= 0 and
(deterministic) forces Fext 	= 0 such that the solution of (3) conserves either
kinetic or total energy [14].
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Stochastic Langevin Dynamics. The most popular model for an open sys-
tem with stochastic interaction with its environment is the so-called Langevin
model [32]:

q̇ = p, ṗ = −∇q V (q) − γ p + σ Ẇ . (7)

It is a special case of (3) with some constant friction γ(q, p) ≡ γ > 0 and an
external force Fext = σẆt given by a 3N -dimensional Wiener process Wt with
zero mean 〈Wt〉 = 0 and correlation 〈WtWs〉 = δ(t−s). The external stochastic
force models the influence of the Brownian motion of the heat bath surrounding
the molecular system. In this case, the internal energy H is not preserved,
but the interplay between stochastic excitation and damping equilibrates the
internal energy as we will see in Section 3.2.

2.2 Long-Term Behavior and Conformations

In principle, a discretization of (3) permits a simulation of single system tra-
jectories once the initial state is given. However, numerical analysis of present
discretizations restricts the validity of such single system trajectory simula-
tions to only short time spans and to comparatively small discretization steps.
The reason for this is two-fold: First, numerical long-term simulation is an
ill-posed problem for the Hamiltonian systems under consideration [1], and sec-
ond, no numerical integrator is available that allows stepsizes larger than a few
femtoseconds—neither for Hamiltonian nor for Langevin dynamics [38, 33].

On the smallest time scales of about one femtosecond molecular dynamics
consists of fast oscillations or fluctuations around equilibrium positions. In
contrast to these fast fluctuations the term conformations describes meta-stable
global states of the molecule, in which the large scale geometric structure is
understood to be conserved. Conformational changes are therefore rare events,
which will show up only in long term simulations of the dynamics, e.g., on a
nano- or millisecond time scale. Thus, the effective conformational dynamics
occurs on time scales not accessible via long–term simulation. We thus have to
abandon the trajectory-based approach of identifying conformations via long-
term simulations. Instead, we use the dynamical properties of conformations to
introduce a set-oriented concept:

Conformations are related to geometric structure given by the atomic posi-
tions. This means that conformations are subsets of the position space. Under
additional consideration of the dynamical properties, we characterize confor-
mations as special “almost invariant” subsets in position space in the following
sense: An invariant set can never be left by the dynamical process under con-
sideration. If conformations were invariant sets of the molecular dynamics,
then transitions between different conformations would be impossible. Since
transitions between conformations exist but are rare, we have to understand
conformations as almost invariant sets of the molecular dynamics.

In [10], Dellnitz and Junge proposed to identify almost invariant subsets
of discrete dynamical systems via specific eigenvectors of corresponding transfer
operators. In order to make this intriguing idea applicable to the identification
of conformations, we will introduce some notation, define transfer operators for
molecular motion and link them to concepts of statistical mechanics.
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3 Molecular Ensembles and Transfer Operators

We in principle always have to accept experimental measurement uncertain-
ties when determining the initial state —all the positions and momenta— of
some molecule. As a consequence, when modelling the physical reality, we have
to propagate a statistical ensemble of molecular systems which represents the
distribution of possible initial states determined via the initial measurement.
The distribution may be described by some time dependent probability density
u = u(x, t) in phase space. In the following, the density u is always meant with
respect to the measure μ; consequently, the probability within the ensemble to
encounter a system x ∈ X in a subset C ⊂ A at time t is given by

Pt[x ∈ C] =

∫
C

u(x, t)μ(dx). (8)

Physical experiments allow for measuring relative frequencies in the ensem-
ble, e.g., to determine the relative frequency of systems within the ensemble
whose state lies in C ⊂ X at time t. The probability Pt[x ∈ C] corresponds to
the relative frequency introduced above and is thus physically measurable—
in contrast to the probability density u(x, t). Whenever physicists use the
phrase “probability density” they refer to the density from (8) with respect
to the Lebesgue measure dx. This means, whenever u(x, t) is the density with
respect to μ and, additionally, μ is absolutely continuous with respect to dx
with density d(x, t), then the physical density is f(x, t) = u(x, t)d(x, t). Never-
theless, it is sometimes mathematically advantageous to consider densities with
respect to specific measures particularly adapted to the Markov process under
investigation.

3.1 Forward and Backward Transfer Operators

The evolution of a probability density u = u(x, t) in state space X is governed
by the (micro-) dynamics {Xt}t∈M of each of the identically prepared molecular
systems within the ensemble. We may describe the evolution by the propagator
or forward transfer operator

Ptu(x) = u(x, t),

which maps the initial probability density u(x) = u(x, 0) to the density u(x, t)
at time t. Assume for the moment that the transition kernel of the process
{Xt} is absolutely continuous with respect to the probability measure μ, i.e.,
p(t, x, dy) =

∫
C
p(t, x, y)μ(dy). Since p(t, x, y) denotes the “probability” of the

process to move from x to y within the time t, the propagator should have the
form

Ptu(y) =

∫
X

p(t, x, y)u(x)μ(dx). (9)

However, since in general the transition kernel will not be absolutely continuous,
we proceed in a different way and define Pt via the well–known backward transfer
operator [19]

Ttu(x) = Ex[u(Xt)] =

∫
X

u(y) p(t, x, dy), (10)
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where Ex[u(Xt)] denotes the expectation of an observable u : X → C under the
condition that the process {Xt} has been started at t = 0 in x.

Consider Tt as an operator on L∞
μ (X) and Pt on L1

μ(X), and let 〈·, ·〉μ denote
the duality bracket between L∞

μ (X) and L1
μ(X). Then, as a generalization of

(9), the forward transfer operator Pt is defined as the adjoint operator Pt = T ∗
t

of the backward transfer operator Tt [19], i.e.,

〈Ttu, v〉μ = 〈u, Ptv〉μ, for all u ∈ L∞
μ (X), v ∈ L1

μ(X). (11)

Since p(t, x, ·) is a transition kernel, the thereby defined operator Pt is a Markov
operator on L1

μ(X). Furthermore, the semigroup property of the Markov process
implies that {Pt}t∈M is a semigroup of Markov operators.

In view of equations (9) and (10), the notion of “forward” and “backward”
transfer operator becomes clearer. For the forward case, the state average with
respect to u is taken over all initial states x, which are propagated forward
in time, while for the backward case, the state average is taken over all final
states y.

Invariant Measures and Stationary Densities A measure μ onX is called
invariant with respect to the process {Xt}, if

μ(C) =

∫
X

p(t, x, C)μ(dx), for all C ∈ A and t ∈ M.

Due to the properties of the transition kernel and the definition of the backward
transfer operator, we have—independent of the measure μ—for every t ∈ M,

TtχX = χX.

