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In general, transformation of the Hnear Boltzmann integral operator to a diG'erential operator leads to
a diBerential operator of in6nite order. For purposes of mathematical tractability this operator is usually
truncated at a Qnite order and thus questions arise as to the validity of the resulting approximation. In
this paper we show that the linear Boltzmann equation can be properly approximated only by the erst two
terms of the Kramers-Moyal expansion; i.e., the Fokker-Planet equation, with the retention of a gnite
number of higher-order terms leading to a logical inconsistency.

X. INTRODUCTIOÃ
' 'REQUENTLY, in the study of relaxation phenom-

ena described by the linearized Boltzmann (master)
equation, the Boltzmann integral operator is approxi-
mated by a differential operator. ' ' The differential
operator is obtained by terminating the Kramers-Moyal
expansion at a 6nite number of terms, with the lowest-
order approximation (the first two terms) being the
Fokker-Planck operator. Intuitively, one is tempted to
expect that the degree of approximation is directly re-
lated to the number of terms retained in the expansion.
However, even if the expansion can be made in terms of
a small parameter (such as the mass ratio of a light to
a heavy particle) difficulties arise when terms of order
greater than two are retained. For example, additional
boundary conditions must somehow be prescribed for
the solution of the resulting partial diGerential equation.
Furthermore, if the solution represents a distribution
function, then terms must be retained in such a way as
to render a non-negative answer. Although these well-
known djtII1culties can to some extent be overcome, ' the
general procedure of passing from an integral operator
to a differential operator has eluded mathematical
justification. '

As a result of investigating generalizations of the
Fokker-Planck-Kolmogorov equations to non-Markov
processes, "we have obtained a partial solution to the
above problem. As is shown in Sec. III, if one assumes

«This research was supported in part by the Advanced Re-
search Projects Agency (Project DEFENDER) and was moni-
tored by the U. S. Army Research Ofhce (Durham) under Contract
No. DA-31-124-ARO-D-257.

' H. A. Kramers, Physics 7, 284 (1940).
s J. E. Moyal, J. Roy. Stat. Soc. (London) $11, 150 (1949).
3 J. Keilson and J.E. Storer, Quart. Appl. Math. 10, 243 (1952).
e A. Siegel, J. Math. Phys. I, 378 (1960).
5 M. Lax, Rev. Mod. Phys. 32, 25 (1960).
6 N. G. van Kampen, Can. J. Phys. 39, 551 (1961).
r K. Anderson and K. E. Shuler, J. Chem. Phys. 40, 633 (1963).
8 H. Akama and A. Siegel, Physica 31, 1493 {1965).

N. G. van Kampen, in Flgctuation Phenonzeea in Solids, edited
by R. E. Burgess (Academic Press Inc. , New York, 1965), p. 139.

' C. F. Eaton and L. H. Holway, Jr., Phys. Rev. , 143, 48
(1966)."R. F. Pawula, IREE Trans. Inform. Theory 13, 33 (1967).

162

IL THE LINEAR BOLTZMANN EQUATION AND
THE KRAMERS-MOYAL EXPANSION

For the sake of clarity, we con6ne our attention to a
one-dimensional random process x(t) which can take on
a continuous range of values as a function of the con-
tinuous time parameter l. x(l) might represent, for
example, the position, speed, or energy of a gas particle.
Let P(x,t) denote the probability density function of
the random variable x(t) at time 1 and let P(x tl xe le)
denote the transition probability density function, i.e.,
the conditional probability density function of x(t) at
time t given that x(t) = xv at time t= te. P(x,t) then satis-
Ges the linearized Boltzmann equation

c)P(x,t) I
=11IQ-

Bt
P'(x', t)P(x, t+A

(
x', t)

—P(x,t)P(x', t+A
~
x, l) jdx'. (I)

"This statement is made without proof and is based upon the
fact that a number of regularity assumptions must be imposed in
transforming the Boltzmann operator to a differential operator.
However, Siegel and Kohlberg fA. Siegel and I. Kohlberg, Bull.
Am. Phys. Soc. 8, 30 (1963)j have shown in a special case that the
eigenvalues of the diR'erential operator converge to the eigenvalues
of the integral operator.

