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Lecture 3

From Chapman-Kolmogorov equation to master equation and

Fokker-Planck equation
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I. STOCHASTIC PROCESSES

Consider a probability space (Ω,F , P ) and an n-dimensional time-dependent random

variable X : Ω ⊂ Rn → R, i.e. a real-valued function that maps elements of the sample

space to real numbers associated to the outcomes of a random experiment.

Assume now that the random variable is time-dependent: X(t) : Ω ⊂ Rn → R, then,

given a sequence of timesteps t1, t2, . . . , tN with t1 < t2 < · · · < tN , we can write

{X(t1) = x1, X(t2) = x2, ..., X(tN) = xN} , (1)

where x1, x2, . . . , xN ∈ Ω. The sequence defined in eq. 1 is a stochastic process if the joint

probability density

p (x1, t1, ; x2, t2, ; . . . xN , tN) , (2)
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fully describes the system. Depending on how the joint probability density is defined, we

can classify the stochastic processes. Here, we consider two cases.

• Purely random process or separable stochastic process [1]. If successive values of X(t)

are statistically independent, then we the joint probability density is written as

p (x1, t1, ; x2, t2, ; . . . xN , tN) =
N∏
i=1

p(xi, ti) . (3)

The underlying idea is that the probability of an event xi occurring at a time ti does

not depend on the past and in no way determines the future. In terms of conditional

probabilities, we can write

p (xN , tN |x1, t1, ; x2, t2, ; . . . xN−1, tN−1) = p(xN , tN) . (4)

• A second example of a stochastic process of particular relevance to many applications

in physics and chemistry is the Markov process, whose joint probability density is

written as

p (x1, t1, ; x2, t2, ; . . . xN , tN) =
N∏
i=2

p(xi, ti|xx−1, ti−1)p(x1, t1) , (5)

or in terms of conditional probabilities as

p (xN , tN |x1, t1, ; x2, t2, ; . . . xN−1, tN−1) = p(xN , tN |xN−1, tN−1) . (6)

In other words, a Markovian process is a process without memory, whose temporal

evolution depends only on the present state, not on the past.

II. THE CHAPMAN-KOLMOGOROV EQUATION

From this point on, we consider Markov processes. Eq. 6 fully defines a Markov process,

but it does not say anything about the probability density function p. The Chapman-

Kolmogorov Equation (CKE) states the property that the function p must satisfy to describe

a Markov process. To derive the CKE, we proceed as follows. Consider two values x1 and
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x3 of the random variable X(t) : Ω ⊂ R → R, measured at times t1 and t3 with t1 < t3,

then from eq. 5 we obtain

p(x1, t1;x3, t3) = p(x3, t3|x1, t1)p(x1, t1) . (7)

Integrating over x1, we define the marginal density

p(x3, t3) :=

ˆ
Ω

dx1 p(x1, t1;x3, t3) =

ˆ
Ω

dx1 p(x3, t3|x1, t1)p(x1, t1) (8)

Consider now an intermediate point x2, then the joint probability is

p(x1, t1;x2, t2;x3, t3) = p(x3, t3|x2, t2)p(x2, t2|x1, t1)p(x1, t1) . (9)

We integrate over x2 and applying the definition in eq. 8, we obtainˆ
Ω

dx2 p(x1, t1;x2, t2;x3, t3) =

ˆ
Ω

dx2 p(x3, t3|x2, t2)p(x2, t2|x1, t1)p(x1, t1)

p(x1, t1;x3, t3) = p(x1, t1)

ˆ
Ω

dx2 p(x3, t3|x2, t2)p(x2, t2|x1, t1)

p(x1, t1;x3, t3)

p(x1, t1)
=

ˆ
Ω

dx2 p(x3, t3|x2, t2)p(x2, t2|x1, t1) . (10)

The left-hand side of eq. 10 is by definition a conditional probability, thus we obtain the

Chapman-Kolmogorov equation

p(x3, t3|x1, t1) =

ˆ
Ω

dx2 p(x3, t3|x2, t2)p(x2, t2|x1, t1) . (11)

Remarks:

• The conditional probability defined in eq. 11 is a transition probability (unit less).