The above equality does in general not hold for the forward transfer operator,
because Pt depends via (11) on the probability measure μ. However, if we
assume μ to be invariant, we also get

PtχX = χX (12)

for all t ∈ M. In other words, χX is an invariant density of Pt, whenever μ is
invariant.

Remark. Suppose additionally that μ admits a density d with respect to
the Lebesgue measure. Let moreover the ensemble be distributed according
to μ so that d is the stationary physical probability density of the ensemble.
Then, f(·, 0) = χC · d denotes the physical density of the subensemble of all
systems being in C ⊂ X at some time t = 0. Since Pt denotes the evolution
of the ensemble in time t, the physical density of the subensemble at time t is
given by f(·, t) = PtχC · d. In contrast to this, TtχC = p(t, ·, C) denotes the
probability density to access C at time t. This again emphasizes the difference
in interpretation between Pt and Tt: Pt denotes the physically interpretable
propagator of the ensemble and is defined with respect to some measure μ, while
Tt denotes the transfer operator related to the Markov process (independent of
the measure μ) as usually considered in stochastic theory.
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3.2 Canonical Ensemble

Most experiments on molecular systems are performed under the conditions of
constant temperature T and volume. The corresponding ensemble density (with
respect to the Lebesgue measure on X) is the canonical density fcan associated
with the Hamiltonian H :

fcan(x) =
1

Z
exp (−β H(x)) , Z =

∫
Γ

exp (−β H(x)) dx, (13)

where β = 1/kBT denotes the inverse temperature and kB Boltzmann’s con-
stant. Since H was assumed to be separable, fcan factorizes in a product of two
densities P and Q:

fcan(x) =
1

Zp
exp

(
−β

2
pTM−1p

)
︸ ︷︷ ︸

=P(p)

1

Zq
exp (−β V (q))︸ ︷︷ ︸

=Q(q)

. (14)

Since we are interested in the canonical ensemble, we define the canonical prob-
ability measure induced by the canonical density:

μcan(dx) = fcan(x) dx.

It will turn out advantageous to consider transfer operators acting on weighted
function spaces with respect to μcan.

3.3 Transfer Operators and the Canonical Ensemble

In general, an equation of motion for the process {Xt} implies an equation
of motion for a probability density u. We will see below that the processes
induced by both, the Hamiltonian dynamics and the Langevin dynamics, leave
the canonical measure μcan invariant. Since we are interested in describing
fluctuations within the canonical ensemble, we thus define the forward transfer
operator with respect to the canonical probability measure μcan, i.e., acting on
L1
μcan

(X).

Langevin Dynamics. The process induced by the Langevin equation (7)
leaves the canonical measure μcan corresponding the the inverse temperature β
invariant, if the noise and damping constants satisfy [32]:

β =
2γ

σ2
. (15)

The evolution of u = u(x, t) with respect to μcan (compare introduction to
Section 3) is governed by the well–known Fokker–Planck equation [32]:

∂tu =

⎛
⎜⎜⎝σ2

2
Δp − p · ∇q + ∇qV · ∇p − γp · ∇p︸ ︷︷ ︸

=A

⎞
⎟⎟⎠ u. (16)

As a consequence, the Fokker–Planck operator A is the infinitesimal generator
of the semigroup of forward transition operators {Pt}t∈R0

+ acting on L1
μcan

(X)
with

Ptu = exp(tA)u (17)
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and, since μcan is invariant, we have PtχΓ = χΓ.
Moreover, under certain conditions on the potential V (systems of type (B)

with potential V ∈ C∞(X)), this is the unique stationary density and the semi-
group {Pt}t∈R0

+ is asymptotically stable [23], i.e., Ptu → χΓ for t → ∞ and
every density u ∈ L1

μcan
(Γ). Due to this property, the Langevin equation is the

most prominent stochastic model for a heat bath driven relaxation of molecular
ensembles to the canonical ensemble.

Hamiltonian Dynamics. The Hamiltonian equations of motion are the de-
terministic analogue of the Langevin equations with γ = 0 and σ = 0. As for the
Langevin dynamics, the canonical probability measure μcan is invariant under
the dynamics. Using γ = σ = 0, the equation of motion (16) for the probability
density u reduces to the Liouville equation corresponding to the Hamiltonian
H :

∂t u =

⎛
⎜⎝− p · ∇q + ∇qV · ∇p︸ ︷︷ ︸

=iL

⎞
⎟⎠ u (18)

where L denotes the well–known Liouville operator [25]. The solution of (18)
satisfies u(x, t + s) = u(Φ−tx, s) for all t, s ∈ R0

+. Using (17), the forward
transfer operator acting on L1

μcan
(Γ) is given by

Ptu(x) = exp(itL)u(x) = u(x, t) = u
(
Φ−tx

)
, (19)

which is just the definition of the Frobenius–Perron operator corresponding to
the Hamiltonian flow Φt [26]. Additionally, inserting the transition kernel (6)
in the definition (10) of the backward transfer operator yields

Ttu(x) = u
(
Φtx

)
, (20)

which is simply the Koopman operator corresponding to Φt [26]. Equations (19)
and (20) illustrate that Pt is the adjoint operator of Tt as discussed above.

As we have seen, the canonical density fcan induces the invariant measure
μcan of the deterministic Hamiltonian dynamics. However, there are infinitely
many other invariant measures induced by densities of the form f(x) = F(H(x))
for some smooth function F : R → [0, 1] of the Hamiltonian. Due to this ambi-
guity, pure Hamiltonian dynamics is not appropriate for modelling the relaxation
of molecular ensembles to one specific ensemble, in our case the canonical en-
semble. This observation corresponds to the fact that, for solving the Liouville
equation, we have to specify an initial density u(·, t = 0). Physically, the specifi-
cation of an initial density corresponds to an initial experimental preparation of
the ensemble due to (8). Thus, selecting one of the possible invariant densities
means the specific initial preparation of a stationary ensemble.

4 Almost Invariant Sets of Molecular Ensembles

Assume in this section that the molecular motion is described by a Markov
process {Xt}t∈M that leaves the probability measure μ invariant. Moreover,

9
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assume that the Markov process is initially distributed according to μ, i.e., the
probability to find the process at time t = 0 in a subset C ∈ A is given by

P[X0 ∈ C] = μ(C)

(see introduction to Section 3).

