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Lecture 5

ISOKANN theory
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I. TRANSFER OPERATORS
A. Infinitesimal generator and Koopman operator

Given an observable function fi(xz) € L>® = {f : || f|lc < oo} the infinitesimal generator
Q acts on f(z) as

Ofi() _
T = th(fﬁ) (1)

A formal solution of eq. 1 is written as
fear(z) = exp (Q7) fe() (2)
= ,C'rft(x) ) (3>

where /C, is the Koopman operator.
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1. Spectral decomposition

The operators @ and K have eigenfunctions and eigenvalues that solve the eigenproblems
Qui(r) = rithi(x), (4)
and
Kribi(x) = Ni(r)i(x) . ()
Eigenfunctions and eigenvalues satisfy the following properties

e The eigenfunctions form orthonormal basis:

(Wi, hj)m = 035, (6)
e The first eigenfunction is
tho(x) =1, (7)
e Eigenvalues are real:
Ko=0>K > Ky >+ > —00, (8)
Ao(T) =12 Mi(7) = Ao(7) = -+ > 0. (9)

e The eigenvalues \;(7) and k; are related by

Ai(T) = exp(7TK;) . (10)

II. MEMBERSHIP FUNCTIONS BY PCCA+

Consider a system with two metastable macro-states as in fig. 1, the membership functions

are written as

olz) = max, ¢ (z) N U1(x)
max, ¢ (x) — ming ¢y (x)  max, ¥ (x) — ming ¥ (z)’ (1)
¢1 (ZL’) min, 7701 (1')
xi(z) = =1—xo(z).

max, ¢ (z) — ming ¢y (z)  max, U1 (x) — ming ¥ ()
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FIG. 1. System with two metastable macro-states.

III. ISOKANN THEORY

In this section, we derive the main equations described in Ref. [1].

A. ISOKANN equation

From now on, we consider just one membership function, and will use the notation

X = Xxo(®) = co + 19, (12)
with
— max, ¢ (z)
0 max, 11 () —1minx Uy () (13)
C1 —

" max, Yy (x) — ming ¢ (x)

Note that ¢g > 0 and ¢; < 0. Additionally, we rewrite ¢; as function of x:

. S (14)

C1 C1

Applying the operator Q to the membership function yields

Qx = Q (coto + c191) (15)
= cokotPo + c1r1Y1 (16)
= Clﬁlwl . (17)
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We insert eq. 14 into eq. 17 and we obtain

QX = K1X — Cok1 (18)
= K1X — Cok1 + Cok1X — Cok1X (19)
= r1x(1 —cp) — cor1(1 — ). (20)
or
Qx = —ax +e(l —x), (21)
with

€1 =—kK1(l —¢p) >0
ool a2 0 (22)

€9 = —cokq1 > 0

where the signs are chosen such that €; and e, are positive. Note that €; and €5 have units

[time] 1.

Using the definition of infinitesimal generator in eq. 1, eq. 21 is rewritten as

X=—ax+e(l—x), (23)

with y = d/at. Eq. 23 is known as ISOKANN equation, it is a rate equation, and describes
the time evolution of x. It depends on the parameters €; and €5 which describe the reaction

rates between the two metastable macro-states.

B. Holding probability

—ert

We now multiply by e eq. 21 and we obtain

Qxe M = —exe M 4 ep(1 — x)e (24)
1
Xxe*“t . (25)

= —e1xe U4 e
Introducing the quantity
Py = pylz,t) = x(z)e™ ", (26)
we obtain

X
Px s (27)

pr = —€1Dy + €
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or

I —x
—€1Px = pr - 627]))( ) (28>

The quantity p, introduced in eq. 26 is solution of the ordinary equation

dp
a_tx = —€1px, (29)
with initial condition
Px(7,0) = x(z). (30)

Then, comparing eq. 29 with eq. 28, we obtain

dp 1—
o -

X, (31)

Applying the Feynman-Kac formula (see Appendix 1), we obtain a solution for eq. 31

Eq. 32 is analogous to

puatet) =B 100 ([ 0 -vse as)| (33)

with
1 ifzes,
Is(z) = (34)
0 if ¢S,
and
1 if x=0,
50(1') = (35)
0 if x#0.

Eq. 33 describes the holding probability of the subset S C I, i.e. the percentage of solutions

of the Langevin equation starting in zp =  which have never left the subset S until time ¢.
From this analogy, we conclude that the quantity p,(z,t) describes the x-holding
probability of the fuzzy set identified by the membership function y.
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FIG. 2. Holding probabilities.

C. Mean holding time

The mean holding time, or mean first passage time (

holding probability as

MFPT), is calculated from the

(e [ orstas) ds. (36)
solution of backward Kolmogorov equation
Qrpp(w)) = 1. (37)
Then, the mean holding time for the membership function is
(o) = [ pitas)ds, (39)
Solving the integral with p, as defined in eq. 26, we obtain
(@) =22 (30)
solution of
Q) = QX =+ 21—, (10)

where we used the isokann equation defined in eq. 21.

6



Dr. Luca Donati Stochastic Processes and Reaction Rate theory SOSE24

D. Calculation of rates

In order to find an expression to determine the rates e€; and €, we transform the
ISOKANN equation, written in terms of the infinitesimal generator, into an equation that
depends on the Koopman operator.

First, we rewrite eq. 21 as

Qx = —e1x + €2 — €2X (41)
= (a1 +e)x+e (42)
=ax+0, (43)
with
o= —(€+¢€
@ +e) (44)
ﬁ = €.
We multiply eq. 43 by 7:
TOXY =Tax + 7108, (45)

and we apply again 7Q to the equation:

7Q(rQx) = 7Q (Tax + 75) (46)
= 2o’y + T%af. (47)

Applying ¢ times 79, we obtain
(7Q)' x = (ra) x + 7'a’'5. (48)

Next, we divide by 4!

(1Q)" x (Toz)ix N Tiaf_lﬁ

T il (49)

(ra)’ Tt B
= = 50
7! 1!« (50)

Summing from 1 to oo, we obtain the series of the exponential function:
~(TQ'X _ = (1a) Tl

D D D D D (51

=1 =1 =1
(52)



Dr. Luca Donati Stochastic Processes and Reaction Rate theory SOSE24

We add x on both sides:

;(TQZ :; )x+>< ZT@B (53)

= (7Q)' - o ﬁ
Z; e - 54
(55)

Then we change the index of the last series and we subtract the term #/a:

—(TQ)'x _ T’Ofﬁ 5
IR ple 50
i=0 i=0
Finally we have:
_ Ta 5 To
exp(TQ)x =e X+E<e - 1) (57)
Kox = x + (e~ 1) (5%)
=aX + as ) (59)
with
a; = ¢
3 (60)
— D™ 1
a2 o (6 ) )
Let’s imagine to solve the linear regression problem
min [|KC;x(z) — arx(x) — az, (61)

ai,a2

then, using eqgs. 44 and 60, the rate is calculated as

61:—%log(a1) (1+ 02 ) (62)

a1—1

Appendix A: Feynman-Kac formula

Consider the parabolic partial differential equation

& =Gu+Vu, (A1)

where GG and V are two functions, with initial condition

u(z,0) = f(z), (A2)
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then the solution is written as
t
u(z,t) =E {f(Xt) exp (/ V(Xo) ds)] , (A3)
0 Ts=x
where X, are solutions of the Langevin equations.

See Ref. [2] for more details.
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