3. Markov Processes

3.1 Stochastic Processes

All of the examples given in Chap. 1 can be mathematically described as stochastic
processes by which we mean, in a loose sense, systems which evolve probabilistically
in time or more precisely, systems in which a certain time-dependent random
variable X(¢) exists. We can measure values x,, x,, X;, ..., etc., of X(¢) at times ¢,,
t,, L3, ... and we assume that a set of joint probability densities exists

P(Xy, by Xg, by X3, 15 .0) (3.1.1)

which describe the system completely.
In terms of these joint probability density functions, one can also define condi-
tional probability densities:

p(xy, tys Xa, 15 o | Y1, T15 Y2, T2y -02)

=p(xy, t; X3, L2 .5 Y1, Tl%}’z; 725 )PP, Ty Yo, Tas ). 3.1.2)

These definitions are valid independently of the ordering of the times, although it is
usual to consider only times which increase from right to left i.e.,

W22 . . 2T,2T,2 ... (3.1.3)

The concept of an evolution equation leads us to consider the conditional probabili-
ties as predictions of the future values of X(¢) (i.e., x,, x,, ... attimes t,, t,, ...), given
the knowledge of the past (values y,, y,, ..., at times 1,,7,, ...).

The concept of a general stochastic process is very loose. To define the process
we need to know at least all possible joint probabilities of the kind in (3.1.1). If such
knowledge does define the process, it is known as a separable stochastic process.
All the processes considered in this book will be assumed to be separable.

The most simple kind of stochastic process is that of complete independence:

p(xy, 85 Xa, by} X3y tsy ..) = I;I pxi, t) (3.14)

which means that the value of X at time ¢ is completely independent of its values in
the past (or future). An even more special case occurs when the p(x,, ¢,) are inde-
pendent of ¢,, so that the same probability law governs the process at all times. We
then have the Bernoulli trials, in which a probabilistic process is repeated at succes-
sive times.
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The next most simple idea is that of the Markov process in which knowledge o
only the present determines the future.

3.2 Markov Process

The Markov assumption is formulated in terms of the conditional probabilities. W«
require that if the times satisfy the ordering (3.1.3), the conditional probability i
determined entirely by the knowledge of the most recent condition, i.e.,

P(xy, by Xy tas oo | D1, T P2y Ty enn)
= p(xy, Ly X3 by oo | P15 T1)- 3.2.1

This is simply a more precise statement of the assumptions made by Einstein
Smoluchowski and others. It is, even by itself, extremely powerful. For it mean
that we can define everything in terms of the simple conditional probabilitie
p(xy, t,| ¥, 7). For example, by definition of the conditional probability densit
(X1, 15 X5, 1] Y1, T1) = p(xy, 8] X2, 125 Y1, T)P(X2, 2] Y1, 7)) and using the Marko
assumption (3.2.1), we find

p(xy, 115 Xo, 15 Y1, T1) = p(Xy, 1y | X2, £)p(X, 12| P15 T1) (3.2.2
and it is not difficult to see that an arbitrary joint probability can be expressed sim
ply as

p(xb tl s X2, 12; X3, 13; coe Xy tu)

= p(xy, 11| X3, t2)p(x2, 12| X5, t3)p(X3, 15| X4, 24) .. (3.2.:
A p(xn—l: tn—l |xm tn)p(xm tn)

provided

WhZ2hL2h2...2,,21,. (3.2.¢

3.2.1 Consistency—the Chapman-Kolmogorov Equation

From Sect.2.3.3 we require that summing over all mutually exclusive events ¢
one kind in a joint probability eliminates that variable, i.e.,

SPANBNC..)=PANC..); (3.2.¢

and when this is applied to stochastic processes, we get two deceptively simile
equations:

plx;, ty) = f dx; p(x,, t;; X3, 1)
= I dx; p(x,, t;| X2, )p(x3, 2) . (3.2.¢
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This equation is an identity valid for all stochastic processes and is the first in a
hierarchy of equations, the second of which is

p(xy, | X35, 83) = I dx, p(xy, ty; X3, L | X3, 1)
= I dx, p(x,, t;| x2, t2; X3, t3)p(x,, 15| X3, 15). 3.2.7)

This equation is also always valid. We now introduce the Markov assumption. If
t, > t, > t;, we can drop the ¢, dependence in the doubly conditioned probability
and write

p(xy, | x5, 83) = J‘ dx; p(x,, | X2, t2)p(x3, 2] X3, t3) (3.2.8)

which is the Chapman-Kolmogorov equation.

