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Lecture 5

ISOKANN theory
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I. TRANSFER OPERATORS

A. Infinitesimal generator and Koopman operator

Given an observable function ft(x) ∈ L∞ = {f : ∥f∥∞ < ∞} the infinitesimal generator

Q acts on ft(x) as

∂ft(x)

∂t
= Qft(x) . (1)

A formal solution of eq. 1 is written as

ft+τ (x) = exp (Q τ) ft(x) (2)

= Kτft(x) , (3)

where Kτ is the Koopman operator.
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1. Spectral decomposition

The operators Q and K have eigenfunctions and eigenvalues that solve the eigenproblems

Qψi(x) = κiψi(x) , (4)

and

Kτψi(x) = λi(τ)ψi(x) . (5)

Eigenfunctions and eigenvalues satisfy the following properties

• The eigenfunctions form orthonormal basis:

⟨ψi, ψj⟩π = δij , (6)

• The first eigenfunction is

ψ0(x) = 1 , (7)

• Eigenvalues are real:

κ0 = 0 > κ1 ≥ κ2 ≥ · · · > −∞ , (8)

λ0(τ) = 1 > λ1(τ) ≥ λ2(τ) ≥ · · · > 0 . (9)

• The eigenvalues λi(τ) and κi are related by

λi(τ) = exp(τκi) . (10)

II. MEMBERSHIP FUNCTIONS BY PCCA+

Consider a system with two metastable macro-states as in fig. 1, the membership functions

are written as
χ0(x) =

maxx ψ1(x)

maxx ψ1(x)−minx ψ1(x)
− ψ1(x)

maxx ψ1(x)−minx ψ1(x)
,

χ1(x) =
ψ1(x)

maxx ψ1(x)−minx ψ1(x)
− minx ψ1(x)

maxx ψ1(x)−minx ψ1(x)
= 1− χ0(x) .

(11)
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FIG. 1. System with two metastable macro-states.

III. ISOKANN THEORY

In this section, we derive the main equations described in Ref. [1].

A. ISOKANN equation

From now on, we consider just one membership function, and will use the notation

χ := χ0(x) = c0 + c1ψ1 , (12)

with 
c0 =

maxx ψ1(x)

maxx ψ1(x)−minx ψ1(x)

c1 = − 1

maxx ψ1(x)−minx ψ1(x)
.

(13)

Note that c0 > 0 and c1 < 0. Additionally, we rewrite ψ1 as function of χ:

ψ1 =
χ

c1
− c0
c1
. (14)

Applying the operator Q to the membership function yields

Qχ = Q (c0ψ0 + c1ψ1) (15)

= c0κ0ψ0 + c1κ1ψ1 (16)

= c1κ1ψ1 . (17)
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We insert eq. 14 into eq. 17 and we obtain

Qχ = κ1χ− c0κ1 (18)

= κ1χ− c0κ1 + c0κ1χ− c0κ1χ (19)

= κ1χ(1− c0)− c0κ1(1− χ) . (20)

or

Qχ = −ϵ1χ+ ϵ2(1− χ) , (21)

with ϵ1 = −κ1(1− c0) > 0

ϵ2 = −c0κ1 > 0
, (22)

where the signs are chosen such that ϵ1 and ϵ2 are positive. Note that ϵ1 and ϵ2 have units

[time]−1.

Using the definition of infinitesimal generator in eq. 1, eq. 21 is rewritten as

χ̇ = −ϵ1χ+ ϵ2(1− χ) , (23)

with χ̇ = dχ/dt. Eq. 23 is known as ISOKANN equation, it is a rate equation, and describes

the time evolution of χ. It depends on the parameters ϵ1 and ϵ2 which describe the reaction

rates between the two metastable macro-states.

B. Holding probability

We now multiply by e−ϵ1t eq. 21 and we obtain

Qχe−ϵ1t = −ϵ1χe−ϵ1t + ϵ2(1− χ)e−ϵ1t (24)

= −ϵ1χe−ϵ1t + ϵ2
1− χ

χ
χe−ϵ1t . (25)

Introducing the quantity

pχ := pχ(x, t) = χ(x)e−ϵ1t , (26)

we obtain

Qpχ = −ϵ1pχ + ϵ2
1− χ

χ
pχ , (27)
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or

−ϵ1pχ = Qpχ − ϵ2
1− χ

χ
pχ , (28)

The quantity pχ introduced in eq. 26 is solution of the ordinary equation

∂pχ
∂t

= −ϵ1pχ , (29)

with initial condition

pχ(x, 0) = χ(x) . (30)

Then, comparing eq. 29 with eq. 28, we obtain

∂pχ
∂t

= Qpχ − ϵ2
1− χ

χ
pχ (31)

Applying the Feynman-Kac formula (see Appendix 1), we obtain a solution for eq. 31

pχ(x, t) = E
[
χ(Xt) exp

(
−ϵ2
ˆ t

0

1− χ(Xs)

χ(Xs)
ds

)]
x0=x

. (32)

Eq. 32 is analogous to

p1S
(x, t) = E

[
1S(Xt)δ0

(ˆ t

0

(1− 1S(xs)) ds

)]
x0=x

, (33)

with

1S(x) =

1 if x ∈ S ,

0 if x /∈ S ,
(34)

and

δ0(x) =

1 if x = 0,

0 if x ̸= 0 .
(35)

Eq. 33 describes the holding probability of the subset S ⊂ Γ, i.e. the percentage of solutions

of the Langevin equation starting in x0 = x which have never left the subset S until time t.

