2. Probability Concepts

In the preceding chapter, we introduced probability notions without any definitions.
In order to formulate essential concepts more precisely, it is necessary to have
some more precise expression of these concepts. The intention of this chapter is to
provide some background, and to present a number of essential results. It is not a
thorough outline of mathematical probability, for which the reader is referred to
standard mathematical texts such as those by Feller [2.1] and Papoulis [2.2].

2.1 Events, and Sets of Events

It is convenient to use a notation which is as general as possible in order to describe
those occurrences to which we might wish to assign probabilities. For example,
we may wish to talk about a situation in which there are 6.4 x 10'* molecules in a
certain region of space; or a situation in which a Brownian particle is at a certain
point x in space; or possibly there are 10 mice and 3 owls in a certain region of a
forest.

These occurrences are all examples of practical realisations of events. More
abstractly, an event is simply a member of a certain space, which in the cases most
practically occuring can be characterised by a vector of integers

ll=(n|, nz, n3 ...) (2.1.1)
or a vector of real numbers
X = (xl, xz, X3 ...). (2.1.2)

The dimension of the vector is arbitary.
It is convenient to use the language of set theory, introduce the concept of a set
of events, and use the notation

we A (2.1.3)

to indicate that the event w is one of events contained in A. For example, one
may consider the set A(25) of events in the ecological population in which there
are no more than 25 animals present; clearly the event & that there are 3 mice, a
tiger, and no other animals present satisfies

@ € A(25). (2.1.9)
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More significantly, suppose we define the set of events A(r, AV) that a molecule
is within a volume element AV centred on a point r. In this case, the practical signi-
ficance of working in terms of sets of events becomes clear, because we should nor-
mally be able to determine whether or not a molecule is within a neighbourhood
AV of r, but to determine whether the particle is exactly at r is impossible. Thus, if
we define the event w(y) that the molecule is at point y, it makes sense to ask
whether

w(y) € A(r, AV) (2.1.5)

and to assign a certain probability to the set A(r, AV), which is to be interpreted as
the probability of the occurrence of (2.1.5)

2.2 Probabilities

Most people have an intuitive conception of a probability, based on their own
experience. However, a precise formulation of intuitive concepts is fraught with
difficulties, and it has been found most convenient to axiomatise probability theory
as an essentially abstract science, in which a probability measure P(A4) is assigned
to every set A, in the space of events, including

the set of all events: Q 2.2.1)
the set of no events: @; ¢ (2.2.2)

in order to define probability, we need our sets of events to form a closed system
(known by mathematicians as a g-algebra) under the set theoretic operations of
union and intersection.

2.2.1 Probability Axioms

We introduce the probability of 4, P(A4), as a function of A satisfying the following
probability axioms:

(i) P(4) >0 forall 4, (2.2.3)
(i) P =1, 2.2.4)

(>iii) if 4, (i=1, 2, 3, ...) is a countable (but possibly infinite) collection of
nonoverlapping sets, i.e., such that

A, NA4A;,=¢g forall i+}j, 2.2.5)
then
P(U 4) =23 P(4). (2.2.6)

These are all the axioms needed. Consequentially, however, we have:
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(iv) if 4 is the complement of A4, i.e., the set of all events not contained in A4,
then

P(A) = 1 — P(4), 2.2.7)
(v) P(@)=0. (2.2.8)
2.2.2 The Meaning of P(A)

There is no way of making probability theory correspond to reality without
requiring a certain degree of intuition. The probability P(4), as axiomatised above,
is the intuitive probability that an “‘arbitrary” event w, i.e., an event w “‘chosen at
random”, will satisfy w € A. Or more explicitly, if we choose an event “at random”
from Q N times, the relative frequency that the particular event chosen will satisfy
w € A approaches P(A4) as the number of times, N, we choose the event, approaches
infinity. The number of choices N can be visualised as being done one after the
other (““independent” tosses of one die) or at the same time (N dice are thrown at the
same time ‘‘independently’’). All definitions of this kind must be intuitive, as we
can see by the way undefined terms (“arbitrary”, “at random”, “‘independent”) keep
turning up. By eliminating what we now think of as intuitive ideas and axiomatising
probability, Kolomogorov [2.3] cleared the road for a rigorous development of
mathematical probability. But the circular definition problems posed by wanting
an intuitive understanding remain. The simplest way of looking at axiomatic pro-
bability is as a formal method of manipulating probabilities using the axioms. In
order to apply the theory, the probability space must be defined and the probability
measure P assigned. These are a priori probabilities, which are simply assumed.
Examples of such a priori probabilities abound in applied disciplines. For example,
in equilibrium statistical mechanics one assigns equal probabilities to equal volumes
of phase space. Einstein’s reasoning in Brownian motion assigned a probability g(4)
to the probability of a “push 4 from a position x at time ¢.