• The CKE fully determines a Markov process, but it does not provide the time evolution

of the probability.

• The CKE satisfies the normalization condition

ˆ
Ω

dx3 p(x3, t3|x1, t1) = 1 . (12)

• If t3 → t1, then p(x3, t3|x1, t1) = δ(x3 − x1) .

• For discrete variables n1, n2, . . . , nN ∈ Z, the CKE is written as

p(n3, t3|n1, t1) =
∑
n2

p(n3; t3|n2; t2)p(n2; t2|n1; t1) . (13)
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• The CKE of the Brownian motion has the explicit form

p(x3, t3|x1, t1) =
1√

4πD(t3 − t1)
exp

(
− (x3 − x1)

2

4D(t3 − t1)

)
, (14)

where D is the diffusion constant.

III. THE DIFFERENTIAL CHAPMAN-KOLMOGOROV EQUATION

In order to find how the conditional probability defined in eq. 11 evolves with time, we

need a differential equation. For this purpose, we make the following change of notation:
(x1, t1) → (x0, t0)

(x2, t2) → (x′, t)

(x3, t3) → (x, t+∆t) ,

(15)

and rewrite eq. 11 as

p(x, t+∆t|x0, t0) =

ˆ
Ω

dx′ p(x, t+∆t|x′, t)p(x′, t|x0, t0) . (16)

We now introduce the time derivative of p(x, t|x0, t0):

∂

∂t
p(x; t|x0, t0) = lim

∆t→0

1

∆t

{[
p(x, t+∆t|x0, t0)− p(x; t|x0, t0)

]}
. (17)

Inserting eq. 16 into eq. 17 yields

∂

∂t
p(x; t|x0, t0) =

= lim
∆t→0

1

∆t

[´
Ω
dx′ p(x, t+∆t|x′, t)p(x′, t|x0, t0)− 1·p(x; t|x0, t0)

]
.

(18)

The second term in the inner integral in the right-hand side of eq. 18 is multiplied by 1.

Then, rewriting the normalization condition defined in eq. 12 with the coordinates x and x′

as ˆ
Ω

dx′ p(x′, t+∆t|x; t) = 1 , (19)

eq. 20 yields
∂

∂t
p(x; t|x0, t0) =

= lim
∆t→0

1

∆t

[ˆ
Ω

dx′ p(x, t+∆t|x′, t)p(x′, t|x0, t0)−

−
ˆ
Ω

dx′ p(x′, t+∆t|x; t)p(x; t|x0, t0)

]
.

(20)
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A. Derivation of the Master equation

Let us now consider the case of a discontinuous stochastic process (also called a jump

process), e.g. the random walk on a grid. For convenience, we rewrite here the differential

CKE (eq. 20)

∂

∂t
p(x; t|x0, t0) =

= lim∆t→0
1
∆t

[ˆ
Ω

dx′ p(x, t+∆t|x′, t)p(x′, t|x0, t0)−

−
ˆ
Ω

dx′ p(x′, t+∆t|x; t)p(x; t|x0, t0)

]
.

(21)

Then, we introduce the terms:

W (x, t|x′, t) = lim∆t→0
1
∆t

p(x, t+∆t|x′, t)

W (x′, t|x, t) = lim∆t→0
1
∆t

p(x′, t+∆t|x, t) ,
(22)

with x ̸= x′. W (x, t|x′, t) and W (x′, t|x, t), with units [time−1], are called transition rates.

From a physical point of view, these are transition probabilities in the unit time ∆t, i.e.

they describe the transition probability from x to x′ (either from x′ to x) in a infinitesimal

timestep.

