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Projects

If you have questions or need suggestions: donati[at]zib.de

1 Kramers theory
Consider a particle of mass m moving along a one-dimensional reaction coordinate Γ ⊂ R, the
equation of the Langevin dynamics is written as{

ẋ = vt

mv̇ = −∇V (xt)− γmvt + σηt ,
(1)

where V (x) is a potential energy function, x and v describe the position and the velocity of the
particle, γ is a friction coefficient, ηt is a white noise process, σ =

√
2kBTmγ, with Boltzmann

constant kB and temperature T . According to Kramers theory, the transition rate for a bimetastable
system is estimated as

• Low friction regime (γ < ωB)

k = βγEb exp [−βEb] , (2)

• Moderate friction regime (γ > ωB)

k =
γ

ωB

√1

4
+

ω2
B

γ2
− 1

2

 · ωA

2π
exp (−βEb) , (3)

• High friction regime (γ ≫ ωB)

k =
ωAωB

2πγ
exp (−βEb) , (4)

where we introduced

ωA =

√
1

m

d2V

dx2

∣∣∣∣
x=xA

, (5)

and

ωB =

√
1

m

d2V

dx2

∣∣∣∣
x=xB

. (6)

1.1 The BBK integrator scheme
To solve the Langevin equation, i.e. to generate a trajectory (xt, vt), you can use the Brünger-
Brooks-Karplus (BBK) Langevin integrator. Consider a time interval [0, τ ], and a time-discretization
into Nτ sub-intervals [tk, tk+1] of equal length ∆t such that

t0 = 0
t1 = ∆t
t2 = 2∆t
...

tNτ = τ = Nτ∆t (7)

Assume to know the position xn := xtn and the velocity vn := vtn of the particle at time tn, then
the position xn+1 := xtn+1 and the velocity vn+1 := vtn+1 of the particle at time tn+1 is calculated
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as 
vn+1/2 = (1− 1/2∆t γ)vn − 1

2m
∇V (xn)∆t+

σ

2
√
m

ηn
√
∆t

xn+1 = xn + vn+1/2 ∆t

vn+1 =
1

(1 + 1/2∆t γ)

[
vn+1/2 −

1

2m
∇V (xn+1)∆t+

σ

2
√
m

ηn
√
∆t

]
,

(8)

where vn+1/2 is the velocity of an intermediate step between tn and tn+1, and ηn is a random number
drawn from the normal distribution N (0, 1). Note the same random number ηn is used twice, to
calculate vn+1/2 and vn+1.

1.2 Project
Consider the two-dimensional double-well potential energy function

V (x, y) = 6 cos (m arctan(y, x)) + 60
(√

x2 + y2 − 1
)2

, (9)

with m = 2 and defined on the space Γ = Γx × Γy ⊂ R2. The potential is illustrated in fig. 1.

1.2.1 Part 1

1. Implement the BBK integrator scheme to solve the Langevin dynamics.

2. Start a large number of simulations from the left well and calculate the Mean First Passage
Time (MFPT) ⟨τfp⟩, i.e. the average time it takes for a particle to cross the barrier at x = 0

3. Calculate the transition rate as

k =
1

⟨τfp⟩
. (10)

4. Repeat the experiment for different values of friction (consider values between 0 and 100
ps−1).

5. Implement eqs. 2, 3, 4 and compare the results with the numerical experiment.

1.2.2 Part 2

The two-dimensional potential energy function defined in eq. 34 can be projected onto relevant
coordinates u(x, y). Consider the relevant coordinate

u(x, y) = x , (11)

and the free energy profile

Fx(x) = − 1

β
log

ˆ
Γ

exp(−βV (x, y))δ(u(x, y)− x) dydx (12)

= − 1

β
log

ˆ
Γy

exp(−βV (x, y)) dy , (13)

where δ(u(x, y)− x) is the delta function, equal to 0 if u(x, y) ̸= x, equal to 1 if u(x, y) = x.

1. Recalculate eqs. 2, 3, 4 with the free energy profile defined in eq. 13.

2. Does the use of free energy profile improve the result?
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1.2.3 Part 3

A better relevant coordinate is the circumference defined by the function

r(x, y) =
√
x2 + y2 = 1 . (14)

1. Find an expression for the free energy profile

Fr(r) = − 1

β
log

ˆ
Γ

exp(−βV (x, y))δ(r(x, y)− r) dydx . (15)

2. Recalculate eqs. 2, 3, 4 with the free energy profile defined in eq. 15.

3. Does the use of free energy profile improve the result?

Listing 1: Parameters for a Langevin simulation.
kB = 0.008314463 # kJ mol -1 K
T = 300 # K
mass = 1 # amu mol -1
gamma = 1 # ps -1
sigma = np.sqrt(2 * kB * T * mass * gamma) # nm ps -1/2
beta = 1 / kB / T # kJ -1 mol