The task of applying probability is (i) to assume some set of a priori probabilities
which seem reasonable and to deduce results from this and from the structure of the
probability space, (ii) to measure experimental results with some apparatus which
is constructed to measure quantities in accordance with these a priori probabilities.

The structure of the probability space is very important, especially when the
space of events is compounded by the additional concept of time. This extension
makes the effective probability space infinite-dimensional, since we can construct
events such as “‘the particle was at points x, at times 7,, n =0, 1, 2, ..., o0”.

2.2.3 The Meaning of the Axioms

Any intuitive concept of probability gives rise to nonnegative probabilities, and the
probability that an arbitrary event is contained in the set of all events must be 1
no matter what our definition of the word arbitrary. Hence, axioms (i) and (ii) are
understandable. The heart of the matter lies in axiom (iii). Suppose we are dealing
with only 2 sets 4 and B, and 4 N B = . This means there are no events con-
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tained in both 4 and B. Therefore, the probability that w € 4 U B is the probabi-
lity that either w € A or w € B. Intuitive considerations tell us this probability is
the sum of the individual probabilities, i.e.,

P(A U B) = P{(w € A)or (w € B)} = P(A) + P(B) 2.2.9)

(notice this is not a proof—merely an explanation).

The extension now to any finite number of nonoverlapping sets is obvious, but
the extension only to any countable number of nonoverlapping sets requires some
comment.

This extension must be made restrictive because of the existence of sets labelled
by a continuous index, for example, x, the position in space. The probability of a
molecule being in the set whose only element in x is zero; but the probability of
being in a region R of finite volume is nonzero. The region R is a union of sets of
the form {x} —but not a countable union. Thus axiom (iii) is not applicable and the
probability of being in R is not equal to the sum of the probabilities of beingin {x}.

2.2.4 Random Variables

The concept of a random variable is a notational convenience which is central to
this book. Suppose we have an abstract probability space whose events can be
written x. Then we can introduce the random variable F(x) which is a function of
x, which takes on certain values for each x. In particular, the identity function of
x, written X(x) is of interest; it is'given by

X(x) = x. - (2.2.10)

We shall normally use capitals in this book to denote random variables and small
letters x to denote their values whenever it is necessary to make a distinction.

Very often, we have some quite different underlying probability space £ with
values w, and talk about X(w) which is some function of w, and then omit explicit
mention of w. This can be for either of two reasons:

i) we specify the events by the values of x anyway, i.e., we identify x and w;
ii) the underlying events w are too complicated to describe, or sometimes, even
to know.

For example, in the case of the position of a molecule in a liquid, we really
should interpret each w as being capable of specifying all the positions, momenta,
and orientations of each molecule in that volume of liquid; but this is simply too
difficult to write down, and often unnecessary.

One great advantage of introducing the concept of a random variable is the
simplicity with which one may handle functions of random variables, e.g., X2,
sin(a - X), etc, and compute means and distributions of these. Further, by defining
stochastic differential equations, one can also quite simply talk about time devel-
opment of random variables in a way which is quite analogous to the classical
description by means of differential equations of nonprobabilistic systems.
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2.3.1 Joint Probabilities

We explained in Sect. 2.2.3 how the occurrence of mutually exclusive events is related
to the concept of nonintersecting sets. We now consider the concept P(4 N B), where
A N Bisnonempty. An event w which satisfiesw & A will onlysatisfy w € 4 N B
if o € B as well.

Thus, P(4 N B) = P{(w € 4) and (0w € B)} 2.3.1)

and P(4 N B) is called the joint probability that the event w is contained in both
classes, or, alternatively, that both the events w € 4 and w € B occur. Joint pro-
babilities occur naturally in the context of this book in two ways:

i) When the event is specified by a vector, e.g., m mice and n tigers. The probability
of this event is the joint probability of [m mice (and any number of tigers)] and
[n tigers (and any number of mice)]. All vector specifications are implicitly joint
probabilities in this sense.

ii) When more than one time is considered: what is the probability that (at time ¢,
there are m, tigers and n, mice) and (at time ¢, there are m, tigers and n, mice).
To consider such a probability, we have effectively created out of the events at time
t, and events at time t,, joint events involving one event at each time. In essence,
there is no difference between these two cases except for the fundamental dynamical
role of time.

