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Lecture 4

Fuzzy clustering by PCCA+
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A. Crisp clustering

Clustering or coarse-graining is a technique used in data analysis to group similar data

points or objects together based on certain features or characteristics they share. In the

context of dynamical systems (deterministic and stochastic), clustering refers to the dis-

cretization of the state space into subsets containing states with similar static and kinetic

properties (e.g. equilibrium distribution and rates). Clustering is useful because it allows

to represent continuous dynamic as a discrete process. Consequently, continuous objects

(operators and functions) can be represented by discrete objects (matrices and vectors) that

are easier to use in practical applications.

For example, consider a dynamical system defined on the state space Γ ⊂ RNd discretized

with a Voronoi tessellation of k disjoint cells (clusters) Γi such that Γ = ∪k
i Γi, where each

cell Γi is defined by the indicator function

1i(x) =

1 if x ∈ Γi ,

0 if x /∈ Γi .
(1)

The choice of the tessellation is arbitrary, it could be a tessellation made of either regular

or irregular Nd-polytopes (polygons in 2D, polyhedra in 3D).
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This kind of clustering is known as crisp clustering and is largely used. However, it has

limitations:

• Although dynamics is Markovian, its cluster representation may lose this property.

• Crisp clustering is not robust to noise. Small perturbations in the dynamics could be

amplified in its cluster representation.

• Crisp clustering methods struggle with identifying clusters of irregular shapes or clus-

ters that are connected but separated by sparse regions.

• When analysing metastable regions of a dynamical system, it is not always possible

to uniquely determine the boundaries of metastable regions.

• Crisp clustering requires the specification of the number of clusters k a priori. In-

creasing the resolution, i.e. the number of clusters, may alleviate some problems, but

the initial dataset may not have enough data points. Furthermore, a high number of

clusters may require more resources to perform calculations with the matrices involved.

To address some of these limitations, researchers often explore alternative clustering ap-

proaches, such as fuzzy clustering, hierarchical clustering, and density-based clustering,

which offer more flexibility and improved performance in specific scenarios.

B. Fuzzy clustering

Instead of assigning each data point to a single cluster (as in crisp clustering), fuzzy

clustering assigns a membership value to each data point for each cluster, indicating the

degree (or the probability) to which the point belongs to that cluster. This provides a more

nuanced representation of the inherent uncertainty or ambiguity in the data.

Consider a dataset that can be divided into nc clusters, then we introduce the membership

function

χi(x) ∈ [0, 1] , with i = 0, . . . , nc − 1 , (2)

also known as almost characteristic function, that indicates the probability, or membership

degree, that a state x belongs to the ith cluster. The membership functions fulfil the partition
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of the unit

nc−1∑
i=0

χi(x) = 1 . (3)

Note that, if we indicate χ without the sub-index i, we refer to the set χ = {χ0, χ1, . . . , χnc−1}

containing all the nc membership functions organized in columns. From a geometrical point

of view, the points of the χ functions lie on the ”standard” (nc− 1)-simplex as illustrated in

fig. 1. The term ”standard” indicates that the vertices of the simplex are the unit vectors

e1, e2, . . . , enc .

FIG. 1. Random points that fulfill the partition of unity.

C. Robust Perron Cluster Cluster Analysis

Consider now a dynamical system defined by a potential energy function V (x) : Γ ⊂

RNd → R with nc minima separated by energy barriers higher than the thermal energy kBT .

Then, we state that the system is characterized by nc metastable states, also referred to

as metastable macro-state, or conformations. For example, given a double well potential:

nc = 2; for a triple-well potential nc = 3. The dynamics can be described by the infinitesimal

generator

Qψi = κiψi , (4)

or the associated Koopman operator

Kτψi = λτ,iψi , (5)
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where the first eigenfunction ψ0 is equal to 1, while the other eigenfunctions have positive

and negative values, and represent the dominant processes that constitute the dynamics of

the system.

Similar to the χ functions, also the dominant nc eigenfunctions form an (nc− 1)-simplex,

the vertices of which, however, are not the unit vectors (see figs. E and F as examples).

The idea underlying robust the Perron Cluster Cluster Analysis (PCCA+) algorithm [1–4]

is then to find the linear transformation such that

χ = ψA , (6)

where A is a matrix of size nc×nc. In other words, PCCA+ determines the membership func-

tions χ as a linear combination of the first nc dominant eigenfunctions ψ = {ψ0, ψ1, . . . , ψnc}.