In this way, we obtain the master equation:

∂

∂t
p(x, t|x0, t0) =

ˆ
Ω

dx′ [W (x, t|x′, t)p(x′, t|x0, t0)−W (x′, t|x, t)p(x, t|x0, t0)] . (23)

In the case of discrete variables n0, n1, n2, . . . , nN ∈ Z, the master equation is written as

∂

∂t
p(n, t|n0, t0) =

∑
n′

[W (n, t|n′, t)p(n′, t|n0, t0)−W (n′, t|n, t)p(n, t|n0, t0)] . (24)

Note that, since eq. 23 (or 24) are valid for any x0 (or n0), the dependence on x0 (or n0)

can be omitted:

∂

∂t
p(x, t) =

ˆ
Ω

dx′ [W (x, t|x′, t)p(x′, t)−W (x′, t|x, t)p(x, t)] . (25)
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B. Derivation of the Kramers-Moyal expansion

Consider now the case of continuous stochastic processes, e.g. Brownian motion of pollen

grains in water. Eq. 20 is rewritten here:

∂

∂t
p(x; t|x0, t0) =

= lim
∆t→0

1

∆t

[ˆ
Ω

dx′ p(x, t+∆t|x′, t)p(x′, t|x0, t0)−

−
ˆ
Ω

dx′ p(x′, t+∆t|x; t)p(x; t|x0, t0)

]
.

(26)

We now multiply both sides of eq. 26 by a test function φ : Ω → R and integrate over x:

∂

∂t

ˆ
Ω

dxφ(x)p(x, t|x0, t0) =

= lim
∆t→0

1

∆t

{ˆ
Ω

dx

ˆ
Ω

dx′ φ(x) p(x, t+∆t|x′, t)p(x′, t|x0, t0)−

−
ˆ
Ω

dx

ˆ
Ω

dx′ φ(x) p(x′, t+∆t|x, t)p(x, t|x0, t0)

}
.

(27)

Consider now the Taylor expansion around x′ of the test function φ:

φ(x) = φ(x′) +
∞∑

m=1

(x− x′)m
1

m!

∂mφ

∂xm

∣∣∣∣
x=x′

. (28)

Inserting eq. 28 into the first inner integral of eq. 27 yields

∂

∂t

ˆ
Ω

dxφ(x)p(x, t|x0, t0) =

= lim
∆t→0

1

∆t

{ˆ
Ω

dx

[ˆ
Ω

dx′ φ(x′) p(x, t+∆t|x′, t)p(x′, t|x0, t0)+

+

ˆ
Ω

dx′
∞∑

m=1

(x− x′)m
1

m!

∂mφ

∂xm

∣∣∣∣
x=x′

p(x, t+∆t|x′, t)p(x′, t|x0, t0)−

]

−
ˆ
Ω

dx

ˆ
Ω

dx′ φ(x) p(x′; t+∆t|x; t)p(x; t|x0, t0)

}
.

(29)
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The last integral is a double integral over Ω× Ω, however the order of integration does not

matter. Then, it is convenient to swap the variables x ↔ x′:

∂

∂t

ˆ
Ω

dxφ(x)p(x, t|x0, t0) =

= lim
∆t→0

1

∆t

{ˆ
Ω

dx

[ˆ
Ω

dx′ φ(x′) p(x, t+∆t|x′, t)p(x′, t|x0, t0)+

+

ˆ
Ω

dx′
∞∑

m=1

(x− x′)m
1

m!

∂mφ

∂xm

∣∣∣∣
x=x′

p(x, t+∆t|x′, t)p(x′, t|x0, t0)−

]

−
ˆ
Ω

dx

ˆ
Ω

dx′ φ(x′) p(x; t+∆t|x′; t)p(x′; t|x0, t0)

}
.