Figure 1: Potential energy function
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2 SqRA of the infinitesimal generator
Consider the stochastic differential equation for the overdamped Langevin dynamics for a one-
dimensional particle:

dxt = −∇V (xt)

mγ
dt+

√
2Dηt (16)

where D = kBT/mγ is the diffusion constant. Assume a Voronoi tessellation of the state space Γ
into k disjoint subsets, then, the associated SqRA rate matrix is written as

Qij =



D
Sij

hij Vi

√
π(xj)

π(xi)
if i ∼ j

−
k∑

j=1
j ̸=i

Qij if i = j

0 else

, (17)

where Qij represents the transition rate from the cell Γi to the cell Γj , Vi is the volume of the cell
Γi, Sij is the area of the intersecting surface between Γi and Γj , hij is the distance between the
centers of the cells, π is the Boltzmann distribution:

π(x) =
1

Z
exp (−βV (x)) , (18)

with β = 1/kBT and Z is a normalization constant.

2.1 Project
Consider the two-dimensional double-well potential energy function defined on the space Γ = Γx ×
Γy ⊂ R2

V (x, y) = 6 cos (m arctan(y, x)) + 60
(√

x2 + y2 − 1
)2

, (19)

with m = 2.

2.1.1 Part 1

Build the 2D-SqRA.

1. Discretize the space [−2, 2]× [2, 2] using a regular grid.

2. Build an adjacency matrix for a two-dimensional space.

3. Calculate the Boltzmann weight of each cell of the grid using eq. 18.

4. Build the rate matrix Q using eq. 17.

5. Given the matrix Q, calculate and plot the first 5 eigenvectors and eigenvalues.

2.1.2 Part 2

The two-dimensional potential energy function defined in eq. 34 can be projected onto relevant
coordinates u(x, y). Consider the relevant coordinate

u(x, y) = x , (20)

and the free energy profile

Fx(x) = − 1

β
log

ˆ
Γ

exp(−βV (x, y))δ(u(x, y)− x) dydx (21)

= − 1

β
log

ˆ
Γy

exp(−βV (x, y)) dy , (22)

where δ(u(x, y)− x) is the delta function, equal to 0 if u(x, y) ̸= x, equal to 1 if u(x, y) = x.
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1. Build the 1D-SqRA along the x-coordinate using the free energy profile obtained in eq. 22.

2. Compare the eigenvalues and eigenvectors of the two-dimensional model.

2.1.3 Part 3

A better relevant coordinate is the circumference defined by the function

r(x, y) =
√
x2 + y2 = 1 . (23)

1. Find an expression for the free energy profile

Fr(r) = − 1

β
log

ˆ
Γ

exp(−βV (x, y))δ(r(x, y)− r) dydx . (24)

2. Build the 1D-SqRA along the r(x,y)-coordinate using the free energy profile obtained in eq. 24.

3. Compare the eigenvalues and eigenvectors of the two-dimensional model.

Figure 2: Potential energy function
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3 PCCA+
In this project we will consider a non-reversible Markov process. One possibility is given by the
Lotka-Volterra equations which model the evolution of the population of preditors and their prey:

dx

dt
= αx− βxy (25)

dy

dt
= δxy − γy , (26)

where x represents the number of prey, y represents the number of predators, α is the natural
growth rate of the prey in the absence of predators, β is the rate at which predators destroy the
prey, δ is the growth rate of predators per prey consumed, γ is the natural death rate of predators
in the absence of prey.

The evolution is given by a deterministic ordinary differential equation. Thus, short-time tra-
jectories from different starting points (different populations) can be generated.

Based on these trajectories and a fine discretization of the 2-dimensional state space (only
positive numbers), a finite-dimensional matrix Kτ can be derived which represents the Koopman
operator of this process.

3.1 Project
Here are the steps to be performed:

• The ordinary differential equation will be implemented. Trajectories will be generated. You
will have to think about, how to transform the two dimensional starting and end points –
(initial number of preditors, initial number of preys) and (final number of preditors, final
number of preys) – into a set of micro states.

• Using the trajectories you will generate the matrix Kτ .

• The eigenvalue and eigenvector analysis of this matrix will lead to complex numbers. Plot
these complex numbers in the 2-dimensional unit circle.

• Instead of the eigenvalue decomposition, compute the real Schur-decomposition of this matrix.

• Select 3 real Schur-vectors which span an invariant subspace of Kτ . Plot the simplex.