4.1 Ensemble Transition Probabilities

The transition probability p(s, C,D) within the ensemble from C ∈ A to D ∈ A
within the time span s is defined as the conditional probability

p(s, C,D) = P[Xs ∈ D |X0 ∈ C] =
P[Xs ∈ D and X0 ∈ C]

P[X0 ∈ C]
. (21)

The similar symbols for both the transition probability p(s, C,D) and for the
transition kernel p(s, x, C) corresponding to the process emphasizes the strong
relation to (2), which, in addition to the above assumption, allows to rewrite
the transition probability as

p(s, C,D) =
1

μ(C)

∫
C

p(s, x,D)μ(dx). (22)

The transition probabilities quantify the dynamical fluctuations within the sta-
tionary ensemble. Using the duality bracket 〈·, ·〉μ between L∞

μ (X) and L1
μ(X),

the definitions of the transfer operators Tt and Pt yield

p(s, C,D) =
〈TsχD, χC〉μ
〈χC , χC〉μ

=
〈χD, PsχC〉μ
〈χC , χC〉μ

. (23)

The above defined transition probabilities can be measured via the following
two–step experiment on the ensemble:

1. Pre-Selection: Select from the ensemble all such systems with states x ∈
C ∈ A. This selection prepares a new ensemble, which is described by the
probability measure

μC(D) =
1

μ(C)
μ(C ∩D), D ∈ A.

2. Transition-Counting: After the time span s, determine the relative fre-
quency of systems in the ensemble μC with states in C. Since all systems
evolve due to the process {Xt}t∈M, this relative frequency is equal to∫

X

p(s, x, C)μC(dx) = p(s, C, C).

4.2 Conformations as Almost Invariant Subsets

We now aim at a dynamical characterization of conformations within the en-
semble; this characterization will be based on the notion of almost invariance.
As already mentioned, we have to define almost invariance in terms of ensemble
dynamics rather than in terms of the duration of stay of a single system.
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Following [10], We call some subset C ∈ A almost invariant, whenever the
fraction of systems within the ensemble that stay in C after some characteristic
time span s ∈ M is close to 1:

C almost invariant ⇐⇒ p(s, C, C) ≈ 1.

This definition of almost invariance guarantees that its “degree” p(s, C, C) can
be measured via the two-step experiment introduced above.

Almost invariance may equivalently be characterized by p(s, C,X \ C) ≈ 0,
which allows to relate it to the semigroup of forward transfer operators {Pt}t∈M

by the following general identity [37]:∥∥∥∥Ps
1

μ(C)
χC − 1

μ(C)
χC

∥∥∥∥
1

= 2 p(s, C,X \ C). (24)

4.3 Identification Strategy

By definition, Ps is a Markov operator and consequently, its L1
μ(X)–spectrum is

contained in the unit ball {λ ∈ C : |λ| ≤ 1}. Every invariant density u ∈ L1
μ(X)

of Ps satisfies Psu = u and therefore is an eigenvector of Ps corresponding to the
eigenvalue λ = 1, the so–called Perron root. Since μ is assumed to be invariant,
in particular u = χX is an invariant density.

Whenever a proper subset C of X is invariant under the Markov process,
i.e., p(t, x,X \ C) = 0 for all x ∈ C, the density u = χC/μ(C) is an eigenvector
corresponding to λ = 1.

Due to our above characterisation, the set C ∈ A is almost invariant if
p(τ, C,X \ C) ≈ 0, which via formula (24) implies that χC/μ(C) is an approx-
imate invariant density, i.e., an approximate normalized eigenvector associated
with an eigenvalue close to the Perron root λ = 1. This motivates the following
algorithmic strategy:

Invariant sets can be identified via eigenvectors corresponding to the
Perron root λ = 1, while almost invariant sets may be identified via
eigenvectors corresponding to eigenvalues |λ| < 1 close to the Perron
root λ = 1.

This strategy has first been proposed by Dellnitz and Junge [10] for
discrete dynamical systems with weak random perturbations and has been suc-
cessfully applied to molecular dynamics in different contexts [35, 36, 34]. It will
be justified in more detail in Section 5.4 below, where more information about
the properties of the transfer operators of interest will be available.

It is important to notice that almost invariance is defined herein with re-
spect to some physically selected invariant probability measure μ that describes
the stationary ensemble under consideration. Assume that the process {Xt}
admits another invariant measure ν, which, for the sake of simplicity, is abso-
lutely continuous with respect to μ with density d ∈ L1

μ(X). Then, the density
u = χXd is an eigenvector of Ps corresponding to λ = 1. As a consequence,
one will not be able to decide in general whether some eigenvector correspond-
ing to an eigenvalue |λ| < 1 close to the Perron root is related to an almost
invariant subset of the ensemble represented by μ or rather by ν. Thus, the
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above algorithmic strategy requires uniqueness of the invariant measure. For
its numerical realization via an eigenvalue problem we moreover need that the
remaining spectrum of Ps is strictly bounded away from the Perron root, i.e.,
λ = 1 must be an isolated, simple eigenvalue of Ps. Additionally, the physical
interpretation of the ensemble excludes other eigenvalues than λ = 1 on the unit
circle or, equivalently, we exclude asymptotic periodicity of Ps.

We introduce the following two fundamental conditions on the forward trans-
fer operator Ps that are sufficient to guarantee the desired properties:

(C1) Ps is asymptotically stable, i.e., (Ps)
nu → χX in L1

μ(X) for every density
u ∈ L1

μ(X) as n → ∞.

(C2) The essential spectrum of Ps is strictly bounded away from |λ| = 1.

These conditions exclude some very prominent models for molecular motion.
For example, in the pure Hamiltonian case the invariant density is not unique in
L1(X), and, worse, the spectrum of the Frobenius–Perron operator Ps in L1(X)
lies on the unit circle1. Despite these fundamental problems, Deuflhard et al.
computed almost invariant subsets of Hamiltonian systems in the above sense
with quite intriguing results [11]. However, they did not use the exact Hamil-
tonian flow Φt but added small, but significant perturbations originating from
time discretization errors and the related energy fluctuations. It is a widely
accepted approach to model such discretization effects by small random pertur-
bations. Under appropriate conditions, the thereby resulting transfer operator
is compact and may have a unique invariant measure (see [10]). In [11] another
interpretation of this approach via a sequence of nested function spaces based
on subsequent coverings of the energy cell is indicated.

There are other models that satisfy our conditions without additional arti-
ficial perturbations. An example is the Langevin model introduced above. For
appropriate systems (see above), its unique invariant measure is the canonical
measure. Hence, application of our algorithmic strategy to the Langevin model
seems to allow to attack chemically interesting systems. However, there is an-
other condition which has to be considered and prevents the Langevin model
from being a good starting point: Chemical conformations are usually under-
stood to be objects in position space Ω. Therefore, a proper model needs to yield
a family of forward transition operators, which are defined on X = Ω rather
than on the entire phase space Γ of the molecular systems.

5 Conformational Dynamics in Position Space

Since conformations are objects in position space, this section is devoted to
an adequate theory of ensemble dynamics in position space, including two ex-
amples. We introduce two (reduced) Markov processes in position space and
define the corresponding transfer operators. Due to physical reasons and as a
consequence of (23), we restrict ourselves to the semigroup of forward transfer
operators or propagators {Pt}t∈M for the canonical ensemble Q.