What is the essential difference between (3.2.8) and (3.2.6)? The obvious answer
is that (3.2.6) is for unconditioned probabilities, whereas (3.2.7) is for conditional
probabilities. Equation (3.2.8) is a rather complex nonlinear functional equation
relating all conditional probabilities p(x,, t,|x,, t;) to each other, whereas (3.2.6)
simply constructs the one time probabilities in the future #, of #,, given the
conditional probability p(x,, #;| x, t,).

The Chapman-Kolmogorov equation has many solutions. These are best under-
stood by deriving the differential form which is done in Sect. 3.4.1 under certain
rather mild conditions.

3.2.2 Discrete State Spaces

'l

In the case where we have a discrete variable, we will use the symbol N = (N, N,,
N; ...), where the N, are random variables which take on integral values. Clearly,
we now replace

fdx o2 (3.2.9)
and we can now write the Chapman-Kolmogorov equation for such a process as
P(n,, t,|n;, t3) = 3 P(my, t,|m,, t2) P(ny, ty|m;, t5) . (3.2.10)

This is now a matrix multiplication, with possibly infinite matrices.

3.2.3 More General Measures

A more general formulation would assume a measure du(x) instead of dx where a
variety of choices can be made. For example, if x(x) is a step function with steps at
integral values of x, we recover the discrete state space form. Most mathematical
works attempt to be as general as possible. For applications, such generality can
lead to lack of clarity so, where possible, we will favour a more specific notation.
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3.3 Continuity in Stochastic Processes

Whether or not the random variable X(¢) has a continuous range of possible values
is a completely different question from whether the sample path of X(¢) is a continu-
ous function of ¢. For example, in a gas composed of molecules with velocities ¥(r),
it is clear that all possible values of V() are in principle realisable, so that the range
of W(z) is continuous. However, a model of collisions in a gas of hard spheres as
occurring instantaneously is often considered, and in such a model the velocity be-
fore the collision, v;, will change instantaneously at the time of impact to another
value v;, so the sample path of F{(¢) is not continuous. Nevertheless, in such a
model, the position of a gas molecule X(¢) would be expected to be continuous.

A major question now arises. Do Markov processes with continuous sample paths
actually exist in reality? Notice the combination of Markov and continuous. It is
almost certainly the case that in a classical picture (i.e., not quantum mechanical),
all variables with a continuous range have continuous sample paths. Even the hard
sphere gas mentioned above is an idealisation and more realistically, one should
allow some potential to act which would continuously deflect the molecules during
a collision. But it would also be the case that, if we observe on such a fine time scale,
the process will probably not be Markovian. The immediate history of the whole
system will almost certainly be required to predict even the probabilistic future.
This is certainly born out in all attempts to derive Markovian probabilistic equa-
tions from mechanics. Equations which are derived are rarely truly Markovian—
rather there is a certain characteristic memory time during which the previous
history is important (Haake [3.1]).

This means that there is really no such thing as a Markov process; rather,
there may be systems whose memory time is so small that, on the time scale on
which we carry out observations, it is fair to regard them as being well appro-
ximated by a Markov process. But in this case, the question of whether the sample
paths are actually continuous is not relevant. The sample paths of the approxi-
mating Markov process certainly need not be continuous. Even if collisions of mole-
cules are not accurately modelled by hard spheres, during the time taken for a
collision, a finite change of velocity takes place and this will appear in the appro-
ximating Markov. process as a discrete step. On this time scale, even the position
may change discontinuously, thus giving the picture of Brownian motion as
modelled by Einstein.