"See Ref. 2, p. 197, Eqs. (8.1.15) and (8.1.16).
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that terms above a given order are zero in the Kramers-
Moyal expansion, this assumption implies that col terms
above second order are zero.

It is to be emphasized that the passage from the linear
Boltzmann equation to the Kramers-Moyal expansion is
not free from mathematical criticism. One must assume
the existence of certain partial derivatives, the conver-
gence properties of certain series, and the interchange of
certain limits. For example, if a distribution function
(probability density function) contains a Dirac 5 func-
tion and is otherwise analytic, we cannot expect the
Kramers-Moyal expansion to yield the 8 function even

if an irtfirtite rtgmber of terms are retained "In t.he fol-
lowing, me asslme that the linear Boltzmann equation
is equivalent to the Kramers-Moyal expansion as given
by Moyal. "



APPROXIMATION OF LINEAR BOLTZMANN EQUATION

We now assume that the right-hand side of this equa-
tion can be expanded in the Kramers-Moyal expansion;
V1z.

&

completeness. From (3), we have

QO

A ~= 11m — (x'—x) &"-""(x'—x) "+

BP(x,t) ~ (—1)" 8"
LA„(x,I)P(x,I)],

nt Bx"

where the derivate moments A „are given by

(2) XP(x', t+6 i x, t)dx'. (5)

Assuming n odd and n&3, and applying the Schwarz
inequality to (5), we obtain

00

A„(x,I) =lim — (x'—x)"P(x', I+A ~x, t)dx'. (3)
Q~p g

A„'&A

In a similar way, it follows that

n odd n&3. (6)

It is common to assunze that the limit and integration
operations in (1) and (3) can be interchanged and to
de6ne a transition probability density per unit time as

P(x, ~+~~x', I)
B(x,x') = lim

Q~p

The limit in this definition of B(x,x') is to be interpreted
in the physical, rather than in the mathematical, sense.
By this we mean, for example, that if x(t) were some
property of a gas particle, that we might require that
b always be much larger than a characteristic interac-
tion time between gas particles (see, for example, the
discussion by Uhlenbeck"). However, even for a well-
behaved process such as a continuous Gaussian process,
B(x,x') is poorly behaved mathematically, consisting of
Dirac 8 functions and their derivatives. %e thus choose
to retain the form (1) for the linearized Boltzmann equa-
tion and (3) for the derivate moments. In Sec. IV, we
discuss the implications of the limit and integration
interchanges.

In general, (2) is an infinite-order partial differential
equation which, for purposes of mathematical tracta-
bility, we desire to truncate at a 6nite number of terms.

III. THE TRUNCATIOÃ LEMMA

In this section we consider conditions under which (2)
reduces to a partial differential equation of 6nite order.
These conditions follow directly from the following:

Lemma: If A, as defined by (3), exists for all I, and
if A =0 for some even n, then A =0 for all n& 3.

Usually the derivate moments A„will be nonzero for
all values of n. However, this lemma tells us that if we
assume A =0 for some even n, that we are in actuality
assuming A to be zero for all n&3. Thus we conclude
that it is logically inconsistent to retain more than two
terms in the Kramers-Moyal expansion unless atl of the
terms are retained.

The proof of a generalized form of the above lemma is
given in Ref. 11 and is reproduced here as a matter of

"G. E. Uhlenbeck, in Probability and Related Topics ie Physical
Sciences, edited by M. Kac {Interscience Publishers, Ltd. , London,
1959), Appendix I, p. j.83.

A '&A n even, n&4.

Setting N=r —1, r+1 in (6) and N=r —2, r+2 in (7),
where r is an even integer, we obtain the four equations

A, s'&A, 4A„, r&6

A, /&A, sA„, r&4

A,+y'&A„A„+g) r&2

A r+g &A rA x+4) g &2

(8)

(9)

(10)

» I. Kohlberg and A. Siegel, Boston University report, 1965
(unpublished).