From this analogy, we conclude that the quantity pχ(x, t) describes the χ-holding

probability of the fuzzy set identified by the membership function χ.
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FIG. 2. Holding probabilities.

C. Mean holding time

The mean holding time, or mean first passage time (MFPT), is calculated from the

holding probability as

⟨τfp(x)⟩
ˆ ∞

0

p1S
(x, s) ds , (36)

solution of backward Kolmogorov equation

Q⟨τfp(x)⟩ = −1 . (37)

Then, the mean holding time for the membership function is

⟨τχ(x)⟩ =
ˆ ∞

0

pχ(x, s) ds , (38)

Solving the integral with pχ as defined in eq. 26, we obtain

⟨τχ(x)⟩ =
χ(x)

ϵ1
, (39)

solution of

Q⟨τχ(x)⟩ = Qχ(x)
ϵ1

= −χ+
ϵ2
ϵ1
(1− χ) , (40)

where we used the isokann equation defined in eq. 21.

6



Dr. Luca Donati Stochastic Processes and Reaction Rate theory SOSE24

D. Calculation of rates

In order to find an expression to determine the rates ϵ1 and ϵ2, we transform the

ISOKANN equation, written in terms of the infinitesimal generator, into an equation that

depends on the Koopman operator.

First, we rewrite eq. 21 as

Qχ = −ϵ1χ+ ϵ2 − ϵ2χ (41)

= −(ϵ1 + ϵ2)χ+ ϵ2 (42)

= αχ+ β , (43)

with α = −(ϵ1 + ϵ2)

β = ϵ2 .
(44)

We multiply eq. 43 by τ :

τQχ = ταχ+ τβ , (45)

and we apply again τQ to the equation:

τQ (τQχ) = τQ (ταχ+ τβ) (46)

= τ 2α2χ+ τ 2αβ . (47)

Applying i times τQ, we obtain

(τQ)i χ = (τα)i χ+ τ iαi−1β . (48)

Next, we divide by i!:

(τQ)i χ

i!
=

(τα)i

i!
χ+

τ iαi−1β

i!
(49)

=
(τα)i

i!
χ+

τ iαi

i!

β

α
. (50)

Summing from 1 to ∞, we obtain the series of the exponential function:

∞∑
i=1

(τQ)i χ

i!
=

∞∑
i=1

(τα)i

i!
χ+

∞∑
i=1

τ iαi

i!

β

α
(51)

. (52)
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We add χ on both sides:

∞∑
i=1

(τQ)i χ

i!
+ χ =

∞∑
i=1

(τα)i

i!
χ+ χ+

∞∑
i=1

τ iαi

i!

β

α
(53)

∞∑
i=0

(τQ)i χ

i!
=

∞∑
i=0

(τα)i

i!
χ+

∞∑
i=1

τ iαi

i!

β

α
(54)

. (55)

Then we change the index of the last series and we subtract the term β/α:

∞∑
i=0

(τQ)i χ

i!
=

∞∑
i=0

(τα)i

i!
χ+

∞∑
i=0

τ iαi

i!

β

α
− β

α
. (56)

Finally we have:

exp (τQ)χ = eταχ+
β

α
(eτα − 1) (57)

Kτχ = eταχ+
β

α
(eτα − 1) (58)

= a1χ+ a2 , (59)

with 
a1 = eτα

a2 =
β

α
(eτα − 1) ,

(60)

Let’s imagine to solve the linear regression problem

min
a1,a2

∥Kτχ(x)− a1χ(x)− a2∥, (61)

then, using eqs. 44 and 60, the rate is calculated as

ϵ1 = −1

τ
log(a1)

(
1 +

a2
a1 − 1

)
. (62)

Appendix A: Feynman-Kac formula

Consider the parabolic partial differential equation

∂u

∂t
= Gu+ V u , (A1)

where G and V are two functions, with initial condition

u(x, 0) = f(x) , (A2)

8



Dr. Luca Donati Stochastic Processes and Reaction Rate theory SOSE24

then the solution is written as

u(x, t) = E
[
f(Xt) exp

(ˆ t

0

V (X0) ds

)]
xs=x

, (A3)

where Xt are solutions of the Langevin equations.

See Ref. [2] for more details.
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