In chemical reactions, for example, the time taken for an individual reaction to
proceed to completion—roughly of the same order of magnitude as the collision
time for molecules—provides yet another minimum time, since during this time,
states which cannot be described in terms of individual molecules exist. Here, there-
fore, the very description of the state in terms of individual molecules requires a
certain minimum time scale to be considered.

However, Markov processes with continuous sample paths do exist mathema-
tically and are useful in describing reality. The model of the gas mentioned above
provides a useful example. The position of the molecule is indeed probably best
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modelled as changing discontinuously by discrete jumps. Compared to the distances
travelled, however, these jumps are infinitesimal and a continuous curve provides
a good approximation to the sample path. On the other hand, the velocities can
change by amounts which are of the same order of magnitude as typical values at-
tained in practice. The average velocity of a molecule in a gas is about 1000 m/s
and during a collision can easily reverse its sign. The velocities simply cannot reach
(with any significant probability) values for which the changes of velocity can be
regarded as very small. Hence, there is no sense in a continuous path description of
velocities in a gas.

3.3.1 Mathematical Definition of a Continuous Markov Process

For a Markov process, it can be shown [3.2] that with probability one, the sample
paths are continuous functions of ¢, if for any ¢ > 0 we have

lim A~ [ dxp(x t+At|z,1)=0 (3.3.1)

Ar—0 At lx—21>¢

uniformly in z, t and At.

This means that the probability for the final position x to be finitely different
from z goes to zero faster thaf\At, as At goes to zero. [Equation (3.3.1) is sometimes
called the Lindeberg condition.]

Examples ¥
i) Einstein’s solution for his f(x, t) (Sect. 1.2.1) is really the conditional probability
p(x, t]0, 0). Following his method we would find

p(x, t + At|z, t) = (4nDAt)'? exp [— (x — 2)*/4DAt)] (3.3.2)

and it is easy to check that (3.3.1) is satisfied in this case. Thus, Brownian motion
in Einstein’s formulation has continuous sample paths.

ii) Cauchy Process: Suppose
At
plx,t + At|z, t) = o [[(x — z)* + At?]. (3.3.3)

Then this does not satisfy (3.3.1) so the sample paths are discontinuous.
However, in both cases, we have as required for consistency

lim p(x, t + At|z,t) = 8(x — 2), (3.34)
Ar—0

and it is easy to show that in both cases, the Chapman-Kolomogorov equation is
satisfied.

The difference between the two processes just described is illustrated in Fig. 3.1
in which simulations of both processes are given. The difference between the two is
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J. Fig. 3.1. Illustration of sample paths of
P 2 I the Cauchy process X(t) (----- ) and
{"‘"* X(t) L__A,/- Brownian motion W(r) ( )
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striking. Notice, however, that even the Brownian motion curve is extremely irre-
gular, even though continuous—in fact it is nowhere differentiable. The Cauchy-
process curve is, of course, wildly discontinuous.

3.4 Differential Chapman-Kolmogorov Equation

Under appropriate assumptions, the Chapman-Kolmogorov equation can be re-
duced to a differential equation. The assumptions made are closely connected with
the continuity properties of the process under consideration. Because of the form
of the continuity condition (3.3.1), one is led to consider a method of dividing
the differentiability conditions into parts, one corresponding to continuous motion
of a representative point and the other to discontinuous motion.

We require the following conditions for all ¢ > 0:

i) BE‘.‘, p(x, t + At|z, t)/At = W(x|z,t) 3.4.1)

uniformly in x, z, and ¢ for |x — z| > ¢;

i) lim AL, [ dx(x—z)p(x, 1 + At|z, 1) = Az, 1) + OC) ; (342

Ix—zl<e

ii) lim Alt [ dx(x,—z)(x; — z)p(x, t + At|z, 1) = B,(z, 1) + O(); (3.4.3)

Ar lx—zl<e

the last two being uniform in z, ¢, and ¢.
Notice that all higher-order coefficients of the form in (3.4.2,3) must vanish. For
example, consider the third-order quantity defined by

lim A'l_t [ dx(x — z)(x; — z))(xx — z&) p(x, t + At|z, 1)