The standard simplex, in the context of dynamical systems, has a physical interpretation:

the vertices represent the conformations of the system, the points on the edges represent

the transition regions. Additionally, the membership functions allow the direct Galerkin

discretization of the infinitesimal generator

Qc = ⟨χ, χ⟩−1
π ⟨χ, Qχ⟩π , (7)

where Qc is an nc × nc matrix whose entries expresses the transition rates between fuzzy

sets.

D. Solution for nc = 2

Unfortunately, determining the matrix A is not easy, as there are an infinite number

of possible solutions, which can only be determined solving an optimization problem after

appropriate objective functions have been defined [1]. However, for the sole case when

nc = 2, a unique solution can be determined.

If nc = 2 the matrix A reads.

A =

a00 a01

a10 a11 .

 (8)

First, we pose the following three constraints on A:

1.

χ = ψA→ χi(x) =
nc−1∑
j=0

ajiψj(x) ,
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2.

χi(x) ≥ 0 .

3.
nc−1∑
i=0

χi(x) = 1 ,

Then, we rewrite the first condition as

χi(x) =
nc−1∑
j=0

ajiψj(x) (9)

= a0iψ0 +
nc−1∑
j=1

ajiψj(x) , (10)

and applying the second condition, we obtain an expression for a0i:

a0iψ0(x) +
nc−1∑
j=1

ajiψj(x) ≥ 0 (11)

a0iψ0(x) ≥ −
nc−1∑
j=1

ajiψj(x) (12)

a0i ≥ −
nc−1∑
j=1

ajiψj(x) (13)

a0i = max
x

(
−

nc−1∑
j=1

ajiψj(x)

)
(14)

a0i = −min
x

nc−1∑
j=1

ajiψj(x) , (15)

where we used ψ0(x) = 1 and max(−f) = −min(f), for an arbitrary function f .

We now use the second condition to rewrite the third as
nc−1∑
i=0

χi(x) = (16)

nc−1∑
i=0

nc−1∑
j=0

ajiψj(x) = (17)

nc−1∑
j=0

nc−1∑
i=0

ajiψj(x) = 1 . (18)

using ψ0(x) = 1, we observe that

nc−1∑
j=0

δj0ψj(x) = 1 , (19)
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where δj0 is the Kronecker-delta, then we obtain the equality

δj0 =
nc−1∑
i=0

aji , (20)

because ψ0(x) = 1. Then, we write

nc−1∑
i=0

aji = δj0 (21)

aj0 +
nc−1∑
i=1

aji = δj0 (22)

aj0 = δj0 −
nc−1∑
i=1

aji , . (23)

Applying i = 0, 1 and j = 0, 1 to eqs. 15, 23 yields:

a00 = −min
x
a10ψ1(x) ,

a01 = −min
x
a11ψ1(x) ,

a00 = 1− a01 ,

a10 = −a11 .

(24)

From the forth equality, the first one becomes

a01 = a10max
x

ψ1(x) . (25)

Finally we have two equations for ψ1:

max
x

ψ1(x) =
a01
a11

, (26)

and

−min
x
ψ1(x) =

a01
a11

. (27)

The sum eq. 26 and eq. 27 yields

max
x

ψ1(x)−min
x
ψ1(x) =

a00 + a01
a11

=
1

a11
. (28)

Thus one obtains an expression for each entry of the matrix A:

a00 =
maxx ψ1(x)

maxx ψ1(x)−minx ψ1(x)

a01 = − minx ψ1(x)

maxx ψ1(x)−minx ψ1(x)

a10 = − 1

maxx ψ1(x)−minx ψ1(x)

a11 =
1

maxx ψ1(x)−minx ψ1(x)
,

(29)
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Finally, the two membership functions for the case nc = 2 read
χ0(x) =

maxx ψ1(x)− ψ1

maxx ψ1(x)−minx ψ1(x)
,

χ1(x) =
ψ1 −minx ψ1(x)

maxx ψ1(x)−minx ψ1(x)
= 1− χ0(x) .

(30)
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E. Example: triple-well potential
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F. Example: periodic triple-well potential

9



Dr. Luca Donati Stochastic Processes and Reaction Rate theory SOSE24

[1] P. Deuflhard and M. Weber, Robust perron cluster analysis in conformation dynamics, Linear

Algebra Appl. 398, 161 (2004).

[2] S. Kube and M. Weber, A coarse graining method for the identification of transition rates

between molecular conformations, J. Chem. Phys. 126, 024103 (2007).
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