1Here, L1(X) may be replaced by L1
μ(X) where µ may stand for µcan or for any other

invariant measure of the Hamiltonian flow Φt that is absolutely continuous with respect to
the Lebesgue measure on the phase space X.
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5.1 Positional Dynamics and Transfer Operators

Let (Ω,A, μQ) denote the positional probability space with μQ(dq) = Q(q)dq
and refer by LrQ(Ω) for r = 1, 2, . . . ,∞ to the corresponding function spaces
with respect to the canonical measure μQ. Note that L2Q(Ω) is a Hilbert space
with scalar product

〈u, v〉Q =

∫
Ω

u∗(q) v(q)Q(q) dq

and induced norm ‖u‖2Q = 〈u, u〉Q.
As a consequence of Subsection 4.3 we have to transform the state space

dynamics into a pure position space dynamics. Assume that the transformed
dynamics of a single system in Ω is described by a (homogeneous) Markov
process {Qt}t∈M with stochastic transition kernel p(t, q, C), invariant measure
μQ and initial distribution P[Q0 ∈ C] = μQ(C). Then, the semigroup of forward
transfer operators {Pt}t∈M for the canonical ensemble is given by Pt : L

rQ(Ω) →
LrQ(Ω) such that for all C ∈ A∫

C

Ptu(q)Q(q) dq =

∫
Ω

u(q)p(t, q, C)Q(q) dq (25)

under suitalbe conditions of the integrability of the transition kernel. In the
following, we will consider Pt mainly as an operator acting on the Hilbert space
L2Q(Ω), since—as we will see below—the corresponding scalar product may re-
veal possible additional properties of Pt and allows to define Galerkin projections
for the discretization procedure.

We conclude by stating all assumptions on the transfer operators, which
result from the requirements of Subsection 4.3:

(C1) Ps is asymptotically stable, i.e., (Ps)
n u → χΩ in L1

Q(Ω) for n → ∞ and
every density u ∈ L1

Q(Ω). This implies that λ = 1 is an isolated, simple
eigenvalue in L2Q(Ω).

(C2) The essential spectrum of Ps in L2Q(Ω) is strictly bounded away from
|λ| = 1.

5.2 Discrete Time Markov Chain

The first example of a reduced positional dynamics is based on the Hamiltonian
equation of motion within the canonical ensemble fcan (14) and a characteri-
zation of conformations as special almost invariant subsets. A subset C ⊂ Ω
of the position space is called almost invariant, if the enlarged “cylindrical”
subset C × Rd ⊂ Γ of the state space is almost invariant with respect to the
Hamiltonian dynamics.

Let pX(t, x, A) denote the stochastic transition kernel of the Markov process
in state space (see (6)). Fix an observation time span τ > 0. Then, C ⊂ Ω is
almost invariant (with respect to τ), if pX(τ, C ×Rd, C ×Rd) ≈ 1. For fixed τ ,
this definition can be used to derive a reduced dynamics in position space. For
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two subsets C,D ⊂ Ω, we have due to (6) and (22):

pX(τ, C ×Rd, D ×Rd)

=
1∫

C×Rd fcan(x) dx

∫
C×Rd

χD×Rd(Φτ (x))fcan(x) dx

=
1∫

C Q(q) dq

∫
C

∫
Rd

χD(ΠqΦ
τ (q, p))P(p) dp︸ ︷︷ ︸

=:pτ
Ω(1,q,D)

Q(q) dq. (26)

= pτΩ(1, C,D),

where Πq denote the projection onto the position space. A comment on the
dependence of the one-step transition probability pτΩ(1, C,D) on the observa-
tion time span τ can be found in the remark below. It is easy to show, that
pτΩ(1, q,D) is a transition kernel and thus defines a discrete time Markov process
{Qn}n∈N0 on the position space Ω. Furthermore, {Qn} satisfies inductively for
all n ∈ N0 the stochastic dynamical equation (SDE) [34]

Qn+1 = ΠqΦ
τ (Qn, Pn) (27)

with Pn chosen randomly according to the momenta distribution P . The SDE
(27) is the reduced positional dynamics that we were looking for. In mathe-
matical terms, it corresponds to a Hamiltonian motion with randomly chosen
momenta at discrete (physical) times τ, 2τ, . . . . As shown in [34], {Qn} leaves
the canonical ensemble Q invariant.

Via Equation (25), the transition kernel also defines a discrete time semi-
group of transition operators {Pn}n∈N0 on LrQ(Ω). Exploiting that Φτ is a
reversible, symplectic and μQ invariant mapping (see (19) and below, and [34]),
we get

P1u(q) =

∫
Rd

u(ΠqΦ
−τ (q, p))P(p) dp (28)

for u ∈ LrQ(Ω). For all systems of type (P), Pt satisfies the requirements
stated in Subsection 5.1 [34]; furthermore, it is self–adjoint on L2Q(Ω) due to
reversibility and symplecticness of the Hamiltonian flow [34]. As a consequence,
the L2Q(Ω)–spectrum of Pt is real–valued, bounded and contained in the interval
(−1, 1]; the essential spectrum is bounded away from 1.

Remark. In (26), we have defined the one step transition kernel pτΩ(1, q,D)
for fixed τ . Changing the observation time to σ results in a new one step
transition kernel pσΩ(1, q,D). In contrast to that, the n–term transition kernel
pτΩ(n, q,D) is defined recursively by the Chapman–Kolmogorov equation (1).
In general, p2τΩ(1, q,D) 	= pτΩ(2, q,D) and, consequently, P1

2τ 	= P2
τ , where the

superscript indicates the corresponding observation time span (for an example,
see [34, Sec. 3.7.1]). In terms of the SDE (27), this is not surprising, since P1

2τ

includes only one choice of momenta according to P , while P2
τ does include two.

5.3 High–Friction Langevin Dynamics

The second example of a reduced positional dynamics is based on the Langevin
equation. We will see that in a specific high friction limit γ → ∞ the Langevin
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equation acting on the state space reduces to the so–called high–friction Langevin
equation acting only on the position space.

Consider the Langevin equation (7) written in second order form

q̈ = −∇qV (q)− γq̇ + σẆ . (29)

For the high friction case, let ε be a small positive parameter and consider
the transformed friction γ/ε. In order to preserve the temperature T of the
surrounding heat bath, we simultaneously have to scale the white noise constant
σ �→ σ/

√
ε due to (15). This yields

q̈ = −∇qV (q)− γ

ε
q̇ +

σ√
ε
Ẇ .

After rescaling the time according to t �→ ε t one gets

ε2q̈ = −∇qV (q)− γq̇ + σẆ .