Ar—0 lx—zl<e

= Culz, 1) + 0() . (3.4.9)
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Since Cyj is symmetric in i, j, k, consider

‘% a,0,0,Cii(z, 1) = C(a, 2, 1) 3.4.5)
so that
Ciul t)——l——gs-——é( 1) (3.4.6)
B 1) = 3 sadagpe, B -
Then,
(G 2,0l <lm ;[ la-(x = Dlla-(x — OF plx, ¢ + 4rl2, 1) d
+ O(¢)

< |ele iim [[a-(x — D)Pp(x, t + At|z, t)dx + O(e)
t—0

= ¢|ea|[aa;B;(z, 1) + O(e)] + O(e)
= O(¢) 3.4.7)

so that C is zero. Similary, we can show that all corresponding higher-order quanti-
ties also vanish.

According to the condition for continuity (3.3.1), the process can only have con-
tinuous paths if W(x|z, t) vanishes for all x # z. Thus, this function must in some
way describe discontinuous motion, while the quantities "4, and B,, must be
connected with continuous motion.

3.4.1 Derivation of the Differential Chapman-Kolmogorov Equation
We consider the time evolution of the expectation of a function f(z) which is

twice continuously differentiable.
Thus,

0, [ dx f(x)p(x, t|y, 1)

= lim {f dx f()p(x,  + Atly, 1) = plx, 1]y, ()]} /At (3.4.8)
=lim {[ dx [ dz f(x)p(x, t + At]z, Op(z, 1], 1)
—  [dzf@@)p(z, t|y, t")}/At, (3.4.9)

where we have used the Chapman-Kolmogorov equation in the positive term of
(3.4.8) to produce the corresponding term in (3.4.9).

We now divide the integral over x into two regions |x — z| > ¢ and |x — Z]|
< &. When |x — z| < g, since f(z) is, by assumption, twice continuously differen-
tiable, we may write
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1) =@ + 24D 2) + 525702 0 — 20— 2)

+ |x — z|*R(x, 2) , (3.4.10)

where we have (again by the twice continuous differentiability)
|R(x,2)| -0 as |x—2z|—0. 3.4.11)

Now substitute in (3.4.9):

049 =tim Ll [ driesi00 202 4 50— - 2 2L ]

lx—zl<e
X p(x, t + At|z, t) p(z, t|p, t')
+ [[ dxdz|x — z|*R(x, 2)p(x, t + At|z, )p(z, t|y, 1)

lx—zl<e
+ [ dxdz f(x)p(x, t + At|z, 0)p(z, 1|y, 1)

lx—2l2e
+ [f dxdzf(z)p(x, t + At|z, )p(z, t|y, 1)

lx—zi<e
— [[ dxdz f(2)p(x, t + At|z, t)p(z, t|y, t') (34.12)

[notice that since p(x, ¢t 4+ At|z, t) is a probability, the integral over x in the last
term gives 1—this is simply the last term in (3.4.9)].
We now consider these line by line.

Lines 1,2: by the assumed uniform convergence, we take the limit inside the integral
to obtain [using conditions (ii) and (iii) of Sect. 3.4]

f a2 A@ L+ 5 5 By 5oL | e 113, 1) + 06) (3.413)

Line 3: this is a remainder term and vanishes as ¢ — 0. For

| [ dx|x—z|*R(x, Op(x, t + At|z,1)]
At lx—zl<e
< [AL [ dx|x—z|%(x, 1+ At|z, t)] Max | R(x, z)| (3.4.14)
tlx—:l<¢ lx—zl<e

— [32 Bul(z, 1) + O@)] {Max |R(x, )|}
x—z|<e
From (3.4.11) we can see that as ¢ — 0, the factor in curly brackets vanishes.