(30)

Rearranging the integrals, we have

∂

∂t

ˆ
Ω

dxφ(x)p(x, t|x0, t0) =

= lim
∆t→0

1

∆t

{ˆ
Ω

dx′
[ˆ

Ω

dxφ(x′) p(x, t+∆t|x′, t)p(x′, t|x0, t0)+

+

ˆ
Ω

dx
∞∑

m=1

(x− x′)m
1

m!

∂mφ

∂xm

∣∣∣∣
x=x′

p(x, t+∆t|x′, t)p(x′, t|x0, t0)−

−
ˆ
Ω

dxφ(x′) p(x, t+∆t|x′, t)p(x′, t|x0, t0)

]}
.

(31)

Then, we obtain:

∂

∂t

ˆ
Ω

dxφ(x)p(x, t|x0, t0) =

= lim∆t→0
1
∆t

{ˆ
Ω

dx′ ´
Ω
dx

∑∞
m=1(x− x′)m

1

m!

∂mφ

∂xm

∣∣∣∣
x=x′

p(x, t+∆t|x′, t)p(x′, t|x0, t0)

}
.

(32)

We now define the coefficients

Dm(x
′, t) = lim∆t→0

1
∆t

´
Ω
dx (x− x′)m p(x, t+∆t|x′, t) , (33)

and eq. 32 is rewritten as

∂

∂t

ˆ
Ω

dxφ(x)p(x, t|x0, t0) =

=

ˆ
Ω

dx′

[
∞∑

m=1

Dm(x
′, t)

1

m!

∂mφ

∂xm

∣∣∣∣
x=x′

p(x′, t|x0, t0)

]
.

(34)

Consider now the generalized rule for integration by parts
ˆ
Ω

dx
∂mf

∂xm
g =

��������������m−1∑
k=0

(−1)k
∂kg

∂xk

∂m−1−kf

∂xm−1−k

∣∣∣∣∣
∂Ω

+ (−1)m
ˆ
Ω

dx f
∂mg

∂xm
, (35)
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where the sum
∑

k term is a sum of derivatives calculated at the boundary ∂Ω of Ω. We

now assume that the stochastic process is confined in Ω, then p and its mth derivatives are

zero on ∂Ω and the
∑

k term can be canceled. Finally we obtain

∂

∂t

ˆ
Ω

dxφ(x)p(x, t|x0, t0) =

=
∞∑

m=1

(−1)m

m!

ˆ
Ω

dx′
[
φ(x′)

∂m

∂xm
[Dm(x

′, t)p(x′, t|x0, t0)]

]
.

(36)

Because eq. 36 holds for any test function φ, we obtain

∂

∂t
p(x, t|x0, t0) =

∞∑
m=1

(−1)m

m!

∂m

∂xm
[Dm(x, t)p(x, t|x0, t0)] , (37)

which is known as Kramers-Moyal Expansion (KME). Because eq. 37 does not depend not

(x0, t0), if the initial condition is fixed, then, we can write

p(x, t|x0, t0) = p(x, t) , (38)

and
∂

∂t
p(x, t) =

∞∑
m=1

(−1)m

m!

∂m

∂xm
[Dm(x, t)p(x, t)] . (39)

IV. PAWULA THEOREM

The Kramers-Moyal expansion defined in eq. 37 is an infinite-order partial differential

equation, but in practical applications, we cannot handle an infinite sum of terms. The

Pawula theorem, using a logical argument states that, for a given problem, only one of the

following situation is valid:

• The KME is truncated at the first term (Liouville’s equation);

• The KME is truncated at the second term (Fokker-Planck equation);

• The KME cannot be truncated, it must include all infinite terms.

Then, if we assume that a certain even term is zero, it is correct to assume all the terms with

m ≥ 3 equal to zero. Note that this is not a physical argument, then there is no guarantee

that the Fokker-Planck equation is a correct approximation of the Kramer-Moyal expansion.