For systems of type (B), for which the gradient of V satisfies a global Lipschitz
condition, and 0 < ε � 1 one may neglect the ε2–term [30, Thm. 10.1] and
finally get the high–friction Langevin equation2

q̇ = − 1

γ
∇qV (q) +

σ

γ
Ẇ (30)

modelling the high friction positional dynamics within the canonical ensemble.
The stochastic differential system (30) defines a continuous time Markov process
{Qt}t∈R0

+ on the position space Ω with corresponding transition kernel p(t, q, C).
The process leaves the canonical measure μQ invariant [32].

As for the general Langevin dynamics (16) in state space, the continuous
time semigroup of forward transition operators {Pt}t∈R0

+ may be defined in
terms of its infinitesimal generator [19]:

A =
σ2

2γ2
Δq −

1

γ
∇qV (q) · ∇q (31)

acting on a suitable subspace of LrQ(Ω). As a consequence, one gets

Pt : L
rQ(Ω) → LrQ(Ω)

u �→ Ptu = exp(tA)u. (32)

Thus, every probability density u = u(q, t) with respect to μQ evolves according
to the Fokker–Planck equation ∂tu = Au and its solution is formally given by
(32).

It is shown in [36, 4] that for systems of type (B) the semigroup of forward
transition operators satisfies the requirements of Subsection 5.1. Furthermore,
{Pt}t∈R0

+ is a self–adjoint semigroup in L2Q(Ω), since the infinitesimal generator
A is self–adjoint with respect to 〈·, ·〉Q [36].

2In contrast to the usual quasistatic approximation in mechanics, we cannot simply assume
that the accelaration q̈ is bounded since the white noise process is unbounded. However, the
investigation in [30] shows that the Langevin solution qεLan(t; q0, p0) and the solution qfric(t; q0)
of (30) satisfy for all p0, with probability one: limε→0 |qfric(t) − qεLan(t)| = 0 uniformly for t
in compact subintervals of [0,∞).
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Remark. The physical density f(q, t) = u(q, t)Q(q) (see introduction to Sec-
tion 3) evolves according to the Fokker–Planck equation ∂tf = A∗f , where A∗

denotes the formal adjoint of A, i.e., A∗ = σ2/(2γ2)Δq + 1/γ∇qV (q) · ∇q +
1/γΔqV (q) (see [19]).

Almost Invariance and First Exit Times. Due to experimental require-
ments, almost invariance of conformations is defined at discrete points in time
(see Eq. (21)):

pdiscr(t, C, C) =
P[Qs ∈ C : s = 0 and s = t]

P[Q0 ∈ C]
. (33)

This definition also holds for the continuous time Markov processes. However,
one could alternatively want to characterize almost invariance of conformations
based on continuous time observations :

pcont(t, C, C) =
P[Qs ∈ C : for all s ∈ [0, t] ]

P[Q0 ∈ C]
. (34)

Obviously, the two definitions will in general produce different result, since the
former definition does not take into account fluctuations in between the two
instances. However, in contrast to the latter definition, the former one can be
realized by the two-step experiment from Section 4.1.

Mathematically, both characterizations are closely related by Fokker–Planck
equations on appropriate function spaces. Let τqC denote the first exit time of
the Markov process {Qt}t∈R0

+ , started at time zero in q ∈ C, from an open
subset C ⊂ Ω,

τqC = inf{t ≥ 0 : Qt(q) /∈ C}. (35)

For open, bounded subsets C with sufficiently smooth boundary ∂C the distri-
bution of exit times vC(q, t) = P[τqC > t] = P[Qs(q) ∈ C : for all s ∈ [0, t] ]
for q ∈ C is given by the Fokker–Planck equation on C ∪ ∂C with Dirichlet
boundary conditions :

∂tv = Av, v(·, 0) = χC and v(·, t) = 0 for all t ≥ 0.

In contrast, uC(q, t) = P[Qs(q) ∈ C : s = 0 and s = t] satisfies the Fokker–
Planck Cauchy problem on Ω:

∂tu = Au, u(·, 0) = χC

(with implicit “transparent boundary conditions”). With respect to the above
two characterization of almost invariance, we finally get

pdiscr(t, C, C) =
1

μQ(C)

∫
C

uC(q, t)Q(q) dq

and

pcont(t, C, C) =
1

μQ(C)

∫
C

vC(q, t)Q(q) dq.
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5.4 Justification of the Algorithmic Strategy

Here, we want to pick up the algorithmic strategy presented in Section 4.3 and
state more precisely how one can use eigenvectors corresponding to eigenvalues
near the Perron root 1 in order to identify almost invariant subsets. In the
following, we fix a time s ∈ M and—in accordance with the properties of the
above two examples—we assume that the transition operator Ps is self–adjoint
in L2Q(Ω). Moreover, for the sake of simplicity, we restrict our considerations to
the case that the Perron root is “nearly two–fold degenerate”, i.e., we assume
that the spectrum of Ps has the form

σ(Ps) ⊂ [−r, r] ∪ {λ2} ∪ {1},

with 0 < r < λ2 < λ1 = 1; furthermore, we assume that λ1 and λ2 are simple
eigenvalues. The eigenvector corresponding to λ1 = 1 is χΩ, while we denote the
eigenvector corresponding to λ2 by φ ∈ L2Q(Ω) with normalization ‖φ‖Q = 1.
Note that 〈φ, χΩ〉Q = 0.

Nonrigorous Approach. One intuitive idea is to interpret almost invariance
as “perturbed invariance”. Therefore, we assume that the above transition
operator results from a continuous perturbation of some self-adjoint Markov
operator P̃ with degenerate, two-fold Perron root and invariant measure μ. If
the degeneracy of the Perron root is caused by the existence of two disjoint
invariant sets, say C and Cc = Ω \ C, the eigenspace E1 of the Perron root is
spanned by the eigenvectors χC and χCc . Neither C nor Cc are invariant sets of
Ps, however, χC/μ(C) and χCc/μ(Cc) remain to be “approximative” invariant
densities of Ps, in the sense that (compare Section 4.3)∥∥∥∥Ps

1

μ(C)
χC − 1

μ(C)
χC

∥∥∥∥
1

≈ 0.

By means of the general formula (24), this implies that C as well as Cc are
almost invariant sets of Ps. Since χΩ is a common eigenvector of P̃ and Ps, we
choose another orthonormal basis of E1 = span{χΩ, uC} with

uC =

√
μ(Cc)

μ(C)
χC −

√
μ(C)

μ(Cc)
χCc . (36)

Since Ps is assumed to be a continuous perturbation of P̃ , we have to expect that
the so-defined uC is an approximation of the eigenvector φ of Ps corresponding
to λ2. This motivates the algorithmic strategy to identify the almost invariant
sets via the second eigenvector φ (or −φ) according to

C ≈ {q : φ(q) > 0} and Cc ≈ {q : φ(q) ≤ 0}. (37)

For more details concerning the identification algorithm for the more general
case see [13].