Lines 4-6: We can put these all together to obtain

[[ dxdz f@)[W(z|x, )p(x,t|y, 1) — W(x|z, )p(z, t|y, 1")]. (3.4.15)

lx—zi>g
[ ]
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The whole right-hand side of (3.4.12) is independent of ¢. Hence, taking the limit
e — 0, we find

2, § dz fOpta, 13,1 = Jaz [ Akt 0 D+ 3280 FLD) e, 113, 9

+ [ dz fi) {fax(W(x|z, )p(x, t|y, ') — W(x|z, t)p(z, t]y, )]} . (3.4.16)

Notice, however, that we use the definition

lim [ dxF(x,z)= fdx F(x, z) (3.4.17)

0 |r—7i>e

for a principal value integral of a function F(x, z). For (3.4.16) to have any meaning,
this integral should exist. Equation (3.4.1) defines W(x|z, t) only for x # z and
hence leaves open the possibility that it is infinite at x = z, as is indeed the case
for the Cauchy process, discussed in Sect. 3.3.1, for which

W(x|z, t) = 1/[n(x — 2)]. (3.4.18)

However, if p(x, t|y, t') is continuous and once differentiable, then the principal
value integral exists. In the remainder of the book we shall not write this integral
explicitly as a principal value integral since one rarely considers the singular cases
for which it is necessary.

The final step now is to integrate by, parts. We find

”

fde flo,p(z, 11y, 1) = [dz f(z) [—2 5= Az, 00z, 113, 1)
+ 2 2 az az Btj(z9 t)p(z’ tly’ I)
+ [dx[W(z|x, O)p(x, t|y, ') — W(x|z, )p(z, t|y, 1")]
-+ surface terms. 3.4.19)

We have not specified the range of the integrals. Suppose the process is confined to
a region R with surface S. Then clearly,

p(x, t|z,t') = O unless both x and z € R. (3.4.20)
It is clear that by definition we have

W(x|z,t) = O unless both x and y € K. (3.4.21)
But the conditions on 4,(z, t) and B,,(z, t) can result in discontinuities in these func-
tions as defined by (3.4.2.3) since the conditional probability p(x, t + At|z, t') can

very reasonably change discontinuously as z crosses the boundary of R, reflecting
the fact that no transitions are allowed from outside R to inside R.
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In integrating by parts, we are forced to differentiate both 4, and B,; and by our
reasoning above, one cannot assume that this is possible on the boundary of the
region. Hence, let us choose f(z) to be arbitrary but nonvanishing only in an ar-
bitrary region R’ entirely contained in R. We can then deduce that for all z in the
interior of R,

0 ,
0.p(z, t|y, t") = —Za—z‘[A:(z, tp(z, tly, t')]

1 o ,
+ g‘. 7 57,5z, [B,(z, t)p(z, t|y, t")] (3.4.22)

+ [ dx [W(z|x, )p(x, t|y, ') — W(x|z, )p(z, t|y, t)].

Surface terms do not arise, since they necessarily vanish.

This equation does not seem to have any agreed name in the literature. Since it
is purely a differential form of the Chapman-Kolmogorov equation, I propose to
call it the differential Chapman-Kolmogorov equation.

3.4.2 Status of the Differential Chapman-Kolmogorov Equation

From our derivation it is not clear to what extent solutions of the differential
Chapman-Kolmogorov equation are solutions of the Chapman-Kolmogorov equ-
ation itself or indeed, to what extent solutions exist. It is certainly true, however,
that a set of conditional probabilities which obey the Chapman-Kolmogorov
equation does generate a Markov process, in the sense that the joint probabilities
so generated satisfy all probability axioms.

It can be shown [3.3] that, under certain conditions, if we specify A(x, ¢), B(x, t)
(which must be positive semi-definite), and W(x|y, t) (wWhich must be non-negative),
that a non-negative solution to the differential Chapman-Kolmogorov equation
exists, and this solution also satisfies the Chapman-Kolmogorov equation. The
conditions to be satisfied are the initial condition,

p(z, tly,t) =8y — 2)

which follows from the definition of the conditional probability density, and any
appropriate boundary conditions. These are very difficult to specify in the full
equation, but in the case of the Fokker-Planck equation (Sect. 3.5.2) are given in
Chap. 5.