2.3.2 Conditional Probabilities

We may specify conditions on the events we are interested in and consider only
these, e.g., the probability of 21 buffaloes given that we know there are 100 lions.
What does this mean? Clearly, we will be interested only in those events contained
in the set B = {all events where exactly 100 lions occur}. This means that we to
define conditional probabilities, which are defined only on the collection of all sets
contained in B. we define the conditional probability as

P(A|B) = P(4 N B)/P(B) (2.3.2)

and this satisfies our intuitive conception that the conditional probability that
w € A (given that we know w € B), is given by dividing the probability of joint
occurrence by the probability (w € B).

We can define in both directions, i.e., we have

P(A N B) = P(A|B)P(B) = P(B| A)P(A). (2.3.3)

There is no particular conceptual difference between, say, the probability of {(21
buffaloes) given (100 lions)} and the reversed concept. However, when two times
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are involved, we do see a difference. For example, the probability that a particle is
at position x, at time ¢#,, given that it was at x, at the previous time t,, is a very nat-
ural thing to consider; indeed, it will turn out to be a central concept in this book.
The converse sounds strange, i.e., the probability that a particle is at position x,
at time ¢,, given that it will be at position x, at a later time #,. It smacks of clair-
voyance—we cannot conceive of any natural way in which we would wish to consi-
der it, although it is, in principle, a quantity very similar to the ‘“natural” condi-
tional probability, in which the condition precedes the events under consideration.

The natural definition has already occurred in this book, for example, the
#(4)d4 of Einstein (Sect. 1.2.1.) is the probability that a particle at x at time # will
be in the range [x 4+ 4, x + 4 + d4] at time ¢ + 7, and similarly in the other
examples. Our intuition tells us as it told Einstein (as can be seen by reading the
extract from his paper) that this kind of conditional probability is directly related
to the time development of a probabilistic system.

2.3.3 Relationship Between Joint Probabilities of Different Orders

Suppose we have a collection of sets B, such that
B,NB =g (2.3.4)
l{ B,=Q 2.3.5)

so that the sets divide up the spage Q into nonoverlapping subsets.
Then

rd

L{(AﬂB,)=Aﬂ(l{B,)=An.Q=A (2.3.6)

Using now the probability axiom (iii), we see that 4 N B, satisfy the conditions
on the 4, used there, so that

2 P(A N B)=PU AU B) (2.3.7)
= P(4) (2.3.8)

and thus
> P(A|B)P(B) = P(4) (2.3.9)

Thus, summing over all mutually exclusive possibilities of B in the joint probability
eliminates that variable.
Hence, in general,

‘V‘_‘,P(A, NBNGC..)=PB, NC:N ...). (2.3.10)

The result (2.3.9) has very significant consequences in the development of the theory
of stochastic processes, which depends heavily on joint probabilities.
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2.3.4 Independence

We need a probabilistic way of specifying what we mean by independent events.
Two sets of events 4 and B should represent independent sets of events if the speci-
fication that a particular event is contained in B has no influence on the probability
of that event belonging to 4. Thus, the conditional probability P(4|B) should be
independent of B, and hence

P(A N B) = P(A)P(B) (2.3.11)
In the case of several events, we need a somewhat stronger specification. The events
(we A) (i=1,24...,n) will be considered to be independent if for any subset
(i, iz ..., i) Of the set (1,2, ..., n),

P(4, N A, ... 4,) = P(4,)P(4,) ... P(4,) - (2.3.12)

It is important to require factorisation for all possible combinations, as in (2.3.12).
For example, for three sets 4,, it is quite conceivable that

P(A; N A4)) = P(A)P(4;) (2.3.13)
for all different i and j, but also that

AANA,=4,NA3=4; N 4,. (see Fig 2.1)
This requires

P(Al NnA4;nN AJ) = P(Az nA4;nN Aa) = P(Az n A.‘!) = P(AZ)P(AS) (2'3~14)
# P(A4,)P(4;)P(45).
We can see that the occurrence of w € 4, and w € A, necessarily implies the oc-
currence of w € A,. In this sense the events are obviously not independent.