If A„&~ for alln andif A, =Ofor someevenr&6, then
(8)—(11) show that A „s,A, ~, A„+~, A „+s must be zero.
By repeated application of this argument it follows that
A„=O for all n&r. Going in the other direction and
taking cognizance of the limits on r in (8)—(11), it fol-
lows that A =0 for all n&3.

Note that the above lemma does not guarantee that
the Fokker-Planck equation will be a good approxima-
tion to the linear Boltzmann equation. We should in
general expect to obtain diGerent solutions from each
equation. The lerrUna merely leads to the conclusion that
the probability density function of a random process
cannot be correctly described by a Gnite number,
greater than two, of terms of the Kramers-Moyal
expansion.

If the derivate moment inequalities (8)—(11) are
ignored, the equation resulting from a 6nite number, say
n, of terms of the Kramers-Moyal expansion can, in
principle, be solved to yield a function Q„(x,t). This
function will in certain cases approach P(x,t) as I -+ 0n .
However, the approximations Q„(x,t) may possess un-
desirable properties. Using a rearrangement of terms of
the Kramers-Moyal expansion called Siegel's CD ex-
pansion, Kohlberg and Siegel" have found, for example,
that approximate solutions for P(x,t) are not always
non-negative.

Although we have restricted ourselves to the simplest
case of a one-dimensional random variable x(t) and a
marginal probability density function P(x,I), the above
lemma is true under much broader conditions. The
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general one-dimensional case and the multidimensional
case are discussed in detail in Ref. 11.

IV. USE OF A TRANSITION PROBABILITY
DENSITY PER UNIT TIME

If, on the other hand, the transition probability den-
sity B(x,x) is allowed to contain certain singularities,
then we are led to the results of Sec. III. For example,
lf

B(x',x) = —,'8"(x—x'),

Let us assume that the limit de6ning the transition
probability per unit time exists in some appropriate
sense so that the linearized Boltzmann equation can be
written as

then the Kramers-Moyal expansion becomes

ciP(x, t) 1 ci'P(x, t)

8$ 4 Bx'
(16)

aP(x, t)
P(x', t)B(x,x')dx'

—P(x,t) B(x',x)dx', (12)

which for the initial condition P(x,0)=8(x) has the
solution

P(x, t) = (s.t) "' expL —x'/t$ t&0.

V. DISCUSSION

and the Kramers-Moyal expansion as

M'(x, t) (—1)" ri"
)a„(x,t)P(x, t)),

n & e! gx"
(13)

where the derivate moments u„are given by

a (x,t)= (x'—x) "B(x',x)dx'. (14)

' This conclusion has been pointed out to the author by Profes-
sor J. Keilson of the University of Rochester

Since B(x,x) is non-negative it follows that if a„(x,t)
vanishes for some even rr, then B(x',x) must be zero for
almost all x'. Thus for well-behaved B(x',x), for ex-

ample, as in the Keilson-Storer' model, the Kramers-
Moyal expansion apparently becomes meaningless if an
even derivate moment vanishes. "Thus for well-behaved
B(x',x) we conclude that no even derivate moment can
vanish and that approximate solutions obtained from a
6nite number of terms of the Kramers-Moyal expansion
will not necessarily represent probability density func-
tions of random processes.

The derivate moment inequalities presented in Sec.
III have led to the conclusion that the linear Boltzmann
integral operator cannot properly be approximated by
a 6nite number, greater than two, of terms of the
Kramers-Moyal expansion. Although it is possible to
construct approximate solutions by ignoring these in-

equalities, the validity of these approximations has not
yet, to the author's knowledge, been established.

In our above treatment we have avoided a number of
fundamental questions, such as the continuity of the
random processes under consideration, the ability of
a continuous random process to approximate a discon-
tinuous random process, the validity of interchanging
limiting operations, etc. These questions, as well as the
all important problem of establishing error bounds on
approximate solutions to the linear Boltzmann equa-
tion, remain areas for further investigation.
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