Rigorous Approach. Although the perturbation analysis yields an intuitive
understanding of the form of the second eigenvector of Ps, we subsequently will
not assume any kind of perturbation embedding of Ps but rather proceed in
another way towards a rigorous justification of the following “equivalence”:

17



Decomposition into almost Eigenvalue cluster {1, λ2} separated
invariant subsets Ω = C ∪ Cc : from remaining spectrum:

p(s, C, Cc) ≈ 0, ⇐⇒
C ≈ {q : φ(q) > 0} ε = 1−λ2

1−r � 1

(38)

The following rigorous statements are closely similar to the results of E.B.
Davies [7]. To simplify reference to his results, let us denote by η2 and ρ the
positive values with

λ2 = exp(−sη2) and r = exp(−sρ),

where s denotes the initially fixed time span. For the “⇐”-direction in (38),
we assume that ε = (1 − λ2)/(1 − r) is small enough, and introduce c = ‖φ‖∞
satisfying c ≥ 1. Due to [7],3 there exists C ∈ A given by C = {q : φ(q) > 0}
such that 1

2c2 ≤ μ(C) ≤ 1− 1
2c2 and

‖φ − uC‖2 ≤ 4c
√
ε.

Furthermore, the subset C is almost invariant with

p(ns, C,Cc) ≤ K ε (1 + ρns), for all n ∈ N,

where K depends on c and μ(C), and is independent of ε.
For the “⇒”-direction in (38), we assume that C is almost invariant with

p(ns, C,Cc) ≤ K δ (1 + ρns), for all n ∈ N,

with K = 1−μ(C)
12 and sufficiently small δ > 0. Then, we again get that uC

approximates the second eigenvector in the sense that ‖φ − uC‖2 <
√
2δ, and

that, due to Thm. 5 in [7], 0 < η2/ρ < δ implying

ε <
1− rδ

1− r
.

Thus, the formal equivalence (38) can be taken seriously. The above state-
ment can be generalized to the situation of more than one eigenvalue close to
the Perron root, but bounded away from the remaining part of the spectrum
(see [8]).

Remark. We are aware of the fact that the above assumption ε � 1 on
the distribution of the eigenvalues is quite restrictive. However, we observed
intriguing results of the identification strategy even for situations corresponding
to ε-values close to 1 [13].

3The proofs of Thms. 3 and 5 of [7] have to be adapted to our situation. In the proof of
Thm. 3, the arguments using the generator H have to be replaced by analogous arguments
for 1− Ps.
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6 Spectral Approximation of Transfer Opera-

tors

We are interested in fluctuation within the canonical ensemble for some fixed
observation time span τ . As a result, we restrict our consideration to the time–
s transition operator Ps with s = τ or s = 1 for the high–friction Langevin
equation or the discrete time Markov chain with the same observation time in
(26), respectively. Since both associated semigroups of transfer operators are
self–adjoint, we assume in this section, that Ps is a self–adjoint operator acting
on L2Q(Ω).

6.1 Galerkin Discretization

In order to compute the conformational subsets exploiting certain eigenvectors
of Ps, we will introduce a special Galerkin procedure to discretize the eigenvalue
problem Psu = λu.

Let B1, . . . , Bn ⊂ Ω be a partition of Ω such that Bk ∩ Bl = ∅ for k 	= l
and ∪n

k=1Bk = Ω. Our finite dimensional ansatz space Vn = span{χ1, . . . , χn}
is spanned by the associated characteristic functions χk = χBk

. Then, the
Galerkin projection Πn : L2Q(Ω) → Vn of u ∈ L2Q(Ω) is defined by

Πnu =

n∑
k=1

1

〈χk, χk〉Q
〈χk, u〉Q χk.

Note that 〈χk, χk〉Q =
∫
Bk

Q(q) dq is simply the weight of the subset Bk. The
resulting discretized transition operator ΠnPsΠn induces the approximate eigen-
value problem ΠnPsΠnu = λΠnu in Vn. Using u =

∑n
k=1 αkχk, the discretized

eigenvalue problems in coordinate representation reads

n∑
l=1

〈Psχk, χl〉Q αl = λ 〈χk, χk〉Q αk, ∀k = 1, . . . , n.

After dividing by 〈χk, χk〉Q > 0, we end up with the convenient form

Sα = λα with α = (α1, . . . , αn).

The entries of the n×nmatrix S are given by the one step transition probabilities
from Bk to Bl:

Skl =
〈Psχk, χl〉Q
〈χk, χk〉Q

= p(s,Bk, Bl). (39)

Since Ps is a Markov operator, its Galerkin discretization S is a (row)
stochastic matrix, i.e., Skl ≥ 0 and

∑n
l=1 Skl = 1 for all k = 1, . . . , n. Hence, all

its eigenvalues λ satisfy |λ| ≤ 1. Moreover, we have the following four important
properties [35, 34]:

1. The row vector π = (π1, . . . , πn) with πk =
∫
Bk

Q(q) dq, which represents
the discretized invariant density Q, is a left eigenvector corresponding to
the eigenvalue λ = 1, i.e., πS = π.
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2. S is irreducible and aperiodic, if Ps is asymptotically stable. As a conse-
quence, the eigenvalue λ = 1 is simple. Hence, the discretized invariant
density π is the unique stationary distribution of S.

3. The transition matrix S is self–adjoint with respect to the discrete scalar
product 〈u, v〉π =

∑
uiviπi , since Ps is self–adjoint. Equivalently, S

satisfies the condition of detailed balance:

πk Skl = πl Slk, for all k, l ∈ {1, . . . , n}.

Therefore, all eigenvalues of S are real–valued and, due to 2., contained
in the interval [−1, 1].

In other words, for an arbitrary covering B1, . . . , Bn ⊂ Ω, the discretization
matrix S inherits the most important properties of the transition operator Ps.

6.2 Convergence of Discrete Eigenvalues

Denote by σ(Ps) the L
2Q(Ω)–spectrum of Ps and by σdiscr(Ps) ⊂ σ(Ps) the sub-

set of all isolated eigenvalues of finite (algebraic) multiplicity. Then, σdiscr(Ps)
is called the discrete spectrum, while σess(Ps) = σ(Ps) \ σdiscr(Ps) is called the
essential spectrum of Ps [24]. Assume that the essential spectrum is bounded
away from 1 (condition C2 on page 12), i.e., there exists a constant 0 < κ < 1
such that σess(Ps) is contained is the ball with radius κ centered a the origin.

We are interested in approximating a cluster of (real–valued) discrete eigen-
values λc, . . . , λ1 ∈ σdiscr(Ps) near 1 “outside” the essential spectrum:

κ < λc ≤ · · · ≤ λ2 < λ1 = 1,

repeated according to multiplicity. The corresponding eigenvectors uc, · · · , u1

are assumed to be orthogonal; this is always possible, since Ps is assumed to be
self–adjoint.