Random variables X, X,, Xj, ..., will be said to be independent random vari-
ables, if for all sets of the form 4, = (x such that ¢, < x < b,) the events X, € 4,,

7

A A;

Fig. 2.1. Illustration of statistical independence
in pairs, but not in threes. In the three sets
A; N A, is, in all cases, the central region. By
As appropriate choice of probabilities, we can
arrange

P4, N A/) = P(AI)P(AI)
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X, € A,, X5 € A, ... are independent events. This will mean that all values of the

X, are assumed independently of those of the remaining X,.

2.4 Mean Values and Probability Density

The mean value of a random variable R(w) in which the basic events w are coun-
tably specifiable is given by

(R) = ‘w; P(w)R(w), (2.4.1

where P(w) means the probability of the set containing only the single event w. In
the case of a continuous variable, the probability axioms above enable us to define
a probability density function p(w) such that if A(w,, dw,) is the set

(0 < © < W + dwy), (2.4.2)
then

P(@o)dw, = P[A(w,, dw)] (2.4.3)

= p(wo, dwy) - (2.4.4)

The last is a notation often used by mathematicians. Details of how this is done
have been nicely explained by Fdller [2.1]. In this case,

-

'd

(R) =.,,£ ;"‘" R()p(w) . (2.4.5)

One can often (as mentioned in Sect. 2.2.4) use R itself to specify the event, so we will
often write

(RY = [ dR Rp(R) . (2.4.6)
Obviously, p(R) is not the same function of R as p(w) is of w-more precisely

P(Ro)dR, = P[R, < R < Ry + dRy)]. (2.4.7)
2.4.1 Determination of Probability Density by Means of Arbitrary Functions
Suppose for every function f(R) we know

{f(R)y = [ dR f(R) p(R), (2.4.8)
then we know p(R). The proof follows by choosing

f(R)=1 R0<R<Ro+dRo

=0 otherwise.
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Because the expectation of an arbitrary function is sometimes a little easier to work
with than a density, this relation will be used occasionally in this book.

242 Sets of Probability Zero

If a density p(R) exists, the probability that R is in the interval (Ry, R, + dR) goes to
zero with dR. Hence, the probability that R has exactly the value R, is zero; and
similarly for any other value.

Thus, in such a case, there are sets S(R,), each containing only one point R,,
which have zero probability. From probability axiom (iii), any countable union of
such sets, i.c., any set containing only a countable number of points (e.g., all ra-
tional numbers) has probability zero. In general, all equalities in probability theory
are at best only “almost certainly true’, i.e., they may be untrue on sets of proba-
bility zero. Alternatively, one says, for example,

X = Y (with probability 1) (2.4.9)
which is by no means the same as saying that
X(R) = Y(R) for all R. (2.4.10)

Of course, (if the theory is to have any connection with reality) events with proba-
bility zero do not occur.

In particular, notice that our previous result if inspected carefully, only implies
that we know p(R) only with probability 1, given that we know (f(R)) for all f(R).

2.5 Mean Values

The question of what to measure in a probabilistic system is nontrivial. In practice,
one measures either a set of individual values of a random variable (the number of
animals of a certain kind in a certain region at certain points in time; the electric
current passing through a given circuit element in each of a large number of replicas
of that circuit, etc.) or alternatively, the measuring procedure may implicitly con-
struct an average of some kind. For example, to measure an electric current, we may
measure the electric charge transferred and divide by the time taken—this gives a
measure of the average number of electrons transferred per unit time. It is im-
portant to note the essential difference in this case, that it will not normally be pos-
sible to measure anything other than a few selected averages and thus, higher
moments (for example) will be unavailable.

In contrast, when we measure individual events (as in counting animals), we can
then construct averages of the observables by the obvious method

Xy=1 é X(n) . @2.5.1)

The quantities X(n) are the individual observed values of the quantity X. We expect
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that as the number of samples N becomes very large, the quantity X, approaches
the mean {X) and that, in fact,

lim 32 fIX(] = lim 7Y = <S(0) (252)

and such a procedure will determine the probability density function p(x) of X if
we carry out this procedure for all functions f. The validity of this procedure
depends on the degree of independence of the successive measurements and is dealt
with in Sect. 2.5.2.