3.5 Interpretation of Conditions and Results

Each of the conditions (i), (ii), (iii) of Sect. 3.4 can now be seen to give rise to
a distinctive part of the equation, whose interpretation is rather straightforward.
We can identify three processes taking place, which are known as jumps, drift
and diffusion.
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3.5.1 Jump Processes: The Master Equation
We consider a case in which
Afz,1) = By(z,1) =0 (3.5.1)
so that we now have the Master equation:

0.p(z, t|y, t") = [ dx [W(z|x, t)p(x, t|y, t') — W(x|z, t)p(z, t|y, t)]. (3.5.2)

To first order in At we solve approximately, as follows. Notice that

p(z, ty, 1) =38y —2). (3.5.3)
Hence,
p(z, t+ At|y, 1) =8(y — )1 — [ dx W(x|y, )At] + W(z|y,t)Ar. (3.5.4)

We see that for any At there is a finite probability, given by the coefficient of the
8(y — z) in (3.5.4), for the particle to stay at the original position y. The dis-
tribution of those particles which do not remain at y is given by W(z|y, t) after
appropriate normalisation. Thus, a typical path X(¢) will consist of sections of
straight lines X(¢) = constant, interspersed with discontinuous jumps whose dis-
tribution is given by W(z|y, t). For this reason, the process is known as a jump
process. The paths are discontinuous at discrete points.

In the case where the state space cBnsists of integers only, the Master equation
takes the form -

3, P(m, t|n' 1"y = S [W(n|m, t)P(m, t|n', t") — W(m|n,t)P(n, t|n',1")]. (3.5.5)

There is no longer any question that only jumps can occur, since only discrete values
of the state variable N(t) are allowed. It is most important, however, to be aware
that a pure jump process can occur even though the variable X(¢) can take on a con-
tinuous range of variables.

3.5.2 Diffusion Processes—the Fokker-Planck Equation

If we assume the quantities W(z|x, t) to be zero, the differential Chapman-Kolmo-
gorov equation reduces to the Fokker-Planck equation:

aL(z_’%y’_t,) =X aiz, [4dz, Dp(z, 1]y, 1)]

1 0* ,
+ 7%6?621 [Blj(z’ t)p (z9 t|y9 t )] (356)
and the corresponding process is known mathematically as a diffusion process. The

vector A(z, t) is known as the drift vector and the matrix B(z, t) as the diffusion
matrix. The diffusion matrix is positive semidefinite and symmetric as a result of its
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definition in (3.4.3). It is easy to see that from the definition of W(x|z, ¢) (3.4.1),
the requirement (3.3.1) for continuity of the sample paths is satisfied if W(x|z, ) is
zero. Hence, the Fokker-Planck equation describes a process in which X(¢) has con-
tinuous sample paths. In fact, we can heuristically give a much more definite des-
cription of the process. Let us consider computing p(z, t + At|y, t), given that

Pz, t|y, 1) =38(z—y). (3.5.7)

For a small At, the solution of the Fokker-Planck equation will still be on the
whole sharply peaked, and hence derivatives of 4,(z, t) and B,/(z, t) will be negli-
gible compared to those of p. We are thus reduced to solving, approximately

3
op(z, t]y, 1) _ op(z, t|y, 1) 1 2°p(z, t|y, t')
at - '—Z Al(}” t) az‘ + % 2 Blj(y, t) az‘az} ’
(3.5.8)

where we have also neglected the time dependence of 4, and B, for small 1 — ¢'.
Equation (3.5.8) can now be solved, subject to the initial condition (3.5.7), and
we get

p(z, t + Atly, t) = 2r)~V2{det[B(y, D]} *[A1]"12

X exp|— % [Z -y - A(y’ t)At]T[.B(.Z,tt)]_l[z -y - A(y» I)At]}, (359)

that is, a Gaussian distribution with variance matrix B(y, #)and mean y + A(y, t)At.
We get the picture of the system moving with a systematic drift, whose velocity is
A(y, t), on which is superimposed a Gaussian fluctuation with covariance matrix
B(y, t)At, that is, we can write

Y@+ Ar) = y(t) + A(p(t), t)At 4 n(t)At''?, (3.5.10)
where {n(t)) =0 (3.5.11)
()™ = B(y, 1) . (3.5.12)

It is easy to see that this picture gives

i) sample paths which are always continuous — for, clearly, as At — 0, y(¢t + At)
— ¥(t);

ii) sample paths which are nowhere diffierentiable, because of the Ar!/? occurring in
(3.5.10).