• Find a linear mapping from this simplex to the standard simplex.
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4 ISOKANN
ISOKANN is an iterative algorithm in which a linear transformation S is applied to the Koopman
operator Kτ applied to an arbitrary function fk:

fk+1 = SKτfk , (27)

After several iterations, the arbitrary function converges to a membership functions χ

lim
k→∞

fk+1 = χ . (28)

For a two-metastable system, S is defined by the shift-scale function

SKτfk =
Kτfk −min (Kτfk)

max (Kτfk)−min (Kτfk)
, (29)

that guarantees that fk : Γ → [0, 1], and χ is one of the two membership functions χ0 or χ1. Note
that, given χ0, then χ1 = 1 − χ0, then the two membership functions span an invariant subspace
of the Koopman operator.

4.1 Approximating the Koopman operator
In general, we do not know an analytical expression of the Koopman operator, nor a discretisation
of it as a matrix. However, given a function ft, it is possible to approximate the action of the
operator on ft as an expectation:

ft+τ (x) = Kτft(x) (30)
= E [ft(xt+τ )|xt = x] (31)

≈ 1

N

N∑
n=1

ft(xt+τ,n|xt = x) , (32)

where xt+τ,n are the final states of N trajectories starting at xt = x, solutions of the equation of
motion associated to the Koopman operator.

Then, within the ISOKANN algorithm, eq. 27 is rewritten as

fk+1(x0) = S

(
1

N

N∑
n=1

fk(xτ,n|x0 = x)

)
, (33)

4.2 The choice of arbitrary function
The choice of the arbitrary function is crucial to the success of the algorithm. For simple problems
with low dimensionality, a linear function may be sufficient and converges quickly to membership
functions. For more complex problems, the use of interpolating functions is recommended. Here
we suggest some possible solutions.

Radial Basis Functions Radial Basis Functions (RBFs) are a type of function used in various
areas of numerical analysis and machine learning, particularly for interpolation, approximation,
and classification tasks. The defining characteristic of RBFs is that their value depends only on the
distance from a central point, or "center," rather than the specific coordinates of the input.

Feed-Forward Neural Network A Feed-Forward Neural Network (FNN) is the most basic
type of artificial neural network. In an FNN, information moves in one direction-from input nodes,
through hidden layers (if any), to output nodes. Each layer consists of a set of neurons, and each
neuron in one layer is connected to every neuron in the next layer, but there are no cycles or loops
in the network.
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Radial Basis Function Networks Radial Basis Function Networks (RBFNs) are a type of
artificial neural network that uses radial basis functions (RBFs) as activation functions. A Radial
Basis Function (RBF) is a real-valued function whose value depends only on the distance from a
center point, often referred to as the "radial distance." They are particularly well-suited for tasks
such as interpolation, function approximation, and classification.

Graph Neural Network A Graph Neural Network (GNN) is a type of neural network designed
to operate on graph-structured data. In a graph, data points (nodes) are connected by edges, which
can represent relationships, interactions, or dependencies between the nodes. GNNs are designed
to leverage this relational information to make predictions about nodes, edges, or the entire graph.
GNNs work by iteratively updating node representations through message passing and aggregation
mechanisms. During each iteration (or layer), each node receives information from its neighbors
(nodes it’s connected to), aggregates this information, and updates its own state.

4.3 Project
Consider the two-dimensional double-well potential energy function

V (x, y) = 6 cos (m arctan(y, x)) + 60
(√

x2 + y2 − 1
)2

, (34)

with m = 2 and defined on the space Γ = Γx × Γy ⊂ R2.

4.3.1 Part 1

1. Implement the BBK integrator scheme to solve the Langevin dynamics.

2. Generate a first long trajectory.

3. Select a set of M random points (x0, y0) from the long trajectory.

4. From each starting point (x0, y0) generate N short trajectories of length τ . Store the final
points (xτ , yτ ).

5. Implement the ISOKANN algorithm. The algorithm should contains the following steps:

(a) For each starting point (x0, y0), apply the arbitrary function fk to the corresponding set
of final points (xτ , yτ ).

(b) For each starting point (x0, y0), calculate the average and apply the transformation S as
in eq. 33.

(c) Given the points fk+1(x) obtained from eq. 33, train an interpolating function f̂k+1.

(d) Restart the algorithm using f̂k+1 as arbitrary function.

4.3.2 Part 2

After several iterations, the function f̂k+1 will converge to a membership function χ(x).

1. Solve the linear regression problem

min
a1,a2

∥Kτχ(x)− a1χ(x)− a2∥, (35)

where Kτχ(x) can be approximated as in eq. 32.

2. Calculate the exit rate

ϵ1 = −1

τ
log(a1)

(
1 +

a2
a1 − 1

)
. (36)

4.3.3 Part 3

Test the ISOKANN algorithm using different interpolating functions.
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