Assume that the sequence of Galerkin ansatz spaces V1 ⊂ V2 ⊂ . . . is
dense in L2Q(Ω) and the corresponding partitions are getting finer and finer,
maxB∈Vn diam(B) → 0 as n → ∞. Denote by SVn the transition matrix (39)
associated with the ansatz space Vn and by λi,Vn ,ui,Vn its eigenvalues and eigen-
vectors, respectively, ordered in decreasing magnitude and taken into account
multiplicity.

Under the above stated assumptions, the dominant eigenvalues of SVn are
good approximations of the dominant eigenvalues of Ps, whenever the dis-
cretization is fine enough; in this case, PVn also has a cluster of eigenvalues
λc,Vn ≤ . . . ≤ λ2,Vn < λ1,Vn = 1 near 1. More precisely, for every i = 1, . . . , c,
we get [34]

λi,Vn −→ λi and ui,Vn −→ ui as n → ∞

in modulus and L2Q(Ω)–norm, respectively.

7 Algorithmic Realization

In this section, we want to outline the basic steps for an algorithmic realization
of identifying molecular conformations, their meta–stability and the transition
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rates between them. In doing so, we will exclusively focus on the discrete time
Markov chain and the related transition operator defined in Section 5.2 due to
the following two reasons. First, it is the common belief that the discrete time
Markov chain approach based on Hamiltonian motion is more realistic for mod-
elling conformational dynamics of biomolecules than the high friction Langevin
approach. Second, we managed to prevent the numerical effort for solving the
eigenvalue problem for the transition operator from exploding combinatorially
with the number of atoms in the molecule: This was done by discretizing it by
means of a special hybrid Monte Carlo method [16], such that the computa-
tional effort does not depend explicitly on the dimension of the system. The
basic scheme of the resulting algorithm is illustrated in Fig. 1. We will explain
the single algorithmic steps subsequently.

Conformational subsets
& transition probabilities

ATHMC
Reweighted 

transition matrix
Evaluation of 

essential variables
Identification of

Subspace oriented
eigenvalue solverof conformations

Identification

Figure 1: Basic scheme of the algorithm.

Each step of the algorithm is illustrated by application to the triribonu-
cleotide adenylyl(3’-5’)cytidylyl(3’-5’)cytidin (r(ACC)) model system in vacuum
(see Fig. 2). Its physical representation (N = 70 atoms) is based on the GRO-
MOS96 extended atom force field [41].

ε
ζαβ

γ

χ
P

Figure 2: Configuration of the trinucleotide r(ACC) in a ball–and–stick representation. The
Greek symbols indicate some of the important dihedral angles of the molecule.
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7.1 Evaluation of the Transition Matrix

In order to compute the discretization matrix S of the transition operator —
called the transition matrix in the following— we have to be able to determine
transition probabilities between subsets. This task includes three subproblems:
Generation of an adequate box partition of the position space Ω, sampling of
the canonical ensemble Q and approximation of the internal dynamics within
the ensemble.

Sampling of the Canonical Density. The typical approach to sample the
canonical density is via Monte Carlo (MC) techniques. There is an extremely
rich and varied literature on this topic (see, e.g., [5, 39]) and every converging
MC method would allow to realize this subproblem. In addition, one may
also apply MD-based techniques, e.g., constant temperature sampling of the
canonical density [31, 3].

It is widely known, that MC simulations for ensemble averages in biomolecu-
lar systems may suffer from possible “trapping problems” [28]. As illustrated in
[34], this phenomenon is related to the existence of almost invariant sets for the
Monte-Carlo Markov chain.4 We use a specific MC method, the hybrid Monte
Carlo method with adaptive choice of temperature (ATHMC) [16], which was
especially constructed to overcome this trapping problem. Moreover, ATHMC
is particularly useful for linking the sampling technique with the ensemble dy-
namics. Future approaches will be based on a hierarchical sampling technique
[15], which might be understood as a specific multilevel approach to ATHMC
that merges its superior sampling properties with the identification of almost
invariant sets.

The result of every converging MC method is a finite sampling Σ ⊂ Ω of
positions that are distributed according to the canonical ensemble.

Application to r(ACC). The simulation data were generated by means of an
ATHMC sampling of the canonical density at T = 300K. The subtrajectories
of length 80 femtoseconds were computed by means of the Verlet discretization
with a stepsize of 2fs. For these parameters, standard MC simulations typically
require thousands of iterations only to leave the neighborhood of the initial con-
figuration. Application of ATHMC (with adaptive temperatures between 300K
and 400K) circumvents this trapping problem: one observes frequent transitions
in the crucial dihedral angles of the molecule (for details see [15]). The simula-
tion was divided into 4 Markov chains, each starting with a different state chosen
from a high temperature run at 500K, which allowed the molecule to move into
different conformations. The sampling took about 12h on a workstation with
MIPS R10.000 processor. It was terminated by a convergence indicator [21] as-
sociated with the potential energy and all 37 dihedral angles after 320.000 steps,
resulting in the sampling sequence Σ = {q1, . . . , q32.000}, considering only every
10th step. Since the temperature can change during the ATHMC run, each con-
figuration is connected with a reweighting factor with respect to the canonical
ensemble at 300K.

4The trapping phenomenon occurs when the Monte-Carlo Markov chain gets trapped near
a local potential energy minimum due to high energy barriers so that a proper sampling of
the entire phase space within reasonable computing times is prevented.
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Box Partition via Essential Degrees of Freedom. Typical biomolecular
systems contain hundreds or thousands of atoms. As a consequence, the number
of discretization boxes, and thus the dimension of the transition matrix S, would
grow exponentially with the size of the molecular system, if we would generate
a box decomposition for Ω by simply partitioning every degree of freedom.

Chemical insight allows to circumvent this “curse of dimension”. In the
chemical literature, conformations of biomolecules are mostly described in terms
of a few essential degrees of freedom. In the subspace of essential degrees of
freedom anharmonic motion occurs that comprises most of the positional fluc-
tuations, while in the remaining degrees of freedom the motion has a narrow
Gaussian distribution and can be considered as “physically constrained”.

Based on the sampling of the canonical ensemble, we may determine essential
degrees of freedom either in the position space according to Amadei et al. [2]
or in the space of internal degrees of freedom, e.g., dihedral angles, by statistical
analysis of circular data [22]. These techniques are based on the following sta-
tistical analysis of the sampling data: The correlations between atomic motions
within the simulation data are expressed by the covariance matrix C.5 Since
C is symmetric, it can always be diagonalized, i.e., there is an orthonormal
matrix U such that C = UTΛU with Λ being the diagonal matrix whose en-
tries are the eigenvalues of C. The matrix U defines the transformation of the
original coordinates (positions or internal degrees of freedom) into the uncor-
related coordinates. The matrix Λ is connected to the systems constraints in
the following way [2]: Transformed coordinates corresponding to zero or nearly
zero eigenvalues behave effectively as constraints; they have narrow Gaussian
distributions and do not contribute significantly to the fluctuations. In contrast
to that, transformed coordinates corresponding to large eigenvalues have large
deviations from their mean position, i.e., they belong to important fluctuations.
Mostly, only a few coordinates exhibit such important fluctuations; these are
called essential degrees of freedom. Thus, this procedure results in a tremendous
reduction of the number of degrees of freedom and, consequently, in a moderate
number of partition boxes when discretizing the essential variables only. [22].
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Figure 3: Top: circular deviation of the transformed dihedral angles ordered by magnitude
(left) and circular deviation of the original dihedral angles (right).