The Pawula theorem is based on the following
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Lemma [2, 3]: Consider the Kramers-Moyal coefficients as defined in eq. 33 (exchanging

x and x′ for convenience):

Dm(x, t) = lim
∆t→0

1

∆t

ˆ
Ω

dx′ (x′ − x)m p(x′, t+∆t|x, t) (40)

= lim
∆t→0

1

∆t
E [(x′ − x)m|x, t] . (41)

If Dm < ∞ for all m, and if Dm = 0 for some even m, then Dm = 0 for all n ≥ 3.

Proof. First, we recall the Cauchy-Schwarz inequality for two arbitrary functions f, g :

Ω → R applied to random variables X and Y with probability density p : Ω → R:

E [f(X)g(Y )]2 ≤ E
[
f(X)2

]
E
[
f(Y )2

]
. (42)

Inserting eq. 33 (omitting the lim∆t→0 part for brevity) into eq. 42 yields and distinguish-

ing between odd and even m:

• if m is odd and m ≥ 3:

E [(x′ − x)m]
2
= E

[
(x′ − x)

m−1
2 (x′ − x)

m+1
2

]2
≤ E

[
(x′ − x)m−1

]
E
[
(x′ − x)m+1

]
(43)

• if m is even and m ≥ 4:

E [(x′ − x)m]
2
= E

[
(x′ − x)

m−2
2 (x′ − x)

m+2
2

]2
≤ E

[
(x′ − x)m−2

]
E
[
(x′ − x)m+2

]
(44)

In short notation:

D2
m ≤ Dm−1Dm+1 m odd, m ≥ 3 ; (45)

D2
m ≤ Dm−2Dm+2 m even, m ≥ 4 . (46)

Consider now an even number r ≥ 4 such that Dr = 0, i.e. consider the hypothesis of the

lemma, and applying the inequalities defined in eqs. 45 and 46, we check whether the terms

Dm ∀m ≥ 0. First, we consider the term with m odd. If r is even, then m = r± 1, r± 3, . . .

are odd. Consider the first two cases:

m =

r − 1 ≥ 3 → D2
r−1 ≤ D(r−1)−1D(r−1)+1 = Dr−2Dr

r + 1 ≥ 3 → D2
r+1 ≤ D(r+1)−1D(r+1)+1 = DrDr+2

(47)
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Likewise, to build m even, we add and subtract multiples of 2, for example:

m =

r − 2 ≥ 4 → D2
r−2 ≤ D(r−2)−2D(r−2)+2 = Dr−4Dr

r + 2 ≥ 4 → D2
r+2 ≤ D(r+2)−2D(r+2)+2 = DrDr+4

(48)

Since Dm < ∞ for all m and Dr = 0, then from eqs. 47 and 48 follows that Dr−1, Dr+1,

Dr−2 and Dr+2 must vanish. Repeating this argument iteratively, one finds that Dm = 0

∀m ≤ 3. ■

From ref. [2]: Note that the above lemma does not guarantee that the Fokker-Planck

equation will be a good approximation to the linear Boltzmann equation. We should in

general expect to obtain different solutions from each equation. The lemma merely leads to

the conclusion that the probability density function of a random process cannot be correctly

described by a finite number, greater than two, of terms of the Kramers-Moyal expansion.

V. THE FOKKER-PLANCK EQUATION

By truncating the KME after the second term, one gets the Fokker-Planck Equation

(FPE)

∂p(x, t)

∂t
= − ∂

∂x
[D1(x, t) p(x, t)] +

1

2

∂2

∂x2
[D2(x, t) p(x, t)] . (49)

where D1(x, t) is the drift, and D2(x, t) is the diffusion.

A. The Liouville’s equation

If there is no diffusion, then the Fokker-Planck equation reduces to the Liouville’s equation

for deterministic processes:

∂p(x, t)

∂t
= − ∂

∂x
[D1(x, t) p(x, t)] . (50)

Given the initial condition

p(x, 0) = δ(x− x0) , (51)

The solution is

p(x, t) = δ(x− x(t)) . (52)
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