We shall see later, in Chap. 4 that the heuristic picture of (3.5.10) can be made
much more precise and leads to the concept of the stochastic differential equation.

3.5.3 Deterministic Processes—Liouville’s Equation

It is possible that in the differential Chapman-Kolmogorov equation (3.4.22) only
the first term is nonzero. so we are led to the special case of a Liouville equation:
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op(z. 1. 1) 51” 1438 ’Z-aiz, [Adz, Op(z, t]y, 1)] (3.5.13)

which occurs in classical mechanics. This equation describes a completely deter-
ministic motion, i.e., if x(p, ) is the solution of the ordinary differential equation

";—(t’) = A[x(2), 1] (3.5.14)

with x(y, t') =y, (3.5.15)
then the solution to (3.5.13) with initial condition

Pz, t'|y, 1) =8(z — ) (3.5.16)
is

p(z, t|y, ') =3[z — x(y, 1)] . (3.5.17)

The proof of this assertion is best obtained by direct substituion. For

—22 {4tz 081z — x(2, 1) (3.5.18)
= — 31 (Als(y, 1), (Bl — x(p, ) (3519)
= =2 | Alx(», 1), t]a%‘S[z —x(y, t)]] - (3.5.20)
and
2 8le — x(y, 0] = — % -8z — x(y, ) 220 (3.521)

and by use of (3.5.14), we see that (3.5.20,21) are equal. Thus, if the particle is in a
well-defined initial position y at time ¢’, it stays on the trajectory obtained by solving
the ordinary differential equation (3.5.14).

Hence, deterministic motion, as defined by a first-order differential equation of
the form (3.5.14), is an elementary form of Markov process. The solution (3.5.17)
is, of course, merely a special case of the kind of process approximated by equations
like (3.5.9) in which the Gaussian part is zero.

3.5.4 General Processes

In general, none of the quantities in A4(z, ?), B(z,?) and W(x|z, t) need vanish, and
in this case we obtain a process whose sample paths are as illustrated in Fig. 3.2,
i.e., a piecewise continuous path made up of pieces which correspond to a diffusion
process with a nonzero drift, onto which is superimposed a fluctuating part.
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Fig. 3.2. Illustration of a sample path
of a general Markov process, in which
drift, diffusion and jumps exist
Z(t)
t
L]
Z(t)

Fig. 3.3. Sample path of a Markov
process with only drift and jumps

t

It is also possible that A(z, t) is nonzero, but B(z, t) is zero and here the sample
paths are, as in Fig. 3.3, composed of pieces of smooth curve [solutions of (3.5.14)]
with discontinuities superimposed. This is very like the picture one would expect
in a dilute gas where the particles move freely between collisions which cause an
instantaneous change in momentum, though not position.

3.6 Equations for Time Development in Initial Time—Backward
Equations

We can derive much more simply than in Sect. 3.4, some equations which give the
time development with respect to the initial variables y, ¢’ of p(x, t|y, t’).
We consider

. 1
lim 25, [p(e, 19, ¢ + Ar) — pl, 113, 1] (.61)
Acr—o AL

. 1
= lim A [dzp(z,t' + At |y, )p(x, t|y, t' + At')

Ar'=0
— p(x, t]z, t' + At")] (3.6.2)
by use of the Chapman-Kolmogrov equation in the second term and by noting
that the first term gives 1 X p(x, t|y, t' + At’).

The assumptions that are necessary are now the existence of all relevant deriva-