5To analyze the simulation data in terms of the dihedral angles we have to apply statistical
methods for circular data [17, 18]; see [22] for resulting definition of the covariance matrix.
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Remark. As discussed in detail in [34], the transition operator can be re-
stricted to the coordinate space spanned by the essential variables without loos-
ing its desired spectral properties.

Application to r(ACC). Since essential degrees of freedom should solely re-
flect internal fluctuations of the molecule, we only consider the 37 dihedral
angles of the r(ACC) molecule (see Fig. 2). The above explained transforma-
tion process based on the simulation data for r(ACC) is exemplified in Fig. 3
and Fig. 4. Figure 3 shows the circular deviations of the original and trans-
formed dihedral angles in decreasing order of magnitude. Only the first four
transformed dihedral angles have relevant circular deviation and are far from
being Gaussian shaped (see Fig. 4), while the remaining transformed dihedral
angles are Gaussian like.
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Figure 4: Distribution of the four essential dihedral angles. The distributions at the top
allow to identify three maxima each, while there are two maxima for each distribution at the
bottom.

The configurational space was discretized into “boxes” B1, . . . , Bd, by means
of all four essential degrees of freedom (see Fig. 4) resulting in d = 36 discretiza-
tion boxes.

Approximation of Internal Dynamics. Due to equations (22) and (39)
the entries of the transition matrix S with respect to the boxes Bk are given by

Skl = p(1, Bk, Bl)

=
1∫

Bk
Q(q) dq

∫
Bk

p(1, q, Bl)Q(q) dq. (40)

Let now q1, q2, . . . denote an arbitrary sequence of positions generated by some
ergodic Markov chain Monte Carlo method that is asymptotically distributed
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according to the canonical density Q. Then, due to the law of large number for
Markov chains [40], we may rewrite Skl as

Skl = lim
n→∞

∑n
j=1 p(1, qj, Bl)χBk

(qj)∑n
j=1 χBk

(qj)
.

By using our particular MC sequence Σ, we thus get

Skl ≈
∑

q∈Σ p(1, q, Bl)χBk
(q)∑

q∈Σ χBk
(q)

.

Finally, we have to approximate the transition kernel p(1, q, Bk) for all q ∈ Σ
and all Bi. For the discrete Markov chain, this can be done by applying some
integration scheme to (26). A convergence analysis is presented in [34].

Application to r(ACC). The dynamical fluctuations within the canonical
ensemble were approximated by integrating four short trajectories of length τ =
80fs starting from each sampling point q ∈ Σ. To facilitate transitions, analogous
to the ATHMC sampling, the momenta were chosen according to the momenta
distribution P for 4 different temperatures between 300K−400K and reweighted
afterwards. This resulted in a total of 4×32.000 = 128.000 transitions. This
calculation took less than 25% of the total computing time. Then the 36×
36 transition matrix S was computed based on the 128.000 transitions taking
the different weighting factors into account. Since every box had been hit by
sufficiently many transitions, the statistical sampling was accepted to be reliable.

7.2 Solving the Eigenvalue Problem

Once the entries of the transition matrix have been computed, we have to deter-
mine the eigenvectors corresponding to a cluster of eigenvalues near the domi-
nant eigenvalue 1. That is, only a small part of the spectrum of S is required,
not its full diagonalization. Actual evaluation is efficiently possible using sub-
space oriented iterative techniques, even if the number of discretization boxes
may be about 100.000 or larger [27, 20].

Application to r(ACC). The computation of the eigenvalues of S near 1
yielded a cluster of eight eigenvalues with a significant gap to the remaining
part of the spectrum:

k 1 2 3 4 5 6 7 8 9 . . .
λk 1.000 0.999 0.989 0.974 0.963 0.946 0.933 0.904 0.805 . . .

7.3 Identification of Conformations

According to the definition of almost invariance, we are interested in unions
C = ∪k∈IBk of partition sets, for which p(1, C, C) ≈ 1. In other words, we are
looking for a nontrivial index set I ⊂ {1, . . . , n} such that the process Qt almost
certainly stays within B = ∪k∈IBk after one step. Using the transition proba-
bilities p(1, Bk, Bl) between the partition sets, cluster algorithm can be used to
identify almost invariant subsets [22]. We apply the identification strategy of
Sec. 5.4 in its algorithmic realization due to [13], which exploits a certain almost

25



constant level structure of eigenvectors corresponding to a cluster of eigenvalues
near 1.

Application to r(ACC). Finally, the conformational subsets were computed
based on the eigenvectors of S via the identification algorithm. This yielded
eight conformations.

The conformational subsets identified turned out to be rather insensitive
to further refinements of the discretization. The weighting factors within the
canonical ensemble and the meta–stability of the eight identified conformations
are given in the following table:

conformations D1c D1t D2c D2t D3c D3t D4c D4t
weighting factor 0.107 0.011 0.116 0.028 0.320 0.038 0.285 0.095
meta–stability 0.986 0.938 0.961 0.888 0.991 0.949 0.981 0.962

The transition probabilities between the different conformations are visual-
ized schematically in Fig. 5. The matrix allows to define a hierarchy between the
conformations, which is inherent to the algorithm. On the top level, there are
two conformations, D1&D2 and D3&D4 corresponding to the two 4×4 blocks
on the diagonal of S. On the next level, each of these conformations split up
into two subconformations yielding D1, . . . ,D4. On the bottom level, each con-
formation is further divided into a c–part and a t–part (for interpretation see
[22]). The evaluation of the transition matrix together with the execution of
the identification algorithm took less than 2% of the computing time required
for evaluation of the simulation data via ATHMC.
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Figure 5: Visualization of the one–step transition probabilities p(1,Dfrom,Dto) between
the conformation Dfrom (row) and Dto (column). The colors are chosen according to the
logarithm of the corresponding entries; black: p(1, ·, ·) ≈ 1, white: p(1, ·, ·) ≈ 0.
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Figure 6: 2d plot of the four conformations D1, . . . ,D4 (squares). The distinction between
open and filled squares indicates a further splitting into eight conformations resulting from a
partition into a c–conformation and a t–conformation.
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