Exercise 2

If you have questions or need suggestions: donati[at]zib.de

Random walk and binomial distribution

Consider a one-dimensional lattice of equally spaced points. Assume that a random walker is at position $x_{0}=0$ at time 0 , and that he either jumps to the right with probability $p=\frac{1}{2}$ or to the left with probability $p=\frac{1}{2}$. After N timesteps he arrives at position m, where $m \in \mathbb{Z}$ denotes the node of the grid that he reached: $m>0$ if the walker reached a site on the right of the starting position, $m<0$ if the walker reached a site on the left of the starting position. The probability to reach the position m after N timesteps is given by the binomial distribution:

$$
P_{d}(m, N)= \begin{cases}0 & \text { if } N \text { even and } m \text { odd } \tag{1}\\ 0 & \text { if } N \text { odd and } m \text { even } \\ \frac{N!}{\frac{N+m}{2}!\cdot \frac{N-m}{2}!}\left(\frac{1}{2}\right)^{N} & \text { else }\end{cases}
$$

Pen-and-paper exercise

- Show that the expected position is

$$
\langle m\rangle=0,
$$

and that the variance of the position is

$$
\left\langle m^{2}\right\rangle=N
$$

- For very large N, the distribution function becomes continuous:

$$
\begin{equation*}
P_{c}(m, N)=\sqrt{\frac{2}{N \pi}} \exp \left(-\frac{m^{2}}{2 N}\right) \tag{2}
\end{equation*}
$$

Derive eq. 2 using the Stirling's approximation:

$$
\begin{equation*}
N!\approx\left(\frac{N}{e}\right)^{N} \sqrt{2 \pi N} \tag{3}
\end{equation*}
$$

where $e=2.17828 \ldots$

Computational exercise

- Write a program to simulate the one-dimensional random walk X_{n}.
- Generate 4 sets of trajectories, each of 10000 trajectories, for $N=3,6,30,6000$.
- For each set of trajectories build the histogram using the final positions X_{N}.
- Compare the histograms with the analytical distribution defined in eqs. 1 and 2.