In the case where only averages themselves are directly determined by the meas-
uring method, it will not normally be possible to measure X(n) and therefore, it will
not, in general, be possible to determine f(X),. All that will be available will be
f(Xy)—quite a different thing unless f is linear. We can often find situations in
which mesasurable quantities are related (by means of some theory) to mean values
of certain functions, but to hope to measure, for example, the mean value of an
arbitrary function of the number of electrons in a conductor is quite hopeless. The
mean number—yes, and indeed even the mean square number, but the measuring
methods available are not direct. We do not enumerate the individual numbers of
electrons at different times and hence arbitrary functions are not attainable.

2.5.1 Moments, Correlations, and Covariances

Quantities of interest are given by the moments (X") since these are often easily
calculated. However, probability densities must always vanish as x — 4 oo, so we
see that higher moments tell us only about the properties of unlikely large values of
X. In practice we find that the most important quantities are related to the first
and second moments. In particular, for a single variable X, the variance defined by

var{X} = {olX]}? = X — XOP, (2.5.3)

and as is well known, the variance var {X} or its square root the standard deviation
o[X], is a measure of the degree to which the values of X deviate from the mean

value {(X).
In the case of several variables, we define the covariance matrix as
X, Xy = (X — <XD) (X; — (X)) = XiXp) — (Xp<X)) . (2.5.4)
" Obviously,
X, X;) = var {X}]} . (2.5.5)

If the variables are independent in pairs, the covariance matrix is diagonal.

2.5.2 The Law of Large Numbers

As an application of the previous concepts, let us investigate the following model
of measurement. We assume that we measure the same quantity N times, obtaining
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sample values of the random variable X(n) (n = 1, 2, ..., N). Since these are al;
measurements of the same quantity at successive times, we assume that for every
n, X(n) has the same probability distribution but we do not assume the X(n) to be
independent. However, provided the covariance matrix {(X(n), X(m)) vanishes suf-
ficiently rapidly as |n — m| — oo, then defining

=L xmw, 2.5.6)

n=1
we shall show

lim Xy = (X . @.5.7)

N—oo
It is clear that
Xy = {X> . (2.5.8)

We now calculate the variance of Xy and show that as N — oo it vanishes under
certain conditions:

By = By = o 3 Xy Xy 2.5.9)

Provided (X, X, falls off sufficiently rapidly as |n — m| — oo, we find

lim (var {Xy}) =0 (2.5.10)

N—oo

so that lim X is a deterministic variable equal to (X .
N—+co

Two models of (X,, X,,> can be chosen.
a) (X, Xpy ~ KAm=n < (2.5.11)

for which one finds

var{X) = ?—v{f(lm —(lNill—)z D= l) - Ko, 2.5.12)
b) X, Xp> ~ |n—m|™! (n #+ m) (2.5.13)

and one finds approximately

var {%y) ~Zlog N — % —0. (2.5.14)

In both these cases, var{X,} — 0. The rate of convergence is very different. In-
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terpreting n, m as the times at which the measurement is carried out, one sees than
even very slowly decaying correlations are permissible. The law of large numbers
comes in many forms, which are nicely summarised by Papoulis [2.2]. The central
limit theorem is an even more precise result in which the limiting distribution
function of Xy — (X is determined (see Sect. 2.8.2).

2.6 Characteristic Function

One would like a condition where the variables are independent, not just in pairs.
To this end (and others) we define the characteristic function.

If s is the vector (s, S, .., 5,), and X the vector of random variables (X;, X3,
..., X,), then the characteristic function (or moment generating function) is defined
by

#(s) = <exp (is - X)) = [ dx p(x) exp (is - x) . (2.6.1)

The characteristic function has the following properties [Ref. 2.1, Chap. XV]

i) ¢0)=1

i) gl <1
iii) g(s) is a uniformly continuous t}mction of its arguments for all finite real s [2.5].
iv) If the moments <1.1 Xmiy exist, then

apxey =1 (~iz) o) - (262)

v) A sequence of probability densities converges to limiting probability density if
and only if the corresponding characteristic functions converge to the corresponding
characteristic function of the limiting probability density.

vi) Fourier inversion formula
p(x) = (2m)™" [ ds §(s) exp (—ix - 5) (2.6.3)

Because of this inversion formula, ¢(s) determines p(x) with probability 1. Hence,
the characteristic function does truly characterise the probability density.

vii) Independent random variables: from the definition of independent random
variables in Sect. 2.3.4, it follows that the variables X), X, ... are independent if
and only if

p(xh X2y eees xn) = Pl(xl)Pz(xz) pu(xn)’ (264)

